
Applied Algorithms Lec 5:
Hirshberg’s Algorithm

Sam McCauley

September 19, 2025

Williams College

Admin

• Cool talk right after class! On “practical” algorithms

• Assignment 1 handed in

• Assignment 2 out later today. Get started early!

• Recursive algorithm—so getting (my) help with debugging will be particularly

useful

Plan for today

• Topics for Assignment 2

• More external memory at the end if we have time

Assignment 2: Hirschberg’s
Algorithm

Time and space

• In Assignment 1, we used space to reduce the time required for the algorithm

• In Homework 2, we’re going to do the opposite: we’re going to show how a

space-efficient approach can actually result in smaller wall clock time

• True even though the space-efficient approach does extra computations!

Time and space

• In Assignment 1, we used space to reduce the time required for the algorithm

• In Homework 2, we’re going to do the opposite: we’re going to show how a

space-efficient approach can actually result in smaller wall clock time

• True even though the space-efficient approach does extra computations!

Time and space

• In Assignment 1, we used space to reduce the time required for the algorithm

• In Homework 2, we’re going to do the opposite: we’re going to show how a

space-efficient approach can actually result in smaller wall clock time

• True even though the space-efficient approach does extra computations!

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to

another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ENCE

OCURRANCE

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to

another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ENCE

OCURRANCE

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to

another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ENCE

OCURRANCE

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to

another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ENCE

OCURRANCE

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to

another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ENCE

OCURRANCE

Recursive edit distance (building up to D.P.)

• Base case: if X has length 0, what is the edit distance between X and some
string Y?

• Length of Y

Recursive edit distance (building up to D.P.)

• Base case: if X has length 0, what is the edit distance between X and some
string Y?

• Length of Y

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y match, what is ED(X,Y)?

• If X′ and Y ′ are X and Y respectively with the last character removed, then
ED(X,Y) = ED(X′,Y ′)

OCCURRAN

OCCURREN

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y match, what is ED(X,Y)?

• If X′ and Y ′ are X and Y respectively with the last character removed, then
ED(X,Y) = ED(X′,Y ′)

OCCURRAN

OCCURREN

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X′,Y ′)

• Insert: 1 + ED(X′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X′,Y ′)

• Insert: 1 + ED(X′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X′,Y ′)

• Insert: 1 + ED(X′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X′,Y ′)

• Insert: 1 + ED(X′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X′,Y ′)

• Insert: 1 + ED(X′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X′,Y ′)

• Insert: 1 + ED(X′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X|, n = |Y|.

• Build an n+ 1 ×m+ 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups

instead of recursive calls)

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X|, n = |Y|.

• Build an n+ 1 ×m+ 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups

instead of recursive calls)

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X|, n = |Y|.

• Build an n+ 1 ×m+ 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups

instead of recursive calls)

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X|, n = |Y|.

• Build an n+ 1 ×m+ 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups

instead of recursive calls)

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X|, n = |Y|.

• Build an n+ 1 ×m+ 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups

instead of recursive calls)

Example DP execution

O C C U R R E N C E

0 1 2 3 4 5 6 7 8 9 10

O 1 0 1 2 3 4 5 6 7 8 9

C 2 1 0 1 2 3 4 5 6 7 8

U 3 2 1 1 1 2 3 4 5 6 7

R 4 3 2 2 2 1 2 3 4 5 6

R 5 4 3 3 3 2 1 2 3 4 5

A 6 5 4 4 4 3 2 2 3 4 5

N 7 6 5 5 5 4 3 3 2 3 4

C 8 7 6 6 6 5 4 4 3 2 3

E 9 8 7 7 7 6 5 4 4 3 2

Edit distance analysis

• How much time does this take?

• O(mn) time (to fill out a table entry just need to look in three other table slots)

• O(mn) space

Edit distance analysis

• How much time does this take?

• O(mn) time (to fill out a table entry just need to look in three other table slots)

• O(mn) space

Edit distance analysis

• How much time does this take?

• O(mn) time (to fill out a table entry just need to look in three other table slots)

• O(mn) space

Edit distance analysis

• How much time does this take?

• O(mn) time (to fill out a table entry just need to look in three other table slots)

• O(mn) space

Fun aside: Can we improve on this running time?

• Edit distance is an important problem. Can we do better than quadratic time?

• Probably not by more than log factors

• [Backurs Indyk 2014]: if you can solve edit distance in less than O(nm) time,

you can solve 3SAT in less than 2n time

Fun aside: Can we improve on this running time?

• Edit distance is an important problem. Can we do better than quadratic time?

• Probably not by more than log factors

• [Backurs Indyk 2014]: if you can solve edit distance in less than O(nm) time,

you can solve 3SAT in less than 2n time

Fun aside: Can we improve on this running time?

• Edit distance is an important problem. Can we do better than quadratic time?

• Probably not by more than log factors

• [Backurs Indyk 2014]: if you can solve edit distance in less than O(nm) time,

you can solve 3SAT in less than 2n time

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Example DP execution

O C C U R R E N C E

0 1 2 3 4 5 6 7 8 9 10

O 1 0 1 2 3 4 5 6 7 8 9

C 2 1 0 1 2 3 4 5 6 7 8

U 3 2 1 1 1 2 3 4 5 6 7

R 4 3 2 2 2 1 2 3 4 5 6

R 5 4 3 3 3 2 1 2 3 4 5

A 6 5 4 4 4 3 2 2 3 4 5

N 7 6 5 5 5 4 3 3 2 3 4

C 8 7 6 6 6 5 4 4 3 2 3

E 9 8 7 7 7 6 5 4 4 3 2

Can we find the edit distance between two strings in less space?

Example DP execution

O C C U R R E N C E

0 1 2 3 4 5 6 7 8 9 10

O 1 0 1 2 3 4 5 6 7 8 9

C 2 1 0 1 2 3 4 5 6 7 8

U 3 2 1 1 1 2 3 4 5 6 7

R 4 3 2 2 2 1 2 3 4 5 6

R 5 4 3 3 3 2 1 2 3 4 5

A 6 5 4 4 4 3 2 2 3 4 5

N 7 6 5 5 5 4 3 3 2 3 4

C 8 7 6 6 6 5 4 4 3 2 3

E 9 8 7 7 7 6 5 4 4 3 2

Can we find the edit distance between two strings in less space?

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and

the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n+m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and

the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n+m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and

the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n+m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and

the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n+m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and

the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n+m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and

the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n+m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and

the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n+m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Summary

• Classic edit distance: O(mn
B) cache misses

• Improving space usage: if 3n+m ≤ M, then only O(n+m
B) cache misses

• Improve by a factor of min{n,m} to compute edit distance of two strings that

fit in cache

Summary

• Classic edit distance: O(mn
B) cache misses

• Improving space usage: if 3n+m ≤ M, then only O(n+m
B) cache misses

• Improve by a factor of min{n,m} to compute edit distance of two strings that

fit in cache

Summary

• Classic edit distance: O(mn
B) cache misses

• Improving space usage: if 3n+m ≤ M, then only O(n+m
B) cache misses

• Improve by a factor of min{n,m} to compute edit distance of two strings that

fit in cache

Takeaway: Improved Space Can Imply Improved Cache
Efficiency

One problem

• In practice, you may want to find the actual (optimal) sequence of edits

between the two strings

• Warmup: how can we do that with the space-inefficient approach?

• Actually not so bad: follow the path back!

One problem

• In practice, you may want to find the actual (optimal) sequence of edits

between the two strings

• Warmup: how can we do that with the space-inefficient approach?

• Actually not so bad: follow the path back!

One problem

• In practice, you may want to find the actual (optimal) sequence of edits

between the two strings

• Warmup: how can we do that with the space-inefficient approach?

• Actually not so bad: follow the path back!

Recovering the edits

• How can we tell where each entry came from?

Recovering the edits

• Redo same min computation from the normal dynamic program. (Break ties

arbitrarily—for now.)

Recovering the edits

• Redo same min computation from the normal dynamic program. (Break ties

arbitrarily—for now.)

Recovering the edits

• Once you have the path back, can essentially read back the edits: a diagonal is

a match or replace; right is a delete; down is an insert. (This is if we’re putting

the target string vertically—if Y is being edited to become X , then X is vertical.)

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the

edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the

edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the

edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the

edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the

edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Intro to Hirshberg’s Original Paper

Answer: Hirschberg’s algorithm!

• Recursive approach that extends the dynamic program to make it

space-efficient

• Can find in Kleinberg-Tardos (algorithms) textbook (woo). I’ll email you the

relevant pages. I also posted the original paper (a tad old but still a

reasonable resource).

Answer: Hirschberg’s algorithm!

• Recursive approach that extends the dynamic program to make it

space-efficient

• Can find in Kleinberg-Tardos (algorithms) textbook (woo). I’ll email you the

relevant pages. I also posted the original paper (a tad old but still a

reasonable resource).

(Slightly odd) Thought question

• Can I recover just ONE piece of the optimal path?

• Specifically: find one square in the middle row that is on the optimal path?

(Slightly odd) Thought question

• Can I recover just ONE piece of the optimal path?

• Specifically: find one square in the middle row that is on the optimal path?

Structural Lemma

Lemma

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.

Then there is some way to partition Y into two parts Y1 and Y2 such that

ED(X1,Y1) + ED(X2,Y2) = k.

For example:

ADVICE and VINCENT have edit distance 5.

What parts of VINCENT match up with ADV? ICE?

ED(ADV, V) = 2

ED(ICE, INCENT) = 3

Structural Lemma

Lemma

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.

Then there is some way to partition Y into two parts Y1 and Y2 such that

ED(X1,Y1) + ED(X2,Y2) = k.

For example:

ADVICE and VINCENT have edit distance 5.

What parts of VINCENT match up with ADV? ICE?

ED(ADV, V) = 2

ED(ICE, INCENT) = 3

Structural Lemma

Lemma

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.

Then there is some way to partition Y into two parts Y1 and Y2 such that

ED(X1,Y1) + ED(X2,Y2) = k.

Proof idea: there is some optimal sequence of edits applied to Y that obtain X .

Let’s apply those edits left to right. As we apply those edits, more and more of Y

will match X (let’s do an example with ADVICE and VINCENT on the board).

At some point, the beginning of Y will match the first half of X (that is to say: will

match X1). We can take that as Y1, and the remainder of Y as Y2.

Structural Lemma

Lemma
Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.

Then there is some way to partition Y into two parts Y1 and Y2 such that

ED(X1,Y1) + ED(X2,Y2) = k.

Note: I am not showing you this lemma just to be formal. This is a useful reference

for when you’re coding so that you know exactly how subproblems fit together.

Perhaps most importantly: Y1 and Y2 do not overlap; nor do X1 and X2.

Y1 and Y2 do not overlap; nor do X1 and X2

(Check this when you are coding! It will save you time.)

Y1 and Y2 do not overlap; nor do X1 and X2

(Check this when you are coding! It will save you time.)

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the middle

row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to the

middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for now!

But bear with me)

• Find the Y1, Y2 that minimizes this sum

• By the above lemma, we can optimally edit X into Y by: first editing X1 into Y1,

and then editing X2 into Y2

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the middle

row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to the

middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for now!

But bear with me)

• Find the Y1, Y2 that minimizes this sum

• By the above lemma, we can optimally edit X into Y by: first editing X1 into Y1,

and then editing X2 into Y2

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the middle

row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to the

middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for now!

But bear with me)

• Find the Y1, Y2 that minimizes this sum

• By the above lemma, we can optimally edit X into Y by: first editing X1 into Y1,

and then editing X2 into Y2

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the middle

row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to the

middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for now!

But bear with me)

• Find the Y1, Y2 that minimizes this sum

• By the above lemma, we can optimally edit X into Y by: first editing X1 into Y1,

and then editing X2 into Y2

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the middle

row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to the

middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for now!

But bear with me)

• Find the Y1, Y2 that minimizes this sum

• By the above lemma, we can optimally edit X into Y by: first editing X1 into Y1,

and then editing X2 into Y2

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the middle

row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to the

middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for now!

But bear with me)

• Find the Y1, Y2 that minimizes this sum

• By the above lemma, we can optimally edit X into Y by: first editing X1 into Y1,

and then editing X2 into Y2

Using the Structual Lemma

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once

we’re done.)

• Let’s say we can divide X and Y into two pieces in O(nm) time and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? (Rough sketch of argument): We reduce the size of the DP

table by a factor of 2 each time we recurse. So linear time!

• Kind of like T(X) = T(X/2) + O(X)

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once

we’re done.)

• Let’s say we can divide X and Y into two pieces in O(nm) time and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? (Rough sketch of argument): We reduce the size of the DP

table by a factor of 2 each time we recurse. So linear time!

• Kind of like T(X) = T(X/2) + O(X)

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once

we’re done.)

• Let’s say we can divide X and Y into two pieces in O(nm) time and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? (Rough sketch of argument): We reduce the size of the DP

table by a factor of 2 each time we recurse. So linear time!

• Kind of like T(X) = T(X/2) + O(X)

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once

we’re done.)

• Let’s say we can divide X and Y into two pieces in O(nm) time and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? (Rough sketch of argument): We reduce the size of the DP

table by a factor of 2 each time we recurse. So linear time!

• Kind of like T(X) = T(X/2) + O(X)

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once

we’re done.)

• Let’s say we can divide X and Y into two pieces in O(nm) time and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? (Rough sketch of argument): We reduce the size of the DP

table by a factor of 2 each time we recurse. So linear time!

• Kind of like T(X) = T(X/2) + O(X)

What we want

We want to calculate ED(X1,Y1)+ED(X2,Y2) for all Y1

• Recall that X1 and X2 divide X in half; Y2 is the rest of Y

• If we can do this, we can find the Y1 that minimizes this cost; then recurse on

X1,Y1 and X2,Y2

• Let’s calculate them separately: let’s calculate ED(X1,Y1) for all Y1, and

ED(X2,Y2) for all Y2.

What we want

We want to calculate ED(X1,Y1)+ED(X2,Y2) for all Y1

• Recall that X1 and X2 divide X in half; Y2 is the rest of Y

• If we can do this, we can find the Y1 that minimizes this cost; then recurse on

X1,Y1 and X2,Y2

• Let’s calculate them separately: let’s calculate ED(X1,Y1) for all Y1, and

ED(X2,Y2) for all Y2.

What we want

We want to calculate ED(X1,Y1)+ED(X2,Y2) for all Y1

• Recall that X1 and X2 divide X in half; Y2 is the rest of Y

• If we can do this, we can find the Y1 that minimizes this cost; then recurse on

X1,Y1 and X2,Y2

• Let’s calculate them separately: let’s calculate ED(X1,Y1) for all Y1, and

ED(X2,Y2) for all Y2.

What we want

We want to calculate ED(X1,Y1)+ED(X2,Y2) for all Y1

• Recall that X1 and X2 divide X in half; Y2 is the rest of Y

• If we can do this, we can find the Y1 that minimizes this cost; then recurse on

X1,Y1 and X2,Y2

• Let’s calculate them separately: let’s calculate ED(X1,Y1) for all Y1, and

ED(X2,Y2) for all Y2.

Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i

characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i

characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i

characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i

characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

The values we want are the entries in row m/2 of the DP table! So we already know

how to calculate these in O(nm) time and O(n) space

Calculating ED(X2,Y2) for all Y2

• We want to calculate, for all i = 0, . . . , n, the edit distance between the last i

characters of Y and the last m−m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

• Problem: this doesn’t quite correspond to a table row

Calculating ED(X2,Y2) for all Y2

• We want to calculate, for all i = 0, . . . , n, the edit distance between the last i

characters of Y and the last m−m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

• Problem: this doesn’t quite correspond to a table row

Calculating ED(X2,Y2) for all Y2

• We want to calculate, for all i = 0, . . . , n, the edit distance between the last i

characters of Y and the last m−m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

• Problem: this doesn’t quite correspond to a table row

Really nice trick

Lemma

Let XR be the reverse of X, and let YR be the reverse of Y. Then

ED(X,Y) = ED(XR,YR).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . , n, the edit distance between the last i

characters of Y and the last m−m/2 characters of X” becomes...

• We want to calculate, for all i = 0, . . . , n, the edit distance between the first i

characters of YR and the first m−m/2 characters of XR

• We know how to do this from last slide! It’s just the middle row of the DP table

between the reversed strings

Really nice trick

Lemma

Let XR be the reverse of X, and let YR be the reverse of Y. Then

ED(X,Y) = ED(XR,YR).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . , n, the edit distance between the last i

characters of Y and the last m−m/2 characters of X” becomes...

• We want to calculate, for all i = 0, . . . , n, the edit distance between the first i

characters of YR and the first m−m/2 characters of XR

• We know how to do this from last slide! It’s just the middle row of the DP table

between the reversed strings

Really nice trick

Lemma

Let XR be the reverse of X, and let YR be the reverse of Y. Then

ED(X,Y) = ED(XR,YR).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . , n, the edit distance between the last i

characters of Y and the last m−m/2 characters of X” becomes...

• We want to calculate, for all i = 0, . . . , n, the edit distance between the first i

characters of YR and the first m−m/2 characters of XR

• We know how to do this from last slide! It’s just the middle row of the DP table

between the reversed strings

Really nice trick

Lemma

Let XR be the reverse of X, and let YR be the reverse of Y. Then

ED(X,Y) = ED(XR,YR).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . , n, the edit distance between the last i

characters of Y and the last m−m/2 characters of X” becomes...

• We want to calculate, for all i = 0, . . . , n, the edit distance between the first i

characters of YR and the first m−m/2 characters of XR

• We know how to do this from last slide! It’s just the middle row of the DP table

between the reversed strings

Calculating the edit distances of the last characters

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i

characters of Y , and Y ′
i be the last n− i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′
i) for all i, in O(nm) total time and

O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a

time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!

• Reverse X2 to get XR
2 . Reverse Y to get YR.

• Perform the space-efficient dynamic program between XR
2 and YR (i.e. fill out

the middle row of the reversed)

• Entry (m−m/2, n− i) holds ED(X2,Y ′
i) by definition (and since edit distance

is retained through reversal).

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i

characters of Y , and Y ′
i be the last n− i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′
i) for all i, in O(nm) total time and

O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a

time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!

• Reverse X2 to get XR
2 . Reverse Y to get YR.

• Perform the space-efficient dynamic program between XR
2 and YR (i.e. fill out

the middle row of the reversed)

• Entry (m−m/2, n− i) holds ED(X2,Y ′
i) by definition (and since edit distance

is retained through reversal).

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i

characters of Y , and Y ′
i be the last n− i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′
i) for all i, in O(nm) total time and

O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a

time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!

• Reverse X2 to get XR
2 . Reverse Y to get YR.

• Perform the space-efficient dynamic program between XR
2 and YR (i.e. fill out

the middle row of the reversed)

• Entry (m−m/2, n− i) holds ED(X2,Y ′
i) by definition (and since edit distance

is retained through reversal).

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i

characters of Y , and Y ′
i be the last n− i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′
i) for all i, in O(nm) total time and

O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a

time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!

• Reverse X2 to get XR
2 . Reverse Y to get YR.

• Perform the space-efficient dynamic program between XR
2 and YR (i.e. fill out

the middle row of the reversed)

• Entry (m−m/2, n− i) holds ED(X2,Y ′
i) by definition (and since edit distance

is retained through reversal).

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i

characters of Y , and Y ′
i be the last n− i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′
i) for all i, in O(nm) total time and

O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a

time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!

• Reverse X2 to get XR
2 . Reverse Y to get YR.

• Perform the space-efficient dynamic program between XR
2 and YR (i.e. fill out

the middle row of the reversed)

• Entry (m−m/2, n− i) holds ED(X2,Y ′
i) by definition (and since edit distance

is retained through reversal).

Where we are

• Can: calculate all of the X1,Yi,X2,Y ′
i as above. Find the Yi and Y ′

i that

minimize ED(X1,Yi) + ED(X2,Y ′
i).

• If there’s a tie, any of them will give an optimal solution.

Where we are

• Can: calculate all of the X1,Yi,X2,Y ′
i as above. Find the Yi and Y ′

i that

minimize ED(X1,Yi) + ED(X2,Y ′
i).

• If there’s a tie, any of them will give an optimal solution.

Where we are

• Can: calculate all of the X1,Yi,X2,Y ′
i as above. Find the Yi and Y ′

i that

minimize ED(X1,Yi) + ED(X2,Y ′
i).

• If there’s a tie, any of them will give an optimal solution.

Now: recurse!

• For the i we calculated as the crossing point: find the optimal sequence of

edits between X1 and Yi . Then, find the optimal sequence of edits between X2

and Y ′
i .

• Concatenate these two sequences to get the optimal sequence of edits for X

and Y

Now: recurse!

• For the i we calculated as the crossing point: find the optimal sequence of

edits between X1 and Yi . Then, find the optimal sequence of edits between X2

and Y ′
i .

• Concatenate these two sequences to get the optimal sequence of edits for X

and Y

What else does a recursive algorithm need?

• Base case:

• if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance algorithm.

• Can be more clever about it to improve the speed

What else does a recursive algorithm need?

• Base case:

• if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance algorithm.

• Can be more clever about it to improve the speed

What else does a recursive algorithm need?

• Base case:

• if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance algorithm.

• Can be more clever about it to improve the speed

What else does a recursive algorithm need?

• Base case:

• if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance algorithm.

• Can be more clever about it to improve the speed

Analysis

• How much time does this approach take?

• One recursive call takes O(nm) time and O(n) space.

• We make two recursive calls: one with (i,m/2), and the other with

(n− i,m−m/2)

• Can prove by induction that the total time is O(nm).

• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.

Analysis

• How much time does this approach take?

• One recursive call takes O(nm) time and O(n) space.

• We make two recursive calls: one with (i,m/2), and the other with

(n− i,m−m/2)

• Can prove by induction that the total time is O(nm).

• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.

Analysis

• How much time does this approach take?

• One recursive call takes O(nm) time and O(n) space.

• We make two recursive calls: one with (i,m/2), and the other with

(n− i,m−m/2)

• Can prove by induction that the total time is O(nm).

• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.

Analysis

• How much time does this approach take?

• One recursive call takes O(nm) time and O(n) space.

• We make two recursive calls: one with (i,m/2), and the other with

(n− i,m−m/2)

• Can prove by induction that the total time is O(nm).

• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.

Analysis

• How much time does this approach take?

• One recursive call takes O(nm) time and O(n) space.

• We make two recursive calls: one with (i,m/2), and the other with

(n− i,m−m/2)

• Can prove by induction that the total time is O(nm).

• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice. Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the problem

• The space-inefficient approach may incur many cache misses to fill up the

table.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice. Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the problem

• The space-inefficient approach may incur many cache misses to fill up the

table.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice. Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the problem

• The space-inefficient approach may incur many cache misses to fill up the

table.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice. Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the problem

• The space-inefficient approach may incur many cache misses to fill up the

table.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice. Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the problem

• The space-inefficient approach may incur many cache misses to fill up the

table.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice. Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the problem

• The space-inefficient approach may incur many cache misses to fill up the

table.

Implementation Tips

• It may be useful to keep a reversed version of both strings handy from the

beginning

• When you make your recursive calls, your solutions almost definitely should

not overlap. (Each character in a string should be a part of exactly one

recursive call.)

Implementation Tips

• It may be useful to keep a reversed version of both strings handy from the

beginning

• When you make your recursive calls, your solutions almost definitely should

not overlap. (Each character in a string should be a part of exactly one

recursive call.)

Sorting in External Memory

External Memory Model Reminder

• Cache line of size B

• Cache can hold at most M elements

• Computing on elements in cache is free! Only cost is to bring things in and

out of cache

External Memory Model Reminder

• Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

• O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].

External Memory Model Reminder

• Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

• O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].

External Memory Model Reminder

• Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

• O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].

Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (where T2 = M/3)

• Do a normal n/T × n/T matrix multiplication

• Last class, saw: O(n3/B
√
M) total cache misses.

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?

Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256
1 2 4 . . .

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

B elements from each fit in cache

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

B elements from each fit in cache

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

B elements from each fit in cache

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in

cache.

• Example on board

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in

cache.

• Example on board

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in

cache.

• Example on board

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O(nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O(nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O(nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O(nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort

	Assignment 2: Hirschberg's Algorithm
	Sorting in External Memory

