Applied Algorithms Lec 6:
External Memory; Optimization

Sam McCauley
September 23, 2025

Williams College



Admin

Q,r’r—/
O

O
°a
Q

o Next week I will not be here: B

o We will still have lecture (Shikha will teach you about filters, probability and
hashing)

o We will not have lab

e Start Assignment 2 early even though it is due next week!

e Any questions about Assignment 2?

e Today: discuss Assignment 1, external memory practice, discuss other
considerations for optimization



Let’s go over Hirshberg’s, and do one (abbreviated) run on
the board



Plots

e I'm asking you to generate plots for Assignment 2



Plots

e I'm asking you to generate plots for Assignment 2

e You can use whatever software you want



Plots

e I'm asking you to generate plots for Assignment 2
e You can use whatever software you want

e matplotlib in python is probably the best



Plots

e I'm asking you to generate plots for Assignment 2
e You can use whatever software you want

e matplotlib in python is probably the best

e Google Sheets (or whatever) is fine



Plots

e I'm asking you to generate plots for Assignment 2
e You can use whatever software you want
e matplotlib in python is probably the best

e Google Sheets (or whatever) is fine

e Make sure you label your plot; your axes; give units; make sure the results are
legible



Plots

I'm asking you to generate plots for Assignment 2

You can use whatever software you want

e matplotlib in python is probably the best

e Google Sheets (or whatever) is fine

Make sure you label your plot; your axes; give units; make sure the results are
legible

e Use
includegraphics to put the plot into latex



Looking back at Assignment 1

e Quick reminder of Implementation 1vs Implementation 4

e First extra credit: use external memory model to explain why Implementation
4 was faster

o Second extra credit: how to get 0(2"/?) operations?

¢ How many cache misses does this incur?



What is Slow on Modern
Computers Beyond Cache Misses?



Topic for Today

e We've seen: cache misses take a lot of time!



Topic for Today

e We've seen: cache misses take a lot of time!

e Now: What other operations are slow? What can/should we do about it?



Topic for Today

e We've seen: cache misses take a lot of time!

e Now: What other operations are slow? What can/should we do about it?

e Any of you have ideas to start?



Note on time taken for each operation




Note on time taken for each operation

e Intel used to release information along the lines of: here’s how much time it
takes to add two integers; here’s how much time it takes to compare to floats.



Note on time taken for each operation

e Intel used to release information along the lines of: here’s how much time it
takes to add two integers; here’s how much time it takes to compare to floats.

e In the last couple years, Intel has stopped releasing this information!



Note on time taken for each operation

e Intel used to release information along the lines of: here’s how much time it
takes to add two integers; here’s how much time it takes to compare to floats.

e In the last couple years, Intel has stopped releasing this information!

e Too much else going on for strong conclusions.



Note on time taken for each operation

Intel used to release information along the lines of: here’'s how much time it
takes to add two integers; here’s how much time it takes to compare to floats.

In the last couple years, Intel has stopped releasing this information!

Too much else going on for strong conclusions.

I'll go over the numbers from a couple years ago anyway; some (very high
level) lessons to be learned



Note on time taken for each operation

Intel used to release information along the lines of: here’'s how much time it
takes to add two integers; here’s how much time it takes to compare to floats.

In the last couple years, Intel has stopped releasing this information!

Too much else going on for strong conclusions.

I'll go over the numbers from a couple years ago anyway; some (very high
level) lessons to be learned

To know if something is fast: run an experiment!



Basic operations (latency)

e Integer add, multiply (bit operations, move, push, pop, etc.)



Basic operations (latency)

e Integer add, multiply (bit operations, move, push, pop, etc.)

o fast! 1-2 cycles



Basic operations (latency)

e Integer add, multiply (bit operations, move, push, pop, etc.)

o fast! 1-2 cycles

¢ Divide, modulo



Basic operations (latency)

e Integer add, multiply (bit operations, move, push, pop, etc.)

o fast! 1-2 cycles

¢ Divide, modulo
e Generally pretty slow; 5-20 cycles



Basic operations (latency)

e Integer add, multiply (bit operations, move, push, pop, etc.)

o fast! 1-2 cycles

¢ Divide, modulo
e Generally pretty slow; 5-20 cycles

e Float add, multiply?

e Pretty fast on x86; almost as fast as integers



Experiments

Let’s run some (really rough) experiments: timetests.c

Unroll loops to minimize loop overhead; compile with optimizations off

Why is this important? Let’s look at the assembly

Compiler explorer: recent, super cool tool to look at assembly for C code

e godbolt.org
e Awesome for people (like me) who aren’t assembly experts but sometimes care
about what exactly the computer is doing


godbolt.org

More complicated operations

e Square root?



More complicated operations

e Square root?
e fast on our machines! 1-2 cycles



More complicated operations

e Square root?
e fast on our machines! 1-2 cycles

e Generating a random number?



More complicated operations

e Square root?
e fast on our machines! 1-2 cycles

e Generating a random number?

e Pretty slow



More complicated operations

e Square root?
e fast on our machines! 1-2 cycles

e Generating a random number?

e Pretty slow

e memory allocation in bytes? timetests2.c



More complicated operations

Square root?

e fast on our machines! 1-2 cycles

Generating a random number?

e Pretty slow

memory allocation in bytes? timetests2.c

memory allocation in megabytes? (So: fewer allocations, but each of larger
size, for same total size)



More complicated operations

Square root?
e fast on our machines! 1-2 cycles

Generating a random number?

e Pretty slow

memory allocation in bytes? timetests2.c

memory allocation in megabytes? (So: fewer allocations, but each of larger
size, for same total size)

how does it grow as we increase the number of operations?

e Cache efficiency is the problem here, not the memory call itself
o (For what it's worth: malloc really is O(1))



Latency and Throughput

Latency vs throughput:

Latency: time it takes for a sequence of data-dependent operations of a given
type

Throughput: time after a previous operation when a new operation of the same
type can begin.

Let's look at an example: latencythroughput2.c

When designing code, be careful of data dependencies; they can significantly
affect running time

(As an aside: this is one reason why statements like “additions take 1 clock
cycle” aren't really possible anymore)



Modern processors

e Lots going on




Modern processors

- e R
S e

e Lots going on

e Moving things around takes more
time than processing



Modern processors

» 1 r:
NI |
\ llll ” ] i

1AULNE

T
108

—. Lﬁsvzrﬁwsﬁ

e Lots going on
e Moving things around takes more

time than processing

e Cache costs are the most extreme
example of this! But not the only
example.



Casts and moving data around

e Casts can be expensive if they require moving the data into another part of the
processor!



Casts and moving data around

e Casts can be expensive if they require moving the data into another part of the
processor!

e (Can be free if they don't)



Branch mispredictions, etc.

e Instructions need to be moved into the CPU



Branch mispredictions, etc.

e Instructions need to be moved into the CPU

e Modern CPUs predict what instructions will be next; move while completing
other operations



Branch mispredictions, etc.

e Instructions need to be moved into the CPU

e Modern CPUs predict what instructions will be next; move while completing
other operations

e What if the CPU gets it wrong?



Branch mispredictions, etc.

e Instructions need to be moved into the CPU

e Modern CPUs predict what instructions will be next; move while completing
other operations

e What if the CPU gets it wrong?

e “Branch misprediction:” 10-20 cycles to fetch the new instructions from
memory



Branch mispredictions, etc.

e Instructions need to be moved into the CPU

e Modern CPUs predict what instructions will be next; move while completing
other operations

e What if the CPU gets it wrong?

e “Branch misprediction:” 10-20 cycles to fetch the new instructions from
memory

e Can have similar issues with calling non-inlined functions (compiler is very
good at avoiding this)



Branch predictors

e CPU keeps track of your branches as it runs

e Divides into four categories of how likely it is to be taken



Branch predictors

e CPU keeps track of your branches as it runs

e Divides into four categories of how likely it is to be taken

e gcc also predicts your branches during compilation



Branch predictors

e CPU keeps track of your branches as it runs
e Divides into four categories of how likely it is to be taken
e gcc also predicts your branches during compilation

e Can also give preprocessor directives about branches. Can be slightly helpful
(one of the absolute last things you should do for optimization)



Branch predictors

e CPU keeps track of your branches as it runs

e Divides into four categories of how likely it is to be taken

e gcc also predicts your branches during compilation

e Can also give preprocessor directives about branches. Can be slightly helpful
(one of the absolute last things you should do for optimization)

e Example:

int i = !time(NULL);

if (__builtin_expect(i, 0))
printf("It’s not 1970!");

return 0;



Branch predictors

e CPU keeps track of your branches as it runs

e Divides into four categories of how likely it is to be taken

e gcc also predicts your branches during compilation

e Can also give preprocessor directives about branches. Can be slightly helpful
(one of the absolute last things you should do for optimization)

e Example:
int i = !time(NULL);
if (__builtin_expect(i, 0))

printf("It’s not 1970!");
return 0;

e Predictors are so good that this rarely helps



Avoiding branch mispredictions

int max(int a, int b) { e Avoid branches (ifs, etc.) by
int diff = a - b; refactoring when possible
int dsgn = diff >> 31;
return a - (diff & dsgn);

int swap(int a, int b) {
a =an b;
b =a " b;
a =a " b;




Avoiding branch mispredictions

int max(int a, int b) { e Avoid branches (ifs, etc.) by
int diff = a - b; refactoring when possible
int dsgn = diff >> 31;

e Crazy tricks often not worth it
nowadays—true in general;

return a (diff & dsgn);

though some exceptions
(again, check this only at the
int swap(int a, int b) { very end of optimizing; only for

crucial operations)




Avoiding branch mispredictions

int max(int a, int b) { e cmov operations help a lot in
int diff = a - b; modern processors; compilers
int dsgn = diff >> 31; are great at avoiding

return a - (diff & dsgn); expensive branches

int swap(int a, int b) {
a =an" b;
b =a " b;
a =a’M b;




Avoiding branch mispredictions

int max(int a, int b) { e cmov operations help a lot in
int diff = a - b; modern processors; compilers
int dsgn = diff >> 31; are great at avoiding

return a - (diff & dsgn); expensive branches

e If you do create a branch, ask
yourself how easy it is to

int swap(int a, int b) { predict!

a =an" b;
b =a " b;
a =a’M b;




Avoiding branch mispredictions

int max(int a, int b) {

int diff
int dsgn

return a -

int

swap (int
= a M b;
= a " b;

a =a’M b;

a - by
diff >> 31;
(diff & dsgn);

a, int b) {

e cmov operations help a lot in
modern processors; compilers
are great at avoiding
expensive branches

e If you do create a branch, ask
yourself how easy it is to
predict!

e Thought question: in
Implementation 4, were some
of the binary search branches
easy to predict?



Avoiding branch mispredictions

int max(int a, int b) { e cmov operations help a lot in
int diff = a - b; modern processors; compilers
int dsgn = diff >> 31; are great at avoiding
return a - (diff & dsgn); expensive branches

}

e If you do create a branch, ask

yourself how easy it is to
int swap(int a, int b) {

predict!
a =an" b;
= a A b; e Thought question: in
a=a"’ b; Implementation 4, were some
} of the binary search branches

easy to predict?
e Only way to be sure is to
experiment




Avoiding branch mispredictions

int max(int a, int b) { e cmov operations help a lot in
int diff = a - b; modern processors; compilers
int dsgn = diff >> 31; are great at avoiding
return a - (diff & dsgn); expensive branches

}

e If you do create a branch, ask

yourself how easy it is to
int swap(int a, int b) {

predict!
a =an" b;
= a A b; e Thought question: in
a=a"’ b; Implementation 4, were some
} of the binary search branches

easy to predict?

e Only way to be sure is to
experiment

e branchpredictions.c



Code Profiling




Profiling code

e Why not just have your computer tell you what functions are called the most, or
keep track of how long they run, or monitor specific high-cost operations?

e Lots of such tools! We’'ll look at a couple of them right now, and use them
throughout the class.
e gprof
e cachegrind
e We won't use perf (needs root access to do many of the interesting things)—but
can do cachegrind-like things without simulation
¢ We won’t use Intel VTune either but seems very cool and powerful

e What do you think some advantages and disadvantages are of using profiling
software?



gprof

e Older command line tool



gprof

e Older command line tool

e Uses sampling to collect data



gprof

e Older command line tool
e Uses sampling to collect data

e Designed to talk with gcc using —pg flag



gprof

Older command line tool

Uses sampling to collect data

Designed to talk with gcc using —pg flag

Gives information about time as well as the call graph



gprof

Older command line tool

Uses sampling to collect data

Designed to talk with gcc using —pg flag

Gives information about time as well as the call graph

Quite limited. But in some circumstances gives good advice.

e Recursion; function-level resolution; cannot optimize; overhead; sampling
problems



Profilers examples: gprof

e Compile with —pg option; then run normally; then run gprof on the executable



Profilers examples: gprof

e Compile with —pg option; then run normally; then run gprof on the executable

e Gives information about what calls what and how much time is in each



Profilers examples: gprof

e Compile with —pg option; then run normally; then run gprof on the executable

e Gives information about what calls what and how much time is in each

e Not perfect, but gives us some information, especially for simpler programs

e Can see if one function is called a LOT
e Can see if one function is only ever called by one other function



Profilers examples: gprof

Compile with —pg option; then run normally; then run gprof on the executable

Gives information about what calls what and how much time is in each

Not perfect, but gives us some information, especially for simpler programs

e Can see if one function is called a LOT
e Can see if one function is only ever called by one other function

Gets confusing with recursive calls



Profilers examples: gprof

Compile with —pg option; then run normally; then run gprof on the executable

Gives information about what calls what and how much time is in each

Not perfect, but gives us some information, especially for simpler programs

e Can see if one function is called a LOT
e Can see if one function is only ever called by one other function

Gets confusing with recursive calls

I may ask you to use this, but be aware that it's useful sometimes at best



Profilers examples: gprof

Compile with —pg option; then run normally; then run gprof on the executable

Gives information about what calls what and how much time is in each

Not perfect, but gives us some information, especially for simpler programs
e Can see if one function is called a LOT
e Can see if one function is only ever called by one other function

Gets confusing with recursive calls

I may ask you to use this, but be aware that it's useful sometimes at best

Let’s look at what it says about Assignment 1



callgrind and cachegrind

e Features of valgrind



callgrind and cachegrind

e Features of valgrind

e callgrind gives gprof-like profiling



callgrind and cachegrind

e Features of valgrind
e callgrind gives gprof-like profiling

e cachegrind helps determine the cost of moving data: cache misses, branch
mispredictions, etc.



callgrind and cachegrind

e Features of valgrind

e callgrind gives gprof-like profiling

e cachegrind helps determine the cost of moving data: cache misses, branch
mispredictions, etc.

e Essentially runs the program on a simulated virtual machine



callgrind and cachegrind

e Features of valgrind

e callgrind gives gprof-like profiling

e cachegrind helps determine the cost of moving data: cache misses, branch
mispredictions, etc.

e Essentially runs the program on a simulated virtual machine

e Gives detailed information about costs you could not otherwise get, but VERY
slow.



callgrind and cachegrind




callgrind and cachegrind

e Let’s run cachegrind on the basic backtracking version of Assignment 2



callgrind and cachegrind

e Let’s run cachegrind on the basic backtracking version of Assignment 2

e For course-grained results, compile normally; then:

valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes
[executable]



callgrind and cachegrind

e Let’s run cachegrind on the basic backtracking version of Assignment 2

e For course-grained results, compile normally; then:
valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes

[executable]

e (Turns on the simulation of the cache, and the simulation of branch
mispredictions. Can also run one or the other if you want.)



callgrind and cachegrind

Let’s run cachegrind on the basic backtracking version of Assignment 2

For course-grained results, compile normally; then:

valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes
[executable]

(Turns on the simulation of the cache, and the simulation of branch
mispredictions. Can also run one or the other if you want.)

After doing the above, can get more detail using:

cg_annotate [cachegrind file]



callgrind and cachegrind

Let’s run cachegrind on the basic backtracking version of Assignment 2

For course-grained results, compile normally; then:

valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes
[executable]

(Turns on the simulation of the cache, and the simulation of branch
mispredictions. Can also run one or the other if you want.)

After doing the above, can get more detail using:

cg_annotate [cachegrind file]

If you instead compile with debug information on, outputs a line-by-line
analysis



Optimization




With these costs in mind, how does one write code that
runs quickly?



Taking out expensive operations

for(int i
strl[i]

0; i < strlen(strl); i++){
’a7;

e What's wrong with this code? How long does it take?

'0f course, we know that we’re never setting any values to ® before checking them, but the compiler
doesn’t check for that.



Taking out expensive operations

for(int i
strl[i]

0; i < strlen(strl); i++){
’a7;

e What's wrong with this code? How long does it take?

e Does the compiler optimize this out?

'0f course, we know that we’re never setting any values to ® before checking them, but the compiler
doesn’t check for that.



Taking out expensive operations

for(int i
strl[i]

0; i < strlen(strl); i++){
’a7;

e What's wrong with this code? How long does it take?

e Does the compiler optimize this out?

e It can’t! we're changing the array, which could change the first ®.

'0f course, we know that we’re never setting any values to ® before checking them, but the compiler
doesn’t check for that.



More subtle issues

int len = strlen(strl);
for(int i = 0; i < len; i++){
stri[i] = stri[0];

}

int len =
int start
for(int i1

}

stri[i]

strlen(strl);

strl[o];
0; i < len; 1i++){
start;



More subtle issues

. int len = strlen(strl);
int len = strlen(strl); )
. ) . . int start = strl[0];
for(int i = 0; i < len; i++){ . . . .
} for(int i = 0; i < len; 1i++){
strl[i] = strl[0]; .
strl[i] = start;
J }

e Version on the right runs 2-3x faster even with optimizations on



More subtle issues

. int len = strlen(strl);
int len = strlen(strl); )
. ) . . int start = strl[0];
for(int i = 0; i < len; i++){ . . . .
} for(int i = 0; i < len; 1i++){
strl[i] = strl[0]; .
strl[i] = start;
J }

e Version on the right runs 2-3x faster even with optimizations on
e Why is that?



More subtle issues

. int len = strlen(strl);
int len = strlen(strl); .
c ] c . int start = str1[0];
for(int i = 0; i < len; i++){ . . . .
stri[i] = stri[0]: for(int i = 0; i < len; 1i++){
’ strl[i] = start;
J }

e Version on the right runs 2-3x faster even with optimizations on
e Why is that?

e Don't need to look up value! (Compiler doesn’t know it doesn’t change after
the first iteration)



Theme of user optimizations vs compiler optimizations

e The compiler will do the best optimizations it can that work for all code



Theme of user optimizations vs compiler optimizations

e The compiler will do the best optimizations it can that work for all code

e Bear in mind: only common optimizations are implemented



Theme of user optimizations vs compiler optimizations

e The compiler will do the best optimizations it can that work for all code

e Bear in mind: only common optimizations are implemented

e Opportunities for you: what do you know about your data, and about your
methodology, that allows for further efficiency?



Loop Unrolling

e Classic technique to improve loop efficiency



Loop Unrolling

e Classic technique to improve loop efficiency

e What are the costs of each iteration of a simple for loop?

for(int x = 0; x < 1000; x++){
total += array[x];

}




Loop Unrolling

for(int x = 0; x < 1000; x++){
total += array[x];

}

e Need to do a branch every loop



Loop Unrolling

for(int x = 0; x < 1000; x++){
total += array[x];

e Need to do a branch every loop

e Instruction pointer jump every loop (cost of “jumping back” varies; outside
scope of course)



Loop Unrolling

for(int x = 0; x < 1000; x++){
total += array[x];

e Need to do a branch every loop

e Instruction pointer jump every loop (cost of “jumping back” varies; outside
scope of course)

e Need to compare every loop



Loop Unrolling

for(int x = 0; x < 1000; x++){
total += array[x];

Need to do a branch every loop

Instruction pointer jump every loop (cost of “jumping back” varies; outside
scope of course)

Need to compare every loop

Need to increment every loop



Unrolled Loop

for(int x = 0; x < 1000; x+=5){
total += array[x];
total += array[x+1];
total += array[x+2];
total += array[x+3];
total += array[x+4];

e In short: repeat body of the loop multiple times.

e What does this gain us?



Unrolled Loop

for(int x=0; x<1000; x+=5){
total += array[x];
total += array[x+1];
¥ total += array[x+2];
total += array[x+3];
total += array[x+4];

for(int x=0; x < 1000; x++){
total += array[x];

e Branch every loop }

¢ Instruction pointer jump every loop e Branch every 5 loops

e Instruction pointer jump every 5 loops

Compare every loop
e Compare every 5 loops

Increment every loop e Increment every 5 loops (?) Need to do
some extra additions however




What did we need to know to make this substitution?

¢ Needed array size to be a multiple of 5



What did we need to know to make this substitution?

¢ Needed array size to be a multiple of 5

e Can get around this with some extra work



Disadvantages of Loop Unrolling?

e Seems like we break even at worst?



Disadvantages of Loop Unrolling?

e Seems like we break even at worst?

e But: Loop unrolling increases code size



Disadvantages of Loop Unrolling?

e Seems like we break even at worst?

e But: Loop unrolling increases code size

e Can hurt performance if important parts of code no longer fit in cache



Disadvantages of Loop Unrolling?

Seems like we break even at worst?

But: Loop unrolling increases code size

Can hurt performance if important parts of code no longer fit in cache

Fetching instructions can require cache misses!



Disadvantages of Loop Unrolling?

Seems like we break even at worst?

But: Loop unrolling increases code size

Can hurt performance if important parts of code no longer fit in cache

Fetching instructions can require cache misses!

¢ We saw this in the output of cachegrind



Automatic loop unrolling?

e Why can’t gcc unroll our loops?



Automatic loop unrolling?

e Why can’t gcc unroll our loops?

e It can!



Automatic loop unrolling?

e Why can’t gcc unroll our loops?
e It can!

e Need to turn on specifically (not enabled at any optimization level)

—funroll-loops
Unroll loops whose number of iterations can be determined at compile time or upon entry to the loop. ~funrol1-1oops implies ~frerun-cse-after-loop. This option
makes code larger, and may or may not make it run faster.

—funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more slowly. -funroll-all-loops implies the
same options as ~funroll-loops,



Automatic loop unrolling?

e Why can’t gcc unroll our loops?
e It can!

e Need to turn on specifically (not enabled at any optimization level)

—funroll-loops
Unroll loops whose number of iterations can be determined at compile time or upon entry to the loop. ~funrol1-1oops implies ~frerun-cse-after-loop. This option
makes code larger, and may or may not make it run faster.

—funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more slowly. -funroll-all-loops implies the
same options as ~funroll-loops,

e —03 does a specific kind of unrolling of nested loops



Compiler optimizations?

e We've stumbled upon a classic (and thematic) problem in optimization: time
vs space of the machine code itself



Compiler optimizations?

e We've stumbled upon a classic (and thematic) problem in optimization: time
vs space of the machine code itself

e Many optimizations of code reduce the number of operations (or their total
time), but increase the size of the code itself—potentially leading to cache
misses



Revisiting compiler flags

e —00: No optimizations

e —01: Some optimizations; may take longer to compile than -00

e —02: Turns on “nearly all” optimizations that do not involve a space-time
tradeoff

e —03: More optimizations. May lead to larger final programs

e —Ofast: Even more optimizations. Most notable is reordering floating point
operations (can lead to correctness issues)



Optimizations and this course

e Our projects generally involve really small programs. This is why the very
optimized versions (using —03) tend to work well for your code.



Optimizations and this course

e Our projects generally involve really small programs. This is why the very
optimized versions (using —03) tend to work well for your code.

e Not advised in general



Optimizations and this course

e Our projects generally involve really small programs. This is why the very
optimized versions (using —03) tend to work well for your code.

e Not advised in general

e Example: Gentoo user manual. (Gentoo is a linux distribution in which all
software is compiled from scratch. So this is advice for people compiling large
software like the linux kernel, chromium, libreoffice, etc. (as well as, of course,
very small utilities like git))



Gentoo optimization advice

e 01 : the most basic optimization level. The compiler will try to produce faster, smaller code without taking
much compilation time. It is basic, but it should get the job done all the time.

e —02:Astepup from -01.The recommended level of optimization unless the system has special needs.

-02 will activate a few more flags in addition to the ones activated by -01 . With -02 , the compiler will
attempt to increase code performance without compromising on size, and without taking too much
compilation time. SSE or AVX may be utilized at this level but no YMM registers will be used unless

—-ftree-vectorize is also enabled.

e -03 : the highest level of optimization possible. It enables optimizations that are expensive in terms of
compile time and memory usage. Compiling with -03 is not a guaranteed way to improve performance,
and in fact, in many cases, can slow down a system due to larger binaries and increased memory usage.

-03 is also known to break several packages. Using -03 is not recommended. However, it also enables

—-ftree-vectorize so thatloops in the code get vectorized and will use AVX YMM registers.



One more common optimization with a time-space tradeoff

e We've talked about how costly it is to call a function



One more common optimization with a time-space tradeoff

e We've talked about how costly it is to call a function

e Well, most of the time, we don’t really need function calls at all, do we? If the
function doesn’t call another function, can just put the code for the function
directly into the code



One more common optimization with a time-space tradeoff

e We've talked about how costly it is to call a function

e Well, most of the time, we don’t really need function calls at all, do we? If the
function doesn’t call another function, can just put the code for the function
directly into the code

e Called function inlining



One more common optimization with a time-space tradeoff

We've talked about how costly it is to call a function

Well, most of the time, we don’t really need function calls at all, do we? If the
function doesn’t call another function, can just put the code for the function
directly into the code

Called function inlining

Tradeoff?



Function Inlining

e Can do it yourself. May not be a good idea. (Makes code harder to read.)



Function Inlining

e Can do it yourself. May not be a good idea. (Makes code harder to read.)

e gcc will judge each function for you and inline it if gcc thinks it's a good idea
(flag to get gcc to do this is —finline-functions; it is turned on with -02)



Function Inlining

e Can do it yourself. May not be a good idea. (Makes code harder to read.)

e gcc will judge each function for you and inline it if gcc thinks it's a good idea
(flag to get gcc to do this is —finline-functions; it is turned on with -02)

e Can use inline keyword. gcc will try particularly hard to inline it for you, and
if it can’t will tell you if you have -Winl-ine flag on
e Canuse __inline__; does the same thing. Some compilers may like this better
e Probably want to always use static inline



Function Inlining

e Can do it yourself. May not be a good idea. (Makes code harder to read.)

e gcc will judge each function for you and inline it if gcc thinks it's a good idea
(flag to get gcc to do this is —finline-functions; it is turned on with -02)

e Can use inline keyword. gcc will try particularly hard to inline it for you, and
if it can’t will tell you if you have -Winl-ine flag on

e Canuse __inline__; does the same thing. Some compilers may like this better
e Probably want to always use static inline

e Canalsouse __attribute__((always_inline)) which really forces it to
inline even if optimizations are turned off



One more optimization flag

e —march=native

e tells gcc to use instructions specific to this processor. May increase speed

e Only disadvantage: your compiled binary may not run on other computers
unless they have an identical processor (this is not a problem for us!)



Sorting in External Memory




External Memory Model Reminder

e Cache line of size B
e Cache can hold at most M elements

e Computing on elements in cache is free! Only cost is to bring things in and
out of cache



External Memory Model Reminder




External Memory Model Reminder

e Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?



External Memory Model Reminder

e Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

e O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].



What about algorithms we know? ﬁ g

0000000000

e In pairs: how long does Mergesort take in external memory?



What about algorithms we know? ﬁ g

0000000000

e In pairs: how long does Mergesort take in external memory?

e Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).



What about algorithms we know? ﬁ g

0000000000

e In pairs: how long does Mergesort take in external memory?
e Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).

e How about quicksort?



What about algorithms we know? ﬁ g

0000000000

In pairs: how long does Mergesort take in external memory?

Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).

How about quicksort?

Essentially same; partition is O(n/B); total is O(n/Blog, n/B).



What about algorithms we know?

66&6666666

In pairs: how long does Mergesort take in external memory?

Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).

How about quicksort?

Essentially same; partition is O(n/B); total is O(n/Blog, n/B).

Seems pretty good! Can we do better?



HyperTransport™ PHY 1| - MisciO. 17

Using the cache o & P

2MB L3 Cache 2MB 13 Cache.

2MB L3 Cache 2MB L3 Cache

z
3
E
g
g

i
2
%

e Blocking? A little unclear. (We'll come back to this.)




HyperTransport™ PHY 1| - MisciO. 17

Using the cache

2MB L3 Cache 2MB L3 Cache

2MB L3 Cache 2MB L3 Cache

Buldozer Buidozer
2uB
Module ach 2m8 Module:
il .

3
3
E
g
g

i
b
%

e Blocking? A little unclear. (We'll come back to this.)

HyperTransport™ PHY Misc 10

e Does anyone know the sorting lower bound? Where does nlogn come from?



Using the cache

e Blocking? A little unclear. (We'll come back to this.)

HyperTransport™ PHY 1| - MisciO. 17

Cache Bl
o uidozer
ache L2CoChe e

2MB L3 Cache 2MB L3 Cache

2MB L3 Cache 2MB L3 Cache

8 suldozer Buidozer
2v8
Module o 2m8 Module:
il .

HyperTransport™ PHY Misc 10

e Does anyone know the sorting lower bound? Where does nlogn come from?

e Answer: each time you compare two numbers, can only have two outcomes.

g
g
2

2




HyperTransport™ PHY MisciO- ¥

Using the cache

2MB L3 Cache 2MB L3 Cache

Aud ¢ Haa

2MB L3 Cache 2MB L3 Cache

Buildozer Buiidozer
2uB8
Module 28 Module
EzCache Iy g

z
3
E
g
g

i
2
%

Blocking? A little unclear. (We'll come back to this.)

HyperTransport™ PHY. i5c 10

Does anyone know the sorting lower bound? Where does nlogn come from?

Answer: each time you compare two numbers, can only have two outcomes.

Each time we bring a cache line into cache, how many more things can we
compare it to?



Merge sort reminder

e Divide array into two equal parts

e Recursively sort both parts

e Merge them in O(n) time (and O(n/B) cache misses)

L1l 2]3]s

1 [ 2] 4]

| 4 | 16 | 64 | 256




M /B-way merge sort




M /B-way merge sort

e Divide array into M/B equal parts



M /B-way merge sort

e Divide array into M/B equal parts

e Recursively sort all M/B parts



M /B-way merge sort

e Divide array into M/B equal parts

e Recursively sort all M/B parts

e Merge all M/B arrays in O(n) time (and O(n/B) cache misses)



Diagram of M/B-way merge sort

L1l 2]3 ][5

| 4 | 16 | 64 | 256 |

76537\>
291827>1|2|4|...
-1®®|®|1®®|2®®/

3l 4[5 ][9]




Diagram of M/B-way merge sort

!1/|/2|3|5V
| 4 /] 16 | 64 | 256 |
!-7(/|-6|-5|37
2\\|9|18|27 1] 2] 4] ... ]

|-198| © | 100 | 200

\
(3 N4al5 ]9/




Diagram of M/B-way merge sort

’ 1 |/2 | 3 | 5\[ B elements from each fit in cache

| 4] 16 | 64 [ 256 |

| 7] 6] 5 ] 37

| 2| 9 | 18] 27 1 2] 4] ... ]

|-198| © | 100 | 200

\
(3 N4al5 ]9/




More Detail on merges

e Keep B slots for each array in cache. (M/B arrays so this fits!)



More Detail on merges

e Keep B slots for each array in cache. (M/B arrays so this fits!)

e When all B slots are empty for the array, take B more items from the array in
cache.



More Detail on merges

e Keep B slots for each array in cache. (M/B arrays so this fits!)

e When all B slots are empty for the array, take B more items from the array in
cache.

e Example on board



Analysis

« Divide array into M/B parts; combine in O(N/B) cache misses.



Analysis

« Divide array into M/B parts; combine in O(N/B) cache misses.

e Recursion:
T(N) =T(N/(M/B)) + O(N/B)



Analysis

« Divide array into M/B parts; combine in O(N/B) cache misses.

e Recursion:
T(N) =T(N/(M/B)) + O(N/B)

e Solves to O(g Iog,V,/B g) cache misses (use recursion tree method)



Analysis

Divide array into M/B parts; combine in O(N/B) cache misses.

Recursion:

T(N) = T(N/(M/B)) + O(N/B)

Solves to O(g logy 5 g) cache misses (use recursion tree method)

Optimal!



Useful?

e Can be useful if your data is VERY large



Useful?

e Can be useful if your data is VERY large

e Distribution sort: similar idea, but with Quicksort instead of Mergesort



Useful?

e Can be useful if your data is VERY large
e Distribution sort: similar idea, but with Quicksort instead of Mergesort

e Another method is most popular in practice: Powersort



Useful?

Can be useful if your data is VERY large

Distribution sort: similar idea, but with Quicksort instead of Mergesort

Another method is most popular in practice: Powersort

New; invented in 2018 to improve on Timsort



Useful?

Can be useful if your data is VERY large

Distribution sort: similar idea, but with Quicksort instead of Mergesort

Another method is most popular in practice: Powersort

New; invented in 2018 to improve on Timsort

Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves
strong cache efficiency in practice.



Useful?

e Can be useful if your data is VERY large

e Distribution sort: similar idea, but with Quicksort instead of Mergesort
e Another method is most popular in practice: Powersort

¢ New; invented in 2018 to improve on Timsort

e Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves
strong cache efficiency in practice.

e Takes advantage of already-sorted portions of the array



Useful?

e Can be useful if your data is VERY large

e Distribution sort: similar idea, but with Quicksort instead of Mergesort
e Another method is most popular in practice: Powersort

¢ New; invented in 2018 to improve on Timsort

e Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves
strong cache efficiency in practice.

e Takes advantage of already-sorted portions of the array

e When you call sort in python, it is either Timsort or Powersort



	What is Slow on Modern Computers Beyond Cache Misses?
	Code Profiling
	Optimization
	Sorting in External Memory

