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Admin

• Cool talk right after class! On “practical” algorithms

• Assignment 1 handed in

• Assignment 2 out later today. Get started early!

• Recursive algorithm—so getting (my) help with debugging will be particularly

useful



Plan for today

• Topics for Assignment 2

• More external memory at the end if we have time



Assignment 2: Hirschberg’s
Algorithm



Time and space

• In Assignment 1, we used space to reduce the time required for the algorithm

• In Homework 2, we’re going to do the opposite: we’re going to show how a

space-efficient approach can actually result in smaller wall clock time

• True even though the space-efficient approach does extra computations!
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Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to

another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:
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Recursive edit distance (building up to D.P.)

• If the last characters of X and Y match, what is ED(X,Y)?

• If X′ and Y ′ are X and Y respectively with the last character removed, then
ED(X,Y) = ED(X′,Y ′)
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Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X′,Y ′)

• Insert: 1 + ED(X′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE
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Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X|, n = |Y|.

• Build an n+ 1 ×m+ 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups

instead of recursive calls)
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Example DP execution

O C C U R R E N C E

0 1 2 3 4 5 6 7 8 9 10

O 1 0 1 2 3 4 5 6 7 8 9

C 2 1 0 1 2 3 4 5 6 7 8

U 3 2 1 1 1 2 3 4 5 6 7

R 4 3 2 2 2 1 2 3 4 5 6

R 5 4 3 3 3 2 1 2 3 4 5

A 6 5 4 4 4 3 2 2 3 4 5

N 7 6 5 5 5 4 3 3 2 3 4

C 8 7 6 6 6 5 4 4 3 2 3

E 9 8 7 7 7 6 5 4 4 3 2



Edit distance analysis

• How much time does this take?

• O(mn) time (to fill out a table entry just need to look in three other table slots)

• O(mn) space
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Fun aside: Can we improve on this running time?

• Edit distance is an important problem. Can we do better than quadratic time?

• Probably not by more than log factors

• [Backurs Indyk 2014]: if you can solve edit distance in less than O(nm) time,

you can solve 3SAT in less than 2n time
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Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B ) cache misses.

• Optimal # cache misses required to fill out that table
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Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and

the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n+m ≤ M?

• O(n+m
B ): the only cache misses are from reading in the strings!

• WAY better than O(mn
B )!
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Summary

• Classic edit distance: O(mn
B ) cache misses

• Improving space usage: if 3n+m ≤ M, then only O(n+m
B ) cache misses

• Improve by a factor of min{n,m} to compute edit distance of two strings that

fit in cache
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Summary

• Classic edit distance: O(mn
B ) cache misses

• Improving space usage: if 3n+m ≤ M, then only O(n+m
B ) cache misses

• Improve by a factor of min{n,m} to compute edit distance of two strings that

fit in cache



Takeaway: Improved Space Can Imply Improved Cache
Efficiency



One problem

• In practice, you may want to find the actual (optimal) sequence of edits

between the two strings

• Warmup: how can we do that with the space-inefficient approach?

• Actually not so bad: follow the path back!
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Recovering the edits

• How can we tell where each entry came from?
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• Redo same min computation from the normal dynamic program. (Break ties

arbitrarily—for now.)
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Recovering the edits

• Once you have the path back, can essentially read back the edits: a diagonal is

a match or replace; right is a delete; down is an insert. (This is if we’re putting

the target string vertically—if Y is being edited to become X , then X is vertical.)



Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the

edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache
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Intro to Hirshberg’s Original Paper



Answer: Hirschberg’s algorithm!

• Recursive approach that extends the dynamic program to make it

space-efficient

• Can find in Kleinberg-Tardos (algorithms) textbook (woo). I’ll email you the

relevant pages. I also posted the original paper (a tad old but still a

reasonable resource).
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(Slightly odd) Thought question

• Can I recover just ONE piece of the optimal path?

• Specifically: find one square in the middle row that is on the optimal path?
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Structural Lemma

Lemma

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.

Then there is some way to partition Y into two parts Y1 and Y2 such that

ED(X1,Y1) + ED(X2,Y2) = k.

For example:

ADVICE and VINCENT have edit distance 5.

What parts of VINCENT match up with ADV? ICE?

ED(ADV, V) = 2

ED(ICE, INCENT) = 3
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Structural Lemma

Lemma

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.

Then there is some way to partition Y into two parts Y1 and Y2 such that

ED(X1,Y1) + ED(X2,Y2) = k.

Proof idea: there is some optimal sequence of edits applied to Y that obtain X .

Let’s apply those edits left to right. As we apply those edits, more and more of Y

will match X (let’s do an example with ADVICE and VINCENT on the board).

At some point, the beginning of Y will match the first half of X (that is to say: will

match X1). We can take that as Y1, and the remainder of Y as Y2.



Structural Lemma

Lemma
Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.

Then there is some way to partition Y into two parts Y1 and Y2 such that

ED(X1,Y1) + ED(X2,Y2) = k.

Note: I am not showing you this lemma just to be formal. This is a useful reference

for when you’re coding so that you know exactly how subproblems fit together.

Perhaps most importantly: Y1 and Y2 do not overlap; nor do X1 and X2.
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Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the middle

row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to the

middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for now!

But bear with me)

• Find the Y1, Y2 that minimizes this sum

• By the above lemma, we can optimally edit X into Y by: first editing X1 into Y1,

and then editing X2 into Y2
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Using the Structual Lemma



Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once

we’re done.)

• Let’s say we can divide X and Y into two pieces in O(nm) time and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? (Rough sketch of argument): We reduce the size of the DP

table by a factor of 2 each time we recurse. So linear time!

• Kind of like T(X) = T(X/2) + O(X)
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What we want

We want to calculate ED(X1,Y1)+ED(X2,Y2) for all Y1

• Recall that X1 and X2 divide X in half; Y2 is the rest of Y

• If we can do this, we can find the Y1 that minimizes this cost; then recurse on

X1,Y1 and X2,Y2

• Let’s calculate them separately: let’s calculate ED(X1,Y1) for all Y1, and

ED(X2,Y2) for all Y2.
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Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i

characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?
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• We want to calculate, for all i = 0 . . . n, the edit distance between the first i

characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

The values we want are the entries in row m/2 of the DP table! So we already know

how to calculate these in O(nm) time and O(n) space



Calculating ED(X2,Y2) for all Y2

• We want to calculate, for all i = 0, . . . , n, the edit distance between the last i

characters of Y and the last m−m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

• Problem: this doesn’t quite correspond to a table row
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Really nice trick

Lemma

Let XR be the reverse of X, and let YR be the reverse of Y. Then

ED(X,Y) = ED(XR,YR).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . , n, the edit distance between the last i

characters of Y and the last m−m/2 characters of X” becomes...

• We want to calculate, for all i = 0, . . . , n, the edit distance between the first i

characters of YR and the first m−m/2 characters of XR

• We know how to do this from last slide! It’s just the middle row of the DP table

between the reversed strings
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Calculating the edit distances of the last characters



Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i

characters of Y , and Y ′
i be the last n− i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′
i ) for all i, in O(nm) total time and

O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a

time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!

• Reverse X2 to get XR
2 . Reverse Y to get YR.

• Perform the space-efficient dynamic program between XR
2 and YR (i.e. fill out

the middle row of the reversed)

• Entry (m−m/2, n− i) holds ED(X2,Y ′
i ) by definition (and since edit distance

is retained through reversal).
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Where we are

• Can: calculate all of the X1,Yi,X2,Y ′
i as above. Find the Yi and Y ′

i that

minimize ED(X1,Yi) + ED(X2,Y ′
i ).

• If there’s a tie, any of them will give an optimal solution.



Where we are

• Can: calculate all of the X1,Yi,X2,Y ′
i as above. Find the Yi and Y ′

i that

minimize ED(X1,Yi) + ED(X2,Y ′
i ).

• If there’s a tie, any of them will give an optimal solution.



Where we are

• Can: calculate all of the X1,Yi,X2,Y ′
i as above. Find the Yi and Y ′

i that

minimize ED(X1,Yi) + ED(X2,Y ′
i ).

• If there’s a tie, any of them will give an optimal solution.



Now: recurse!

• For the i we calculated as the crossing point: find the optimal sequence of

edits between X1 and Yi . Then, find the optimal sequence of edits between X2

and Y ′
i .

• Concatenate these two sequences to get the optimal sequence of edits for X

and Y
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What else does a recursive algorithm need?

• Base case:

• if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance algorithm.

• Can be more clever about it to improve the speed
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Analysis

• How much time does this approach take?

• One recursive call takes O(nm) time and O(n) space.

• We make two recursive calls: one with (i,m/2), and the other with

(n− i,m−m/2)

• Can prove by induction that the total time is O(nm).

• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.
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Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice. Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the problem

• The space-inefficient approach may incur many cache misses to fill up the

table.
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Implementation Tips

• It may be useful to keep a reversed version of both strings handy from the

beginning

• When you make your recursive calls, your solutions almost definitely should

not overlap. (Each character in a string should be a part of exactly one

recursive call.)
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Sorting in External Memory



External Memory Model Reminder

• Cache line of size B

• Cache can hold at most M elements

• Computing on elements in cache is free! Only cost is to bring things in and

out of cache



External Memory Model Reminder

• Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

• O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].
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• Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

• O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].



Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (where T2 = M/3)

• Do a normal n/T × n/T matrix multiplication

• Last class, saw: O(n3/B
√
M) total cache misses.



What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?
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Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?
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• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.
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Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256
1 2 4 . . .



M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)
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Diagram of M/B-way merge sort
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2 9 18 27
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1 2 4 . . .

B elements from each fit in cache
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More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in

cache.

• Example on board
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Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O( nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!



Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O( nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!



Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O( nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!



Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O( nB logM/B
n
B) cache misses (use recursion tree method)

• Optimal!



Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort



Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort



Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort



Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort



Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort



Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort



Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Powersort

• New; invented in 2018 to improve on Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• Takes advantage of already-sorted portions of the array

• When you call sort in python, it is either Timsort or Powersort


	Assignment 2: Hirschberg's Algorithm
	Sorting in External Memory

