
Applied Algorithms Lec 6:
External Memory; Optimization

Sam McCauley

September 23, 2025

Williams College

Admin

• Next week I will not be here:

• We will still have lecture (Shikha will teach you about filters, probability and
hashing)

• We will not have lab

• Start Assignment 2 early even though it is due next week!

• Any questions about Assignment 2?

• Today: discuss Assignment 1, external memory practice, discuss other

considerations for optimization

Let’s go over Hirshberg’s, and do one (abbreviated) run on
the board

Plots

• I’m asking you to generate plots for Assignment 2

• You can use whatever software you want

• matplotlib in python is probably the best

• Google Sheets (or whatever) is fine

• Make sure you label your plot; your axes; give units; make sure the results are

legible

• Use

includegraphics to put the plot into latex

Plots

• I’m asking you to generate plots for Assignment 2

• You can use whatever software you want

• matplotlib in python is probably the best

• Google Sheets (or whatever) is fine

• Make sure you label your plot; your axes; give units; make sure the results are

legible

• Use

includegraphics to put the plot into latex

Plots

• I’m asking you to generate plots for Assignment 2

• You can use whatever software you want

• matplotlib in python is probably the best

• Google Sheets (or whatever) is fine

• Make sure you label your plot; your axes; give units; make sure the results are

legible

• Use

includegraphics to put the plot into latex

Plots

• I’m asking you to generate plots for Assignment 2

• You can use whatever software you want

• matplotlib in python is probably the best

• Google Sheets (or whatever) is fine

• Make sure you label your plot; your axes; give units; make sure the results are

legible

• Use

includegraphics to put the plot into latex

Plots

• I’m asking you to generate plots for Assignment 2

• You can use whatever software you want

• matplotlib in python is probably the best

• Google Sheets (or whatever) is fine

• Make sure you label your plot; your axes; give units; make sure the results are

legible

• Use

includegraphics to put the plot into latex

Plots

• I’m asking you to generate plots for Assignment 2

• You can use whatever software you want

• matplotlib in python is probably the best

• Google Sheets (or whatever) is fine

• Make sure you label your plot; your axes; give units; make sure the results are

legible

• Use

includegraphics to put the plot into latex

Looking back at Assignment 1

• Quick reminder of Implementation 1 vs Implementation 4

• First extra credit: use external memory model to explain why Implementation

4 was faster

• Second extra credit: how to get O(2n/2) operations?

• How many cache misses does this incur?

What is Slow on Modern
Computers Beyond Cache Misses?

Topic for Today

• We’ve seen: cache misses take a lot of time!

• Now: What other operations are slow? What can/should we do about it?

• Any of you have ideas to start?

Topic for Today

• We’ve seen: cache misses take a lot of time!

• Now: What other operations are slow? What can/should we do about it?

• Any of you have ideas to start?

Topic for Today

• We’ve seen: cache misses take a lot of time!

• Now: What other operations are slow? What can/should we do about it?

• Any of you have ideas to start?

Note on time taken for each operation

• Intel used to release information along the lines of: here’s how much time it

takes to add two integers; here’s how much time it takes to compare to floats.

• In the last couple years, Intel has stopped releasing this information!

• Too much else going on for strong conclusions.

• I’ll go over the numbers from a couple years ago anyway; some (very high

level) lessons to be learned

• To know if something is fast: run an experiment!

Note on time taken for each operation

• Intel used to release information along the lines of: here’s how much time it

takes to add two integers; here’s how much time it takes to compare to floats.

• In the last couple years, Intel has stopped releasing this information!

• Too much else going on for strong conclusions.

• I’ll go over the numbers from a couple years ago anyway; some (very high

level) lessons to be learned

• To know if something is fast: run an experiment!

Note on time taken for each operation

• Intel used to release information along the lines of: here’s how much time it

takes to add two integers; here’s how much time it takes to compare to floats.

• In the last couple years, Intel has stopped releasing this information!

• Too much else going on for strong conclusions.

• I’ll go over the numbers from a couple years ago anyway; some (very high

level) lessons to be learned

• To know if something is fast: run an experiment!

Note on time taken for each operation

• Intel used to release information along the lines of: here’s how much time it

takes to add two integers; here’s how much time it takes to compare to floats.

• In the last couple years, Intel has stopped releasing this information!

• Too much else going on for strong conclusions.

• I’ll go over the numbers from a couple years ago anyway; some (very high

level) lessons to be learned

• To know if something is fast: run an experiment!

Note on time taken for each operation

• Intel used to release information along the lines of: here’s how much time it

takes to add two integers; here’s how much time it takes to compare to floats.

• In the last couple years, Intel has stopped releasing this information!

• Too much else going on for strong conclusions.

• I’ll go over the numbers from a couple years ago anyway; some (very high

level) lessons to be learned

• To know if something is fast: run an experiment!

Note on time taken for each operation

• Intel used to release information along the lines of: here’s how much time it

takes to add two integers; here’s how much time it takes to compare to floats.

• In the last couple years, Intel has stopped releasing this information!

• Too much else going on for strong conclusions.

• I’ll go over the numbers from a couple years ago anyway; some (very high

level) lessons to be learned

• To know if something is fast: run an experiment!

Basic operations (latency)

• Integer add, multiply (bit operations, move, push, pop, etc.)

• fast! 1-2 cycles

• Divide, modulo

• Generally pretty slow; 5-20 cycles

• Float add, multiply?

• Pretty fast on x86; almost as fast as integers

Basic operations (latency)

• Integer add, multiply (bit operations, move, push, pop, etc.)

• fast! 1-2 cycles

• Divide, modulo

• Generally pretty slow; 5-20 cycles

• Float add, multiply?

• Pretty fast on x86; almost as fast as integers

Basic operations (latency)

• Integer add, multiply (bit operations, move, push, pop, etc.)

• fast! 1-2 cycles

• Divide, modulo

• Generally pretty slow; 5-20 cycles

• Float add, multiply?

• Pretty fast on x86; almost as fast as integers

Basic operations (latency)

• Integer add, multiply (bit operations, move, push, pop, etc.)

• fast! 1-2 cycles

• Divide, modulo

• Generally pretty slow; 5-20 cycles

• Float add, multiply?

• Pretty fast on x86; almost as fast as integers

Basic operations (latency)

• Integer add, multiply (bit operations, move, push, pop, etc.)

• fast! 1-2 cycles

• Divide, modulo

• Generally pretty slow; 5-20 cycles

• Float add, multiply?

• Pretty fast on x86; almost as fast as integers

Experiments

• Let’s run some (really rough) experiments: timetests.c

• Unroll loops to minimize loop overhead; compile with optimizations off

• Why is this important? Let’s look at the assembly

• Compiler explorer: recent, super cool tool to look at assembly for C code

• godbolt.org
• Awesome for people (like me) who aren’t assembly experts but sometimes care

about what exactly the computer is doing

godbolt.org

More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• Generating a random number?

• Pretty slow

• memory allocation in bytes? timetests2.c

• memory allocation in megabytes? (So: fewer allocations, but each of larger

size, for same total size)

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself
• (For what it’s worth: malloc really is O(1))

More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• Generating a random number?

• Pretty slow

• memory allocation in bytes? timetests2.c

• memory allocation in megabytes? (So: fewer allocations, but each of larger

size, for same total size)

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself
• (For what it’s worth: malloc really is O(1))

More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• Generating a random number?

• Pretty slow

• memory allocation in bytes? timetests2.c

• memory allocation in megabytes? (So: fewer allocations, but each of larger

size, for same total size)

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself
• (For what it’s worth: malloc really is O(1))

More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• Generating a random number?

• Pretty slow

• memory allocation in bytes? timetests2.c

• memory allocation in megabytes? (So: fewer allocations, but each of larger

size, for same total size)

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself
• (For what it’s worth: malloc really is O(1))

More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• Generating a random number?

• Pretty slow

• memory allocation in bytes? timetests2.c

• memory allocation in megabytes? (So: fewer allocations, but each of larger

size, for same total size)

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself
• (For what it’s worth: malloc really is O(1))

More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• Generating a random number?

• Pretty slow

• memory allocation in bytes? timetests2.c

• memory allocation in megabytes? (So: fewer allocations, but each of larger

size, for same total size)

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself
• (For what it’s worth: malloc really is O(1))

More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• Generating a random number?

• Pretty slow

• memory allocation in bytes? timetests2.c

• memory allocation in megabytes? (So: fewer allocations, but each of larger

size, for same total size)

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself
• (For what it’s worth: malloc really is O(1))

Latency and Throughput

Latency vs throughput:

• Latency: time it takes for a sequence of data-dependent operations of a given

type

• Throughput: time after a previous operation when a new operation of the same

type can begin.

• Let’s look at an example: latencythroughput2.c

• When designing code, be careful of data dependencies; they can significantly

affect running time

• (As an aside: this is one reason why statements like “additions take 1 clock

cycle” aren’t really possible anymore)

Modern processors

• Lots going on

• Moving things around takes more

time than processing

• Cache costs are the most extreme

example of this! But not the only

example.

Modern processors

• Lots going on

• Moving things around takes more

time than processing

• Cache costs are the most extreme

example of this! But not the only

example.

Modern processors

• Lots going on

• Moving things around takes more

time than processing

• Cache costs are the most extreme

example of this! But not the only

example.

Casts and moving data around

• Casts can be expensive if they require moving the data into another part of the

processor!

• (Can be free if they don’t)

Casts and moving data around

• Casts can be expensive if they require moving the data into another part of the

processor!

• (Can be free if they don’t)

Branch mispredictions, etc.

• Instructions need to be moved into the CPU

• Modern CPUs predict what instructions will be next; move while completing

other operations

• What if the CPU gets it wrong?

• “Branch misprediction:” 10-20 cycles to fetch the new instructions from

memory

• Can have similar issues with calling non-inlined functions (compiler is very

good at avoiding this)

Branch mispredictions, etc.

• Instructions need to be moved into the CPU

• Modern CPUs predict what instructions will be next; move while completing

other operations

• What if the CPU gets it wrong?

• “Branch misprediction:” 10-20 cycles to fetch the new instructions from

memory

• Can have similar issues with calling non-inlined functions (compiler is very

good at avoiding this)

Branch mispredictions, etc.

• Instructions need to be moved into the CPU

• Modern CPUs predict what instructions will be next; move while completing

other operations

• What if the CPU gets it wrong?

• “Branch misprediction:” 10-20 cycles to fetch the new instructions from

memory

• Can have similar issues with calling non-inlined functions (compiler is very

good at avoiding this)

Branch mispredictions, etc.

• Instructions need to be moved into the CPU

• Modern CPUs predict what instructions will be next; move while completing

other operations

• What if the CPU gets it wrong?

• “Branch misprediction:” 10-20 cycles to fetch the new instructions from

memory

• Can have similar issues with calling non-inlined functions (compiler is very

good at avoiding this)

Branch mispredictions, etc.

• Instructions need to be moved into the CPU

• Modern CPUs predict what instructions will be next; move while completing

other operations

• What if the CPU gets it wrong?

• “Branch misprediction:” 10-20 cycles to fetch the new instructions from

memory

• Can have similar issues with calling non-inlined functions (compiler is very

good at avoiding this)

Branch predictors

• CPU keeps track of your branches as it runs

• Divides into four categories of how likely it is to be taken

• gcc also predicts your branches during compilation

• Can also give preprocessor directives about branches. Can be slightly helpful
(one of the absolute last things you should do for optimization)

• Example:

int i = !time(NULL);
if (__builtin_expect(i, 0))

printf("It’s not 1970!");
return 0;

• Predictors are so good that this rarely helps

Branch predictors

• CPU keeps track of your branches as it runs

• Divides into four categories of how likely it is to be taken

• gcc also predicts your branches during compilation

• Can also give preprocessor directives about branches. Can be slightly helpful
(one of the absolute last things you should do for optimization)

• Example:

int i = !time(NULL);
if (__builtin_expect(i, 0))

printf("It’s not 1970!");
return 0;

• Predictors are so good that this rarely helps

Branch predictors

• CPU keeps track of your branches as it runs

• Divides into four categories of how likely it is to be taken

• gcc also predicts your branches during compilation

• Can also give preprocessor directives about branches. Can be slightly helpful
(one of the absolute last things you should do for optimization)

• Example:

int i = !time(NULL);
if (__builtin_expect(i, 0))

printf("It’s not 1970!");
return 0;

• Predictors are so good that this rarely helps

Branch predictors

• CPU keeps track of your branches as it runs

• Divides into four categories of how likely it is to be taken

• gcc also predicts your branches during compilation

• Can also give preprocessor directives about branches. Can be slightly helpful
(one of the absolute last things you should do for optimization)

• Example:

int i = !time(NULL);
if (__builtin_expect(i, 0))

printf("It’s not 1970!");
return 0;

• Predictors are so good that this rarely helps

Branch predictors

• CPU keeps track of your branches as it runs

• Divides into four categories of how likely it is to be taken

• gcc also predicts your branches during compilation

• Can also give preprocessor directives about branches. Can be slightly helpful
(one of the absolute last things you should do for optimization)

• Example:

int i = !time(NULL);
if (__builtin_expect(i, 0))

printf("It’s not 1970!");
return 0;

• Predictors are so good that this rarely helps

Avoiding branch mispredictions

int max(int a, int b) {
int diff = a - b;
int dsgn = diff >> 31;
return a - (diff & dsgn);

}

int swap(int a, int b) {
a = a ^ b;
b = a ^ b;
a = a ^ b;

}

• Avoid branches (ifs, etc.) by

refactoring when possible

• Crazy tricks often not worth it

nowadays—true in general;

though some exceptions

(again, check this only at the

very end of optimizing; only for

crucial operations)

Avoiding branch mispredictions

int max(int a, int b) {
int diff = a - b;
int dsgn = diff >> 31;
return a - (diff & dsgn);

}

int swap(int a, int b) {
a = a ^ b;
b = a ^ b;
a = a ^ b;

}

• Avoid branches (ifs, etc.) by

refactoring when possible

• Crazy tricks often not worth it

nowadays—true in general;

though some exceptions

(again, check this only at the

very end of optimizing; only for

crucial operations)

Avoiding branch mispredictions

int max(int a, int b) {
int diff = a - b;
int dsgn = diff >> 31;
return a - (diff & dsgn);

}

int swap(int a, int b) {
a = a ^ b;
b = a ^ b;
a = a ^ b;

}

• cmov operations help a lot in

modern processors; compilers

are great at avoiding

expensive branches

• If you do create a branch, ask

yourself how easy it is to

predict!

• Thought question: in

Implementation 4, were some

of the binary search branches

easy to predict?

• Only way to be sure is to

experiment

• branchpredictions.c

Avoiding branch mispredictions

int max(int a, int b) {
int diff = a - b;
int dsgn = diff >> 31;
return a - (diff & dsgn);

}

int swap(int a, int b) {
a = a ^ b;
b = a ^ b;
a = a ^ b;

}

• cmov operations help a lot in

modern processors; compilers

are great at avoiding

expensive branches

• If you do create a branch, ask

yourself how easy it is to

predict!

• Thought question: in

Implementation 4, were some

of the binary search branches

easy to predict?

• Only way to be sure is to

experiment

• branchpredictions.c

Avoiding branch mispredictions

int max(int a, int b) {
int diff = a - b;
int dsgn = diff >> 31;
return a - (diff & dsgn);

}

int swap(int a, int b) {
a = a ^ b;
b = a ^ b;
a = a ^ b;

}

• cmov operations help a lot in

modern processors; compilers

are great at avoiding

expensive branches

• If you do create a branch, ask

yourself how easy it is to

predict!

• Thought question: in

Implementation 4, were some

of the binary search branches

easy to predict?

• Only way to be sure is to

experiment

• branchpredictions.c

Avoiding branch mispredictions

int max(int a, int b) {
int diff = a - b;
int dsgn = diff >> 31;
return a - (diff & dsgn);

}

int swap(int a, int b) {
a = a ^ b;
b = a ^ b;
a = a ^ b;

}

• cmov operations help a lot in

modern processors; compilers

are great at avoiding

expensive branches

• If you do create a branch, ask

yourself how easy it is to

predict!

• Thought question: in

Implementation 4, were some

of the binary search branches

easy to predict?

• Only way to be sure is to

experiment

• branchpredictions.c

Avoiding branch mispredictions

int max(int a, int b) {
int diff = a - b;
int dsgn = diff >> 31;
return a - (diff & dsgn);

}

int swap(int a, int b) {
a = a ^ b;
b = a ^ b;
a = a ^ b;

}

• cmov operations help a lot in

modern processors; compilers

are great at avoiding

expensive branches

• If you do create a branch, ask

yourself how easy it is to

predict!

• Thought question: in

Implementation 4, were some

of the binary search branches

easy to predict?

• Only way to be sure is to

experiment

• branchpredictions.c

Code Profiling

Profiling code

• Why not just have your computer tell you what functions are called the most, or

keep track of how long they run, or monitor specific high-cost operations?

• Lots of such tools! We’ll look at a couple of them right now, and use them
throughout the class.

• gprof
• cachegrind
• We won’t use perf (needs root access to do many of the interesting things)—but

can do cachegrind-like things without simulation
• We won’t use Intel VTune either but seems very cool and powerful

• What do you think some advantages and disadvantages are of using profiling

software?

gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof on the executable

• Gives information about what calls what and how much time is in each

• Not perfect, but gives us some information, especially for simpler programs

• Can see if one function is called a LOT
• Can see if one function is only ever called by one other function

• Gets confusing with recursive calls

• I may ask you to use this, but be aware that it’s useful sometimes at best

• Let’s look at what it says about Assignment 1

Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof on the executable

• Gives information about what calls what and how much time is in each

• Not perfect, but gives us some information, especially for simpler programs

• Can see if one function is called a LOT
• Can see if one function is only ever called by one other function

• Gets confusing with recursive calls

• I may ask you to use this, but be aware that it’s useful sometimes at best

• Let’s look at what it says about Assignment 1

Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof on the executable

• Gives information about what calls what and how much time is in each

• Not perfect, but gives us some information, especially for simpler programs

• Can see if one function is called a LOT
• Can see if one function is only ever called by one other function

• Gets confusing with recursive calls

• I may ask you to use this, but be aware that it’s useful sometimes at best

• Let’s look at what it says about Assignment 1

Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof on the executable

• Gives information about what calls what and how much time is in each

• Not perfect, but gives us some information, especially for simpler programs

• Can see if one function is called a LOT
• Can see if one function is only ever called by one other function

• Gets confusing with recursive calls

• I may ask you to use this, but be aware that it’s useful sometimes at best

• Let’s look at what it says about Assignment 1

Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof on the executable

• Gives information about what calls what and how much time is in each

• Not perfect, but gives us some information, especially for simpler programs

• Can see if one function is called a LOT
• Can see if one function is only ever called by one other function

• Gets confusing with recursive calls

• I may ask you to use this, but be aware that it’s useful sometimes at best

• Let’s look at what it says about Assignment 1

Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof on the executable

• Gives information about what calls what and how much time is in each

• Not perfect, but gives us some information, especially for simpler programs

• Can see if one function is called a LOT
• Can see if one function is only ever called by one other function

• Gets confusing with recursive calls

• I may ask you to use this, but be aware that it’s useful sometimes at best

• Let’s look at what it says about Assignment 1

callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a simulated virtual machine

• Gives detailed information about costs you could not otherwise get, but VERY

slow.

callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a simulated virtual machine

• Gives detailed information about costs you could not otherwise get, but VERY

slow.

callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a simulated virtual machine

• Gives detailed information about costs you could not otherwise get, but VERY

slow.

callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a simulated virtual machine

• Gives detailed information about costs you could not otherwise get, but VERY

slow.

callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a simulated virtual machine

• Gives detailed information about costs you could not otherwise get, but VERY

slow.

callgrind and cachegrind

• Let’s run cachegrind on the basic backtracking version of Assignment 2

• For course-grained results, compile normally; then:

valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes
[executable]

• (Turns on the simulation of the cache, and the simulation of branch

mispredictions. Can also run one or the other if you want.)

• After doing the above, can get more detail using:

cg_annotate [cachegrind file]

• If you instead compile with debug information on, outputs a line-by-line

analysis

callgrind and cachegrind

• Let’s run cachegrind on the basic backtracking version of Assignment 2

• For course-grained results, compile normally; then:

valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes
[executable]

• (Turns on the simulation of the cache, and the simulation of branch

mispredictions. Can also run one or the other if you want.)

• After doing the above, can get more detail using:

cg_annotate [cachegrind file]

• If you instead compile with debug information on, outputs a line-by-line

analysis

callgrind and cachegrind

• Let’s run cachegrind on the basic backtracking version of Assignment 2

• For course-grained results, compile normally; then:

valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes
[executable]

• (Turns on the simulation of the cache, and the simulation of branch

mispredictions. Can also run one or the other if you want.)

• After doing the above, can get more detail using:

cg_annotate [cachegrind file]

• If you instead compile with debug information on, outputs a line-by-line

analysis

callgrind and cachegrind

• Let’s run cachegrind on the basic backtracking version of Assignment 2

• For course-grained results, compile normally; then:

valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes
[executable]

• (Turns on the simulation of the cache, and the simulation of branch

mispredictions. Can also run one or the other if you want.)

• After doing the above, can get more detail using:

cg_annotate [cachegrind file]

• If you instead compile with debug information on, outputs a line-by-line

analysis

callgrind and cachegrind

• Let’s run cachegrind on the basic backtracking version of Assignment 2

• For course-grained results, compile normally; then:

valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes
[executable]

• (Turns on the simulation of the cache, and the simulation of branch

mispredictions. Can also run one or the other if you want.)

• After doing the above, can get more detail using:

cg_annotate [cachegrind file]

• If you instead compile with debug information on, outputs a line-by-line

analysis

callgrind and cachegrind

• Let’s run cachegrind on the basic backtracking version of Assignment 2

• For course-grained results, compile normally; then:

valgrind --tool=cachegrind --cache-sim=yes --branch-sim=yes
[executable]

• (Turns on the simulation of the cache, and the simulation of branch

mispredictions. Can also run one or the other if you want.)

• After doing the above, can get more detail using:

cg_annotate [cachegrind file]

• If you instead compile with debug information on, outputs a line-by-line

analysis

Optimization

With these costs in mind, how does one write code that
runs quickly?

Taking out expensive operations

for(int i = 0; i < strlen(str1); i++){
str1[i] = ’a’;

}

• What’s wrong with this code? How long does it take?

• Does the compiler optimize this out?

• It can’t:1 we’re changing the array, which could change the first 0.

1Of course, we know that we’re never setting any values to 0 before checking them, but the compiler
doesn’t check for that.

Taking out expensive operations

for(int i = 0; i < strlen(str1); i++){
str1[i] = ’a’;

}

• What’s wrong with this code? How long does it take?

• Does the compiler optimize this out?

• It can’t:1 we’re changing the array, which could change the first 0.

1Of course, we know that we’re never setting any values to 0 before checking them, but the compiler
doesn’t check for that.

Taking out expensive operations

for(int i = 0; i < strlen(str1); i++){
str1[i] = ’a’;

}

• What’s wrong with this code? How long does it take?

• Does the compiler optimize this out?

• It can’t:1 we’re changing the array, which could change the first 0.

1Of course, we know that we’re never setting any values to 0 before checking them, but the compiler
doesn’t check for that.

More subtle issues

int len = strlen(str1);
for(int i = 0; i < len; i++){

str1[i] = str1[0];
}

int len = strlen(str1);
int start = str1[0];
for(int i = 0; i < len; i++){

str1[i] = start;
}

• Version on the right runs 2-3x faster even with optimizations on

• Why is that?

• Don’t need to look up value! (Compiler doesn’t know it doesn’t change after

the first iteration)

More subtle issues

int len = strlen(str1);
for(int i = 0; i < len; i++){

str1[i] = str1[0];
}

int len = strlen(str1);
int start = str1[0];
for(int i = 0; i < len; i++){

str1[i] = start;
}

• Version on the right runs 2-3x faster even with optimizations on

• Why is that?

• Don’t need to look up value! (Compiler doesn’t know it doesn’t change after

the first iteration)

More subtle issues

int len = strlen(str1);
for(int i = 0; i < len; i++){

str1[i] = str1[0];
}

int len = strlen(str1);
int start = str1[0];
for(int i = 0; i < len; i++){

str1[i] = start;
}

• Version on the right runs 2-3x faster even with optimizations on

• Why is that?

• Don’t need to look up value! (Compiler doesn’t know it doesn’t change after

the first iteration)

More subtle issues

int len = strlen(str1);
for(int i = 0; i < len; i++){

str1[i] = str1[0];
}

int len = strlen(str1);
int start = str1[0];
for(int i = 0; i < len; i++){

str1[i] = start;
}

• Version on the right runs 2-3x faster even with optimizations on

• Why is that?

• Don’t need to look up value! (Compiler doesn’t know it doesn’t change after

the first iteration)

Theme of user optimizations vs compiler optimizations

• The compiler will do the best optimizations it can that work for all code

• Bear in mind: only common optimizations are implemented

• Opportunities for you: what do you know about your data, and about your

methodology, that allows for further efficiency?

Theme of user optimizations vs compiler optimizations

• The compiler will do the best optimizations it can that work for all code

• Bear in mind: only common optimizations are implemented

• Opportunities for you: what do you know about your data, and about your

methodology, that allows for further efficiency?

Theme of user optimizations vs compiler optimizations

• The compiler will do the best optimizations it can that work for all code

• Bear in mind: only common optimizations are implemented

• Opportunities for you: what do you know about your data, and about your

methodology, that allows for further efficiency?

Loop Unrolling

• Classic technique to improve loop efficiency

• What are the costs of each iteration of a simple for loop?

for(int x = 0; x < 1000; x++){
total += array[x];

}

Loop Unrolling

• Classic technique to improve loop efficiency

• What are the costs of each iteration of a simple for loop?

for(int x = 0; x < 1000; x++){
total += array[x];

}

Loop Unrolling

for(int x = 0; x < 1000; x++){
total += array[x];

}

• Need to do a branch every loop

• Instruction pointer jump every loop (cost of “jumping back” varies; outside

scope of course)

• Need to compare every loop

• Need to increment every loop

Loop Unrolling

for(int x = 0; x < 1000; x++){
total += array[x];

}

• Need to do a branch every loop

• Instruction pointer jump every loop (cost of “jumping back” varies; outside

scope of course)

• Need to compare every loop

• Need to increment every loop

Loop Unrolling

for(int x = 0; x < 1000; x++){
total += array[x];

}

• Need to do a branch every loop

• Instruction pointer jump every loop (cost of “jumping back” varies; outside

scope of course)

• Need to compare every loop

• Need to increment every loop

Loop Unrolling

for(int x = 0; x < 1000; x++){
total += array[x];

}

• Need to do a branch every loop

• Instruction pointer jump every loop (cost of “jumping back” varies; outside

scope of course)

• Need to compare every loop

• Need to increment every loop

Unrolled Loop

for(int x = 0; x < 1000; x+=5){
total += array[x];
total += array[x+1];
total += array[x+2];
total += array[x+3];
total += array[x+4];

}

• In short: repeat body of the loop multiple times.

• What does this gain us?

Unrolled Loop

for(int x=0; x < 1000; x++){
total += array[x];

}

• Branch every loop

• Instruction pointer jump every loop

• Compare every loop

• Increment every loop

for(int x=0; x<1000; x+=5){
total += array[x];
total += array[x+1];
total += array[x+2];
total += array[x+3];
total += array[x+4];

}

• Branch every 5 loops

• Instruction pointer jump every 5 loops

• Compare every 5 loops

• Increment every 5 loops (?) Need to do
some extra additions however

What did we need to know to make this substitution?

• Needed array size to be a multiple of 5

• Can get around this with some extra work

What did we need to know to make this substitution?

• Needed array size to be a multiple of 5

• Can get around this with some extra work

Disadvantages of Loop Unrolling?

• Seems like we break even at worst?

• But: Loop unrolling increases code size

• Can hurt performance if important parts of code no longer fit in cache

• Fetching instructions can require cache misses!

• We saw this in the output of cachegrind

Disadvantages of Loop Unrolling?

• Seems like we break even at worst?

• But: Loop unrolling increases code size

• Can hurt performance if important parts of code no longer fit in cache

• Fetching instructions can require cache misses!

• We saw this in the output of cachegrind

Disadvantages of Loop Unrolling?

• Seems like we break even at worst?

• But: Loop unrolling increases code size

• Can hurt performance if important parts of code no longer fit in cache

• Fetching instructions can require cache misses!

• We saw this in the output of cachegrind

Disadvantages of Loop Unrolling?

• Seems like we break even at worst?

• But: Loop unrolling increases code size

• Can hurt performance if important parts of code no longer fit in cache

• Fetching instructions can require cache misses!

• We saw this in the output of cachegrind

Disadvantages of Loop Unrolling?

• Seems like we break even at worst?

• But: Loop unrolling increases code size

• Can hurt performance if important parts of code no longer fit in cache

• Fetching instructions can require cache misses!

• We saw this in the output of cachegrind

Automatic loop unrolling?

• Why can’t gcc unroll our loops?

• It can!

• Need to turn on specifically (not enabled at any optimization level)

• -O3 does a specific kind of unrolling of nested loops

Automatic loop unrolling?

• Why can’t gcc unroll our loops?

• It can!

• Need to turn on specifically (not enabled at any optimization level)

• -O3 does a specific kind of unrolling of nested loops

Automatic loop unrolling?

• Why can’t gcc unroll our loops?

• It can!

• Need to turn on specifically (not enabled at any optimization level)

• -O3 does a specific kind of unrolling of nested loops

Automatic loop unrolling?

• Why can’t gcc unroll our loops?

• It can!

• Need to turn on specifically (not enabled at any optimization level)

• -O3 does a specific kind of unrolling of nested loops

Compiler optimizations?

• We’ve stumbled upon a classic (and thematic) problem in optimization: time

vs space of the machine code itself

• Many optimizations of code reduce the number of operations (or their total

time), but increase the size of the code itself—potentially leading to cache

misses

Compiler optimizations?

• We’ve stumbled upon a classic (and thematic) problem in optimization: time

vs space of the machine code itself

• Many optimizations of code reduce the number of operations (or their total

time), but increase the size of the code itself—potentially leading to cache

misses

Revisiting compiler flags

• -O0: No optimizations

• -O1: Some optimizations; may take longer to compile than -O0

• -O2: Turns on “nearly all” optimizations that do not involve a space-time

tradeoff

• -O3: More optimizations. May lead to larger final programs

• -Ofast: Even more optimizations. Most notable is reordering floating point

operations (can lead to correctness issues)

Optimizations and this course

• Our projects generally involve really small programs. This is why the very

optimized versions (using -O3) tend to work well for your code.

• Not advised in general

• Example: Gentoo user manual. (Gentoo is a linux distribution in which all

software is compiled from scratch. So this is advice for people compiling large

software like the linux kernel, chromium, libreoffice, etc. (as well as, of course,

very small utilities like git))

Optimizations and this course

• Our projects generally involve really small programs. This is why the very

optimized versions (using -O3) tend to work well for your code.

• Not advised in general

• Example: Gentoo user manual. (Gentoo is a linux distribution in which all

software is compiled from scratch. So this is advice for people compiling large

software like the linux kernel, chromium, libreoffice, etc. (as well as, of course,

very small utilities like git))

Optimizations and this course

• Our projects generally involve really small programs. This is why the very

optimized versions (using -O3) tend to work well for your code.

• Not advised in general

• Example: Gentoo user manual. (Gentoo is a linux distribution in which all

software is compiled from scratch. So this is advice for people compiling large

software like the linux kernel, chromium, libreoffice, etc. (as well as, of course,

very small utilities like git))

Gentoo optimization advice

One more common optimization with a time-space tradeoff

• We’ve talked about how costly it is to call a function

• Well, most of the time, we don’t really need function calls at all, do we? If the

function doesn’t call another function, can just put the code for the function

directly into the code

• Called function inlining

• Tradeoff?

One more common optimization with a time-space tradeoff

• We’ve talked about how costly it is to call a function

• Well, most of the time, we don’t really need function calls at all, do we? If the

function doesn’t call another function, can just put the code for the function

directly into the code

• Called function inlining

• Tradeoff?

One more common optimization with a time-space tradeoff

• We’ve talked about how costly it is to call a function

• Well, most of the time, we don’t really need function calls at all, do we? If the

function doesn’t call another function, can just put the code for the function

directly into the code

• Called function inlining

• Tradeoff?

One more common optimization with a time-space tradeoff

• We’ve talked about how costly it is to call a function

• Well, most of the time, we don’t really need function calls at all, do we? If the

function doesn’t call another function, can just put the code for the function

directly into the code

• Called function inlining

• Tradeoff?

Function Inlining

• Can do it yourself. May not be a good idea. (Makes code harder to read.)

• gcc will judge each function for you and inline it if gcc thinks it’s a good idea

(flag to get gcc to do this is –finline-functions; it is turned on with -O2)

• Can use inline keyword. gcc will try particularly hard to inline it for you, and
if it can’t will tell you if you have -Winline flag on

• Can use __inline__; does the same thing. Some compilers may like this better
• Probably want to always use static inline

• Can also use __attribute__((always_inline)) which really forces it to

inline even if optimizations are turned off

Function Inlining

• Can do it yourself. May not be a good idea. (Makes code harder to read.)

• gcc will judge each function for you and inline it if gcc thinks it’s a good idea

(flag to get gcc to do this is –finline-functions; it is turned on with -O2)

• Can use inline keyword. gcc will try particularly hard to inline it for you, and
if it can’t will tell you if you have -Winline flag on

• Can use __inline__; does the same thing. Some compilers may like this better
• Probably want to always use static inline

• Can also use __attribute__((always_inline)) which really forces it to

inline even if optimizations are turned off

Function Inlining

• Can do it yourself. May not be a good idea. (Makes code harder to read.)

• gcc will judge each function for you and inline it if gcc thinks it’s a good idea

(flag to get gcc to do this is –finline-functions; it is turned on with -O2)

• Can use inline keyword. gcc will try particularly hard to inline it for you, and
if it can’t will tell you if you have -Winline flag on

• Can use __inline__; does the same thing. Some compilers may like this better
• Probably want to always use static inline

• Can also use __attribute__((always_inline)) which really forces it to

inline even if optimizations are turned off

Function Inlining

• Can do it yourself. May not be a good idea. (Makes code harder to read.)

• gcc will judge each function for you and inline it if gcc thinks it’s a good idea

(flag to get gcc to do this is –finline-functions; it is turned on with -O2)

• Can use inline keyword. gcc will try particularly hard to inline it for you, and
if it can’t will tell you if you have -Winline flag on

• Can use __inline__; does the same thing. Some compilers may like this better
• Probably want to always use static inline

• Can also use __attribute__((always_inline)) which really forces it to

inline even if optimizations are turned off

One more optimization flag

• –march=native

• tells gcc to use instructions specific to this processor. May increase speed

• Only disadvantage: your compiled binary may not run on other computers

unless they have an identical processor (this is not a problem for us!)

Sorting in External Memory

External Memory Model Reminder

• Cache line of size B

• Cache can hold at most M elements

• Computing on elements in cache is free! Only cost is to bring things in and

out of cache

External Memory Model Reminder

• Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

• O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].

External Memory Model Reminder

• Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

• O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].

External Memory Model Reminder

• Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

• O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?

Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256
1 2 4 . . .

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

B elements from each fit in cache

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

B elements from each fit in cache

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

B elements from each fit in cache

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in

cache.

• Example on board

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in

cache.

• Example on board

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in

cache.

• Example on board

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O(nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O(nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O(nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O(nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

	What is Slow on Modern Computers Beyond Cache Misses?
	Code Profiling
	Optimization
	Sorting in External Memory

