Applied Algorithms Lec 5:
Hirshberg’s Algorithm

Sam McCauley
September 19, 2025

Williams College

Admin O
o OO*
O
Q —

/Q-I

Cool talk right after class! On “practical” algorithms

Assignment 1 handed in

Assignment 2 out later today. Get started early!

Recursive algorithm—so getting (my) help with debugging will be particularly
useful

Plan for today

e Topics for Assignment 2

e More external memory at the end if we have time

Assignment 2: Hirschberg’s
Algorithm

Time and space

e In Assignment 1, we used space to reduce the time required for the algorithm

Time and space

e In Assignment 1, we used space to reduce the time required for the algorithm

e In Homework 2, we're going to do the opposite: we're going to show how a
space-efficient approach can actually result in smaller wall clock time

Time and space

e In Assignment 1, we used space to reduce the time required for the algorithm

e In Homework 2, we're going to do the opposite: we're going to show how a
space-efficient approach can actually result in smaller wall clock time

e True even though the space-efficient approach does extra computations!

Edit Distance

e Minimum number of inserts/deletes/replaces to get from one string to
another

e Useful in comp bio. Classic dynamic programming solution.

OCURRANCE & OCCURRENCE:

Edit Distance

e Minimum number of inserts/deletes/replaces to get from one string to
another

e Useful in comp bio. Classic dynamic programming solution.

OCURRANCE & OCCURRENCE:

OCCURRENCE

Edit Distance

e Minimum number of inserts/deletes/replaces to get from one string to
another

e Useful in comp bio. Classic dynamic programming solution.

OCURRANCE VS OCCURRENCE:

OCCURRENCE

Edit Distance

e Minimum number of inserts/deletes/replaces to get from one string to
another

e Useful in comp bio. Classic dynamic programming solution.

OCURRANCE VS OCCURRENCE:
OCCURRENCE

OCURRENCE

Edit Distance

e Minimum number of inserts/deletes/replaces to get from one string to
another

e Useful in comp bio. Classic dynamic programming solution.

OCURRANCE VS OCCURRENCE:

Delete C
Replace E with A

OCCURRENCE

OCURRENCE

OCURRANCE

Recursive edit distance (building up to D.P.)

e Base case: if X has length O, what is the edit distance between X and some
string Y?

Recursive edit distance (building up to D.P.)

e Base case: if X has length O, what is the edit distance between X and some
string Y?

e Length of Y

Recursive edit distance (building up to D.P.)

o If the last characters of X and Y match, what is ED(X, Y)?

Recursive edit distance (building up to D.P.)

o If the last characters of X and Y match, what is ED(X, Y)?

o If X’ and Y’ are X and Y respectively with the last character removed, then
ED(X,Y)=ED(X',Y")

OCCURRAN

OCCURREN

Recursive edit distance (building up to D.P.)

o If the last characters of X and Y don’t match, what is ED(X, Y)?

Recursive edit distance (building up to D.P.)

o If the last characters of X and Y don’t match, what is ED(X, Y)?

e Let’s say we're transforming Y into X

Recursive edit distance (building up to D.P.)

o If the last characters of X and Y don’t match, what is ED(X, Y)?

e Let’s say we're transforming Y into X

e Min of three options: (X’ and Y’ are X and Y with one character removed)

Recursive edit distance (building up to D.P.)

o If the last characters of X and Y don’t match, what is ED(X, Y)?

e Let’s say we're transforming Y into X
e Min of three options: (X’ and Y’ are X and Y with one character removed)

e Replace: 1+ ED(X',Y’)

Recursive edit distance (building up to D.P.)

o If the last characters of X and Y don’t match, what is ED(X, Y)?

e Let’s say we're transforming Y into X
e Min of three options: (X’ and Y’ are X and Y with one character removed)
e Replace: 1+ ED(X',Y’)

o Insert: 1+ ED(X’,Y) (Insert the last character of X into Y. The characters of Y
must match the remaining characters of X)

Recursive edit distance (building up to D.P.)

e If the last characters of X and Y don’t match, what is ED(X, Y)?
e Let’s say we're transforming Y into X
e Min of three options: (X’ and Y’ are X and Y with one character removed)

e Replace: 1+ ED(X',Y’)

o Insert: 1+ ED(X’,Y) (Insert the last character of X into Y. The characters of Y
must match the remaining characters of X)

o Delete: 1+ ED(X,Y’) (delete the last character of Y; match the rest to X)

OCCURRA

OCCURRE

Dynamic programming

¢ Basically the same idea as the recursion, but we build a table

Dynamic programming

¢ Basically the same idea as the recursion, but we build a table

e Letm = |X|,n=Y|.

Dynamic programming

¢ Basically the same idea as the recursion, but we build a table
e Letm = |X|,n=Y|.

e Buildann +1x m 4+ 1table

Dynamic programming

¢ Basically the same idea as the recursion, but we build a table
e Letm = |X|,n=Y|.
e Build ann +1x m + 1table

e (+1s are so we can have 0-length entries)

Dynamic programming

Basically the same idea as the recursion, but we build a table

Letm = |X|,n = |Y]|.

Build ann 4+ 1 x m -+ 1 table

e (+1s are so we can have 0-length entries)

Fill out the table row-by-row using our recursive method (doing lookups
instead of recursive calls)

Example DP execution

W @00~ low|(w|t (MmN
Ol |0 |NO© v | |F M N|m
Z|(0N[O LT MmN |m| S
WiNlOo(w [t (™[N |m|| S
X Ow[t (™ N|— | N[m|t|0
X (ot (mN- | Nm[t|0|o
DIt (MmN~ N[|¢ |10~
Om|N|— |~ |N(m|g|0|0~
OlN|—|@|—|N|m|¢ |0 o~
Olr|@|—|N|m ¢ |0|©[~|w©
@~ |N|M [T |0 |©|N|0]|O

OO0 |lx|<|2|0|w

Edit distance analysis

Edit distance analysis

e How much time does this take?

Edit distance analysis

e How much time does this take?

e O(mn) time (to fill out a table entry just need to look in three other table slots)

Edit distance analysis

e How much time does this take?

e O(mn) time (to fill out a table entry just need to look in three other table slots)

e O(mn) space

Fun aside: Can we improve on this running time?

e Edit distance is an important problem. Can we do better than quadratic time?

Fun aside: Can we improve on this running time?

e Edit distance is an important problem. Can we do better than quadratic time?
e Probably not by more than log factors

Fun aside: Can we improve on this running time?

e Edit distance is an important problem. Can we do better than quadratic time?

e Probably not by more than log factors

e [Backurs Indyk 2014]: if you can solve edit distance in less than O(nm) time,
you can solve 3SAT in less than 2" time

Edit Distance Cannot Be Computed
in Strongly Subquadratic Time
(unless SETH is false)

Arturs Backurs Piotr Indyk
MIT . MIT
backurs@mit.edu indyk@mit.edu
ABSTRACT with many applications in computational biology, natural

i 3 a . £ ag essing 4 i ati .
The edit distance (a.k.a. the Levenshtein distance) between ldngu‘i"{e processing 'fmdmfmmdtmn theor.v. Thbj prubleu} of
- . e 1.0 ¥ a g .. . i . compDiitine the edit distance between two trines is a classical

Edit distance in external memory

e Number of cache misses? Let's assume n,m are much larger than B.

Edit distance in external memory

e Number of cache misses? Let's assume n,m are much larger than B.

e Let's work out the number of cache misses on the board.

Edit distance in external memory

e Number of cache misses? Let's assume n,m are much larger than B.

e Let's work out the number of cache misses on the board.

o Idea: after bringing O(1) cache lines in, can fill out B table entries

Edit distance in external memory

Number of cache misses? Let’s assume n,m are much larger than B.

Let’s work out the number of cache misses on the board.

Idea: after bringing O(1) cache lines in, can fill out B table entries

O("F') cache misses.

Edit distance in external memory

Number of cache misses? Let’s assume n,m are much larger than B.

Let’s work out the number of cache misses on the board.

Idea: after bringing O(1) cache lines in, can fill out B table entries

O("F') cache misses.

Optimal # cache misses required to fill out that table

Example DP execution

Ww(@lo|o|~No|(w(v|t|m|
Oloc|o|N|O|w|g|F [N ™
Z|0|NO|O|F (M| |N ™|
WiNow|t|mN|[N|m(< |
X OL(t|(MmN~ N M (0w
X (MmN~ (N|m F(0|o
DI [N |~ |N|™ [0 [O]|~
OMmN|— |~ |N|m|s (||~
O|N|[r|@|-|N|m | (w|o|~
O|lm|@|~|N|™|F|0O[O|N|©
@~ |N|M ¢ O[O~ |0|O

O|0D|x|x|<|20|w

Can we find the edit distance between two strings in less space?

Example DP execution

L O(N[O O 0| |[™M| N
@) NOIL | T |F ™M (N|™M
2 O[T (MO |N|m| <
L O[O |N|N (™| |
x MmN~ |N[™m [T |0
x M N[~ N |™M | [10|©
D N[~ N[™| T (O[O~
o — |- |N|M | (O[O~
@) Q|m | N[M| |0 |O|N
o — N[O [©|N]|0

N[M|(F|O|[O|~N|0 |0

OO0 |x|<|2|0|W

Can we find the edit distance between two strings in less space?

Finding the edit distance more efficiently

e Can we find the edit distance between two strings in less space?

Finding the edit distance more efficiently

e Can we find the edit distance between two strings in less space?

e Yes: only need to store two rows of the DP table (the row we're filling out and
the previous row)

Finding the edit distance more efficiently

e Can we find the edit distance between two strings in less space?

e Yes: only need to store two rows of the DP table (the row we're filling out and
the previous row)

e Let’'s say n < m. Then O(n) extra space.

Finding the edit distance more efficiently

Can we find the edit distance between two strings in less space?

Yes: only need to store two rows of the DP table (the row we're filling out and
the previous row)

Let’s say n < m. Then O(n) extra space.

Quick example on board: SPOT vs TOPS

Finding the edit distance more efficiently

Can we find the edit distance between two strings in less space?

Yes: only need to store two rows of the DP table (the row we're filling out and
the previous row)

Let’s say n < m. Then O(n) extra space.

Quick example on board: SPOT vs TOPS

What is the cache efficiency of this algorithm if 3n + m < M?

Finding the edit distance more efficiently

e Can we find the edit distance between two strings in less space?

e Yes: only need to store two rows of the DP table (the row we're filling out and
the previous row)

e Let’'s say n < m. Then O(n) extra space.
e Quick example on board: SPOT vs TOPS
e What is the cache efficiency of this algorithm if 3n + m < M?

e O(™™): the only cache misses are from reading in the strings!

Finding the edit distance more efficiently

e Can we find the edit distance between two strings in less space?

e Yes: only need to store two rows of the DP table (the row we're filling out and
the previous row)

e Let’'s say n < m. Then O(n) extra space.
e Quick example on board: SPOT vs TOPS
e What is the cache efficiency of this algorithm if 3n + m < M?

e O(™™): the only cache misses are from reading in the strings!

o WAY better than O(“3)!

Summary

°** GTGCATCTGACTCCTGAGGAGAAG*** pNA
+ CACGTAGACTGAGGACTCCTCTTC ¢+«

\L (transcription)

GUGCAUCUGACYCCUGAGGAGAAG --» RNA

o Classic edit distance: O(“}') cache misses

H L T P E E K - protein

°** GTGCATCTGACTCCTGAGGAGAAG*** pNA
+ CACGTAGACTGAGGACTCCTCTTC ¢+«

N (transcription)

S u m m ary %}(TAUCUGACU UGAGGAGAAG -+» RNA
N2 wfjwf (translation)
v

H L T P E E K - protein

o Classic edit distance: O(“}') cache misses

e Improving space usage: if 3n +m < M, then only O(”*T’") cache misses

°** GTGCATCTGACTCCTGAGGAGAAG*** pNA
*+ CACGTAGACTGAGGACTCCTCTTC +++

SU| I “ I lary N (transcription)
«++ GUGCAUCUGACYCCUGAGGAGAAG --» RNA

T PTT T e

o V-H L T P E E K - protein

o Classic edit distance: O(“}') cache misses

e Improving space usage: if 3n +m < M, then only O(”*T’") cache misses

e Improve by a factor of min{n,m} to compute edit distance of two strings that
fit in cache

Takeaway: Improved Space Can Imply Improved Cache
Efficiency

One problem

e In practice, you may want to find the actual (optimal) sequence of edits
between the two strings

One problem

e In practice, you may want to find the actual (optimal) sequence of edits
between the two strings

e Warmup: how can we do that with the space-inefficient approach?

One problem

e In practice, you may want to find the actual (optimal) sequence of edits
between the two strings

e Warmup: how can we do that with the space-inefficient approach?

e Actually not so bad: follow the path back!

Recovering the edits

OCCURRENTCE

= o [~ [0 [(b [[|«
o ~ (o (b (s (¢ ™ |a |™
© R TR S R R NI R
~ [ToN (S I N ISV 2 i
© < (o [N [= [™ [« |1
[[N [~ [[m |& |1 |©
< N[[N (o [¢ |1 o |~
™ — |- |~ (@ [¢ |1 |© |~
o~ o |- |~ |® [|1 |0 |~
- — |~ (o [(b |0 |~ |@
o N [0 [[[©O ([~ [0 |[O

(O = s A s L - AN G I 1

e How can we tell where each entry came from?

Recovering the edits

OCCURRENCE

© |loo [0 [N [0 [0 [0 (S [0 [«
o @ I~ |0 |ip S s o oo
4
© [~ [0 [0 [¢ [0 [0 [[0 [
~ (o b s o || ;o | |
O (b | o | |- & | |t |
| M | [~ | |[m | [|©
< o™ N - ~N o™ < n 0 ™~
m [N [~ [« [[0 [¢ (16 [© [~
N [~ [0 |« [[0 [[0 [© [~
— |o |« |~ o | |1 |© [~ |®
o [~ | [m [« (b [© [~ [0 [0

CuUDMEMMAQZOUMAE

Recovering the edits

OCCURRENCE

10

CuUDMEMMAQZOUMAE

e Redo same min computation from the normal dynamic program. (Break ties

arbitrarily—for now.)

Recovering the edits

OCCURRENCE
ol1]2[3]4]s5[6]7 8910
Match O | 1[0l 1|2 3256|789
Match o~ [2 1 [0o<1]2|3|4|5]|6]| 7|8
Delete \
Mach U (321123]a]s]e]7
Match R |43 |2]2]2[1]2[3]4][5]6
Match RIs[4]3]3]3]2]1]2]3]a]s
Replace 6|5 |4|a]4]3 2R2 3|45
Match A L
Match |7 |6 |5[5[5]4]|3|3[2]3]|4
Match clel7|elele|s]4]4 3“2 3
glolel77[7]els]4]4 37\7

e Once you have the path back, can essentially read back the edits: a diagonal is
a match or replace; right is a delete; down is an insert. (This is if we're putting
the target string vertically—if Y is being edited to become X, then X is vertical.)

Recovering the edits

e This method takes a lot of space! (The algorithm may no longer fit in cache.)

Recovering the edits

e This method takes a lot of space! (The algorithm may no longer fit in cache.)

e Can we get the best of both worlds—O(n) space as well as recovering the
edits?

Recovering the edits

e This method takes a lot of space! (The algorithm may no longer fit in cache.)

e Can we get the best of both worlds—O(n) space as well as recovering the
edits?

e A note on space vs time:

Recovering the edits

e This method takes a lot of space! (The algorithm may no longer fit in cache.)

e Can we get the best of both worlds—O(n) space as well as recovering the
edits?

e A note on space vs time:

e This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

Recovering the edits

e This method takes a lot of space! (The algorithm may no longer fit in cache.)

e Can we get the best of both worlds—O(n) space as well as recovering the
edits?

e A note on space vs time:

e This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

e Now it's still used, but the goal is to fit the problem in cache

Intro to Hirshberg’s Original Paper
Introduction

The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space [1, 3]. For strings of length 1,000 (assuming
coeflicients of 1 microsecond and 1 byte) the solution
would require 10° microseconds (one second) and 10°
bytes (1000K bytes). The former is easily accommo-
dated, the latter is not so easily obtainable. If the
strings were of length 10,000, the problem might not be
solvable in main memory for lack of space.

Answer: Hirschberg’s algorithm!

e Recursive approach that extends the dynamic program to make it
space-efficient

Answer: Hirschberg’s algorithm!

JON KLEINBERG - EVA TARDOS

e Recursive approach that extends the dynamic program to make it
space-efficient

e Can find in Kleinberg-Tardos (algorithms) textbook (woo). I'll email you the
relevant pages. I also posted the original paper (a tad old but still a
reasonable resource).

(Slightly odd) Thought question

e Can I recover just ONE piece of the optimal path?

(Slightly odd) Thought question

e Can I recover just ONE piece of the optimal path?
e Specifically: find one square in the middle row that is on the optimal path?

OCCURRENCE

0(1]|2|3|4|5(|6]|7[8]|9]10
O|1|/0(1]2|3|4|5|6|7]|8]9
Cl|2(1|0|1]2|3|4|5]|6|7]|8
U3 [2 11 1 Ll 12 3 als5]|6]|7

4 2122|112 |3[4]|5]6
R 5l ST Sy ram 1 5)
A 6 |5|4|4|4|3|2|2(3[4]5
N 716 |5|5|5(4]|3[3|2|3|4
C 8|7 |6|5|6|5|4|4(3]|2]3
E 98|76 |6|6|5|4(4]|3]2

Structural Lemma

Lemma

Let’s say that X and Y have edit distance k. Divide X into two halves X7 and Xo.
Then there is some way to partition Y into two parts Y1 and Y> such that
ED(X1, Y1) + ED(X2,Y>2) = k.

For example:
ADVICE and VINCENT have edit distance 5.
What parts of VINCENT match up with ADV? ICE?

Structural Lemma

Lemma

Let’s say that X and Y have edit distance k. Divide X into two halves X7 and Xo.
Then there is some way to partition Y into two parts Y1 and Y> such that
ED(X1, Y1) + ED(X2,Y>2) = k.

For example:

ADVICE and VINCENT have edit distance 5.
What parts of VINCENT match up with ADV? ICE?
ED(ADV, V) =2
ED(ICE, INCENT) =3

Structural Lemma

Lemma

Let’s say that X and Y have edit distance k. Divide X into two halves X7 and Xo.
Then there is some way to partition Y into two parts Y1 and Y, such that
ED(X1, Y1) aF ED(Xz, Yz) =k.

Proof idea: there is some optimal sequence of edits applied to Y that obtain X.
Let’'s apply those edits left to right. As we apply those edits, more and more of Y
will match X (let’'s do an example with ADVICE and VINCENT on the board).

At some point, the beginning of Y will match the first half of X (that is to say: will
match Xj). We can take that as Y4, and the remainder of Y as Y5.

Structural Lemma *ﬂ‘
Lemma

Let’s say that X and Y have edit distance k. Divide X into two halves X7 and Xo.
Then there is some way to partition Y into two parts Y1 and Y, such that
ED(X1, Y1) + ED(X2,Y2) = k.

Note: I am not showing you this lemma just to be formal. This is a useful reference
for when you're coding so that you know exactly how subproblems fit together.
Perhaps most importantly: Y4 and Y> do not overlap; nor do X7 and Xa.

Y; and Y, do not overlap; nor do X; and X>»

Y; and Y, do not overlap; nor do X; and X>»

(Check this when you are coding! It will save you time. ©)

Using the Structural Lemma

e Remember: our goal is to find where the optimal sequence crosses the middle
row of the table.

Using the Structural Lemma

e Remember: our goal is to find where the optimal sequence crosses the middle
row of the table.

e How can we use this lemma to help us out with that?

Using the Structural Lemma

e Remember: our goal is to find where the optimal sequence crosses the middle
row of the table.

e How can we use this lemma to help us out with that?

e As before: let’s split X into two equal sized parts X7 and X, (corresponds to the
middle row of the table)

Using the Structural Lemma

e Remember: our goal is to find where the optimal sequence crosses the middle
row of the table.

e How can we use this lemma to help us out with that?

e As before: let’s split X into two equal sized parts X7 and X, (corresponds to the
middle row of the table)

e Idea: for every possible Yy, Y, calculate ED(Xj, Y1) + ED(X2, Y2) (slow for now!
But bear with me)

Using the Structural Lemma

e Remember: our goal is to find where the optimal sequence crosses the middle
row of the table.

e How can we use this lemma to help us out with that?

e As before: let’s split X into two equal sized parts X7 and X, (corresponds to the
middle row of the table)

e Idea: for every possible Yy, Y, calculate ED(Xj, Y1) + ED(X2, Y2) (slow for now!
But bear with me)

e Find the Y3, Y, that minimizes this sum

Using the Structural Lemma

e Remember: our goal is to find where the optimal sequence crosses the middle
row of the table.

e How can we use this lemma to help us out with that?

e As before: let’s split X into two equal sized parts X7 and X, (corresponds to the
middle row of the table)

e Idea: for every possible Yy, Y, calculate ED(Xj, Y1) + ED(X2, Y2) (slow for now!
But bear with me)

e Find the Y3, Y, that minimizes this sum

e By the above lemma, we can optimally edit X into Y by: first editing X; into Y;,
and then editing X5 into Y>

Using the Structual Lemma

H Q=2 df-ic 0o

OCCURRENCE

o

Why are we doing this?

(Just want a reminder of what we're doing. We'll come back to this analysis once
we're done.)

e Let's say we can divide X and Y into two pieces in O(nm) time and O(n) space

Why are we doing this?

(Just want a reminder of what we're doing. We'll come back to this analysis once
we're done.)

e Let's say we can divide X and Y into two pieces in O(nm) time and O(n) space

e Where do we go from there?

Why are we doing this?

(Just want a reminder of what we're doing. We'll come back to this analysis once
we're done.)

e Let's say we can divide X and Y into two pieces in O(nm) time and O(n) space
e Where do we go from there?

e Answer: recurse on both subproblems! Then put the parts back together.

Why are we doing this?

(Just want a reminder of what we're doing. We'll come back to this analysis once
we're done.)

Let’s say we can divide X and Y into two pieces in O(nm) time and O(n) space

Where do we go from there?

Answer: recurse on both subproblems! Then put the parts back together.

How much time? (Rough sketch of argument): We reduce the size of the DP
table by a factor of 2 each time we recurse. So linear time!

Why are we doing this?

(Just want a reminder of what we're doing. We'll come back to this analysis once
we're done.)

Let’s say we can divide X and Y into two pieces in O(nm) time and O(n) space

Where do we go from there?

Answer: recurse on both subproblems! Then put the parts back together.

How much time? (Rough sketch of argument): We reduce the size of the DP
table by a factor of 2 each time we recurse. So linear time!

Kind of like T(X) = T(X/2) 4+ O(X)

What we want

We want to calculate ED(X3, Y1) + ED(X2, Y2) for all Y5

What we want

We want to calculate ED(X3, Y1) + ED(X2, Y2) for all Y5

e Recall that X7 and X5 divide X in half; Y5 is the rest of Y

What we want

We want to calculate ED(X3, Y1) + ED(X2, Y2) for all Y5

e Recall that X7 and X5 divide X in half; Y5 is the rest of Y

e If we can do this, we can find the Y7 that minimizes this cost; then recurse on
X1, Y1 and Xz, Yz

What we want

We want to calculate ED(X3, Y1) + ED(X2, Y2) for all Y5

e Recall that X7 and X5 divide X in half; Y5 is the rest of Y

e If we can do this, we can find the Y7 that minimizes this cost; then recurse on
X1, Y1 and Xz, Yz

e Let’s calculate them separately: let’s calculate ED(Xj, Y1) for all Y3, and
ED(Xz, Y2) for all Yz.

Calculating ED(Xy, Y7) for all Y;

e We want to calculate, for alli = 0. ..n, the edit distance between the first i
characters of Y and the first m/2 characters of X.

Calculating ED(Xy, Y7) for all Y;

e We want to calculate, for alli = 0. ..n, the edit distance between the first i
characters of Y and the first m/2 characters of X.
e How can we do this in O(nm) time and O(n) space?

Calculating ED(Xy, Y7) for all Y;

e We want to calculate, for alli = 0. ..n, the edit distance between the first i
characters of Y and the first m/2 characters of X.
e How can we do this in O(nm) time and O(n) space?

OCCURRENCE

0|12 |3|4[5|6]|7|8]|9]10
O|1|of1]2[3]|4a|5|6|7]8]9
Cl2|1|0o|1]2]|3|4a|5[|6|7]8
U321 1 el 5 | 6 | 7
(43 21221123 |4]|5 6>
R5 5
Alé|5]|4|4]4]3]2]2(3|4]|5
N 716 (5|5|5[4|3|3|2|3]|4
C 8|7 |6 (5|6 |5[4|4|3]2]|3
E 918 |76 |6|6[54]|4]3]|2

Calculating ED(Xy, Y7) for all Y;

e We want to calculate, for alli = 0. ..n, the edit distance between the first i
characters of Y and the first m/2 characters of X.

e How can we do this in O(nm) time and O(n) space?

The values we want are the entries in row m/2 of the DP table! So we already know
how to calculate these in O(nm) time and O(n) space

Calculating ED(X>, Y>) for all Y;

e We want to calculate, for alli = 0, ..., n, the edit distance between the last 7
characters of Y and the last m — m/2 characters of X.

Calculating ED(X>, Y>) for all Y;

e We want to calculate, for alli = 0, ..., n, the edit distance between the last 7
characters of Y and the last m — m/2 characters of X.
e How can we do this in O(nm) time and O(n) space?

Calculating ED(X>, Y>) for all Y;

e We want to calculate, for alli = 0, ..., n, the edit distance between the last 7
characters of Y and the last m — m/2 characters of X.

e How can we do this in O(nm) time and O(n) space?

e Problem: this doesn’t quite correspond to a table row

OCCURRENTCE

0|12 |3|4|5|6|7|8]|9]|10
O|1/0(1]2[3|4|5|6|7|8|29
Ccl2|1|0]|1|2|3|4|5|67)8
U 31211 L1 L1 L2 L3 Al5]|6]|7

4132|2212 |3|4]|5]|¢6
RS Y e] 5
Al6|5[4[4|4]|3]2|2]|3]4]|5
N76555433234
C87656544323
E98766654432

Really nice trick

Lemma

Let XR be the reverse of X, and let YR be the reverse of Y. Then
ED(X,Y) = ED(XR, YR).

(Proof: just apply the same edits in reverse!)

o Let’s reverse the two strings.

Really nice trick

Lemma

Let XR be the reverse of X, and let YR be the reverse of Y. Then
ED(X,Y) = ED(XR, YR).

(Proof: just apply the same edits in reverse!)

o Let’s reverse the two strings.
e “We want to calculate, foralli = 0, ..., n, the edit distance between the last i
characters of Y and the last m — m/2 characters of X" becomes...

Really nice trick

Lemma

Let XR be the reverse of X, and let YR be the reverse of Y. Then
ED(X,Y) = ED(XR, YR).

(Proof: just apply the same edits in reverse!)

o Let’s reverse the two strings.

e “We want to calculate, foralli = 0, ..., n, the edit distance between the last i
characters of Y and the last m — m/2 characters of X" becomes...

e We want to calculate, for alli = O, ..., n, the edit distance between the first i
characters of YR and the first m — m/2 characters of X®

Really nice trick

Lemma

Let XR be the reverse of X, and let YR be the reverse of Y. Then
ED(X,Y) = ED(XR, YR).

(Proof: just apply the same edits in reverse!)

o Let’s reverse the two strings.

e “We want to calculate, foralli = 0, ..., n, the edit distance between the last i
characters of Y and the last m — m/2 characters of X" becomes...

e We want to calculate, for alli = O, ..., n, the edit distance between the first i
characters of YR and the first m — m/2 characters of X®

e We know how to do this from last slide! It's just the middle row of the DP table
between the reversed strings

Calculating the edit distances of the last characters

ECNERRUCCDO

P 2 0 H

Putting it all together

Let X7 be the first half of X, and X, be the second half of X. Let Y; be the first i
characters of Y, and Y,f be the last n — i characters of Y.

Here’s how to calculate ED(X, Y;) and ED(X2, Y;) for all 7, in O(nm) total time and
O(n) space:

e Perform the space-efficient dynamic program (keeping track of one row at a
time) between X7 and Y (i.e. fill out the middle row of the table).

Putting it all together

Let X7 be the first half of X, and X, be the second half of X. Let Y; be the first i
characters of Y, and Y,f be the last n — i characters of Y.

Here’s how to calculate ED(X, Y;) and ED(X2, Y;) for all 7, in O(nm) total time and
O(n) space:
e Perform the space-efficient dynamic program (keeping track of one row at a
time) between X7 and Y (i.e. fill out the middle row of the table).
e Entry (m/2,7) holds ED(Xj, Y;) by definition!

Putting it all together

Let X7 be the first half of X, and X, be the second half of X. Let Y; be the first i
characters of Y, and Y,f be the last n — i characters of Y.

Here’s how to calculate ED(X, Y;) and ED(X2, Y;) for all 7, in O(nm) total time and
O(n) space:
e Perform the space-efficient dynamic program (keeping track of one row at a
time) between X7 and Y (i.e. fill out the middle row of the table).
e Entry (m/2,7) holds ED(Xj, Y;) by definition!
o Reverse X3 to get XX. Reverse Y to get Y.

Putting it all together

Let X7 be the first half of X, and X, be the second half of X. Let Y; be the first i
characters of Y, and Y,f be the last n — i characters of Y.

Here’s how to calculate ED(X, Y;) and ED(X2, Y;) for all 7, in O(nm) total time and
O(n) space:

e Perform the space-efficient dynamic program (keeping track of one row at a
time) between X7 and Y (i.e. fill out the middle row of the table).

e Entry (m/2,7) holds ED(Xj, Y;) by definition!

o Reverse X3 to get XX. Reverse Y to get Y.

e Perform the space-efficient dynamic program between X§ and YR (i.e. fill out
the middle row of the reversed)

Putting it all together

Let X7 be the first half of X, and X, be the second half of X. Let Y; be the first i
characters of Y, and Y,f be the last n — i characters of Y.

Here’s how to calculate ED(X, Y;) and ED(X2, Y;) for all 7, in O(nm) total time and
O(n) space:

e Perform the space-efficient dynamic program (keeping track of one row at a
time) between X7 and Y (i.e. fill out the middle row of the table).

e Entry (m/2,7) holds ED(Xj, Y;) by definition!

o Reverse X3 to get XX. Reverse Y to get Y.

e Perform the space-efficient dynamic program between X§ and YR (i.e. fill out
the middle row of the reversed)

e Entry (m —m/2,n — i) holds ED(X>, Y}) by definition (and since edit distance
is retained through reversal).

Where we are

Where we are

e Can: calculate all of the X, Y;, X2, Y/ as above. Find the Y; and Y/ that
minimize ED(X1, Y;) + ED(X2, ;).

Where we are

e Can: calculate all of the X, Y;, X2, Y/ as above. Find the Y; and Y/ that
minimize ED(X1, Y;) + ED(X2, ;).

o If there’s a tie, any of them will give an optimal solution.

Now: recurse!

e For the i we calculated as the crossing point: find the optimal sequence of
edits between X7 and Y;. Then, find the optimal sequence of edits between X5
and Y/

Now: recurse!

e For the i we calculated as the crossing point: find the optimal sequence of
edits between X7 and Y;. Then, find the optimal sequence of edits between X5
and Y/

e Concatenate these two sequences to get the optimal sequence of edits for X
and Y

OCCURRENTCE

HOQZ2»p»XDWAOQO

What else does a recursive algorithm need?

What else does a recursive algorithm need?

e Base case:

What else does a recursive algorithm need?

e Base case:

e if n <1o0orm <1, use the space-inefficient edit distance algorithm.

What else does a recursive algorithm need?

e Base case:

e if n <1o0orm <1, use the space-inefficient edit distance algorithm.

e Can be more clever about it to improve the speed

Analysis

e How much time does this approach take?

Analysis

e How much time does this approach take?
e One recursive call takes O(nm) time and O(n) space.

Analysis

e How much time does this approach take?

e One recursive call takes O(nm) time and O(n) space.

o We make two recursive calls: one with (i, m/2), and the other with
(n—i,m—m/2)

Analysis

How much time does this approach take?

One recursive call takes O(nm) time and O(n) space.

o We make two recursive calls: one with (i, m/2), and the other with
(n—i,m—m/2)

Can prove by induction that the total time is O(nm).

Analysis

How much time does this approach take?

One recursive call takes O(nm) time and O(n) space.

o We make two recursive calls: one with (i, m/2), and the other with
(n—i,m—m/2)

Can prove by induction that the total time is O(nm).

Basic idea: the total cost of all recursive calls at a given level is the size of the
table remaining; this decreases by a factor of 2 each time.

OCCURRENCE

HOQO=zZpP3HHaOO

Some discussion about practice

e Hirschberg's algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

Some discussion about practice

e Hirschberg's algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

e Same asymptotics, but much worse constants.

Some discussion about practice

e Hirschberg's algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

e Same asymptotics, but much worse constants.

e Hirschberg's is (sometimes, and hopefully in your lab) faster in practice. Why??

Some discussion about practice

e Hirschberg's algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

e Same asymptotics, but much worse constants.

e Hirschberg's is (sometimes, and hopefully in your lab) faster in practice. Why??

e Answer: improved cache efficiency!

Some discussion about practice

Hirschberg's algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

e Same asymptotics, but much worse constants.

Hirschberg's is (sometimes, and hopefully in your lab) faster in practice. Why??

Answer: improved cache efficiency!

If all work fits into cache, we only have the cache misses to set up the problem

Some discussion about practice

e Hirschberg's algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

e Same asymptotics, but much worse constants.

e Hirschberg's is (sometimes, and hopefully in your lab) faster in practice. Why??

e Answer: improved cache efficiency!
o If all work fits into cache, we only have the cache misses to set up the problem

e The space-inefficient approach may incur many cache misses to fill up the
table.

Implementation Tips

e It may be useful to keep a reversed version of both strings handy from the
beginning

Implementation Tips

e It may be useful to keep a reversed version of both strings handy from the
beginning

e When you make your recursive calls, your solutions almost definitely should
not overlap. (Each character in a string should be a part of exactly one
recursive call.)

Sorting in External Memory

External Memory Model Reminder

e Cache line of size B
e Cache can hold at most M elements

e Computing on elements in cache is free! Only cost is to bring things in and
out of cache

External Memory Model Reminder

External Memory Model Reminder

e Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

External Memory Model Reminder

e Let’s say I want to find the maximum element in an array using a linear scan.
How much time does that take?

e O(n/B) cache misses: if I have a cache miss accessing A[i], my next cache miss
is accessing A[i + B].

Blocked Matrix Multiplication

o Decompose matrix into blocks of length T (where T2 = M/3)
e Do anormaln/T x n/T matrix multiplication
o Last class, saw: O(n®/B+/M) total cache misses.

tile size T' matrix size N
i

—
Matrix A Matrix B Matrix C
D Outer loop over tiles D Inner loop over elements .I Temporary result tile

[Current tile in outer loop [[] Current element in inner loop

What about algorithms we know? ﬁ g

0000000000

e In pairs: how long does Mergesort take in external memory?

What about algorithms we know? ﬁ g

0000000000

e In pairs: how long does Mergesort take in external memory?

e Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).

What about algorithms we know? ﬁ g

0000000000

e In pairs: how long does Mergesort take in external memory?
e Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).

e How about quicksort?

What about algorithms we know? ﬁ g

0000000000

In pairs: how long does Mergesort take in external memory?

Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).

How about quicksort?

Essentially same; partition is O(n/B); total is O(n/Blog, n/B).

What about algorithms we know?

66&6666666

In pairs: how long does Mergesort take in external memory?

Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).

How about quicksort?

Essentially same; partition is O(n/B); total is O(n/Blog, n/B).

Seems pretty good! Can we do better?

HyperTransport™ PHY 1| - MisciO. 17

Using the cache o & P

2MB L3 Cache 2MB 13 Cache.

2MB L3 Cache 2MB L3 Cache

z
3
E
g
g

i
2
%

e Blocking? A little unclear. (We'll come back to this.)

HyperTransport™ PHY 1| - MisciO. 17

Using the cache

2MB L3 Cache 2MB L3 Cache

2MB L3 Cache 2MB L3 Cache

Buldozer Buidozer
2uB
Module ach 2m8 Module:
il .

3
3
E
g
g

i
b
%

e Blocking? A little unclear. (We'll come back to this.)

HyperTransport™ PHY Misc 10

e Does anyone know the sorting lower bound? Where does nlogn come from?

Using the cache

e Blocking? A little unclear. (We'll come back to this.)

HyperTransport™ PHY 1| - MisciO. 17

Cache Bl
o uidozer
ache L2CoChe e

2MB L3 Cache 2MB L3 Cache

2MB L3 Cache 2MB L3 Cache

8 suldozer Buidozer
2v8
Module o 2m8 Module:
il .

HyperTransport™ PHY Misc 10

e Does anyone know the sorting lower bound? Where does nlogn come from?

e Answer: each time you compare two numbers, can only have two outcomes.

g
g
2

2

HyperTransport™ PHY MisciO- ¥

Using the cache

2MB L3 Cache 2MB L3 Cache

Aud ¢ Haa

2MB L3 Cache 2MB L3 Cache

Buildozer Buiidozer
2uB8
Module 28 Module
EzCache Iy g

z
3
E
g
g

i
2
%

Blocking? A little unclear. (We'll come back to this.)

HyperTransport™ PHY. i5c 10

Does anyone know the sorting lower bound? Where does nlogn come from?

Answer: each time you compare two numbers, can only have two outcomes.

Each time we bring a cache line into cache, how many more things can we
compare it to?

Merge sort reminder

e Divide array into two equal parts

e Recursively sort both parts

e Merge them in O(n) time (and O(n/B) cache misses)

L1l 2]3]s

1 [2] 4]

| 4 | 16 | 64 | 256

M /B-way merge sort

M /B-way merge sort

e Divide array into M/B equal parts

M /B-way merge sort

e Divide array into M/B equal parts

e Recursively sort all M/B parts

M /B-way merge sort

e Divide array into M/B equal parts

e Recursively sort all M/B parts

e Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

Diagram of M/B-way merge sort

L1l 2]3][5

| 4 | 16 | 64 | 256 |

76537\>
291827>1|2|4|...
-1®®|®|1®®|2®®/

3l 4[5][9]

Diagram of M/B-way merge sort

!1/|/2|3|5V
| 4 /] 16 | 64 | 256 |
!-7(/|-6|-5|37
2\\|9|18|27 1] 2] 4] ...]

|-198| © | 100 | 200

\
(3 N4al5]9/

Diagram of M/B-way merge sort

’ 1 |/2 | 3 | 5\[B elements from each fit in cache

| 4] 16 | 64 [256 |

| 7] 6] 5] 37

| 2| 9 | 18] 27 1 2] 4] ...]

|-198| © | 100 | 200

\
(3 N4al5]9/

More Detail on merges

e Keep B slots for each array in cache. (M/B arrays so this fits!)

More Detail on merges

e Keep B slots for each array in cache. (M/B arrays so this fits!)

e When all B slots are empty for the array, take B more items from the array in
cache.

More Detail on merges

e Keep B slots for each array in cache. (M/B arrays so this fits!)

e When all B slots are empty for the array, take B more items from the array in
cache.

e Example on board

Analysis

« Divide array into M/B parts; combine in O(N/B) cache misses.

Analysis

« Divide array into M/B parts; combine in O(N/B) cache misses.

e Recursion:
T(N) =T(N/(M/B)) + O(N/B)

Analysis

« Divide array into M/B parts; combine in O(N/B) cache misses.

e Recursion:
T(N) =T(N/(M/B)) + O(N/B)

e Solves to O(g Iog,V,/B g) cache misses (use recursion tree method)

Analysis

Divide array into M/B parts; combine in O(N/B) cache misses.

Recursion:

T(N) = T(N/(M/B)) + O(N/B)

Solves to O(g logy 5 g) cache misses (use recursion tree method)

Optimal!

Useful?

e Can be useful if your data is VERY large

Useful?

e Can be useful if your data is VERY large

e Distribution sort: similar idea, but with Quicksort instead of Mergesort

Useful?

e Can be useful if your data is VERY large
e Distribution sort: similar idea, but with Quicksort instead of Mergesort

e Another method is most popular in practice: Powersort

Useful?

Can be useful if your data is VERY large

Distribution sort: similar idea, but with Quicksort instead of Mergesort

Another method is most popular in practice: Powersort

New; invented in 2018 to improve on Timsort

Useful?

Can be useful if your data is VERY large

Distribution sort: similar idea, but with Quicksort instead of Mergesort

Another method is most popular in practice: Powersort

New; invented in 2018 to improve on Timsort

Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves
strong cache efficiency in practice.

Useful?

e Can be useful if your data is VERY large

e Distribution sort: similar idea, but with Quicksort instead of Mergesort
e Another method is most popular in practice: Powersort

¢ New; invented in 2018 to improve on Timsort

e Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves
strong cache efficiency in practice.

e Takes advantage of already-sorted portions of the array

Useful?

e Can be useful if your data is VERY large

e Distribution sort: similar idea, but with Quicksort instead of Mergesort
e Another method is most popular in practice: Powersort

¢ New; invented in 2018 to improve on Timsort

e Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves
strong cache efficiency in practice.

e Takes advantage of already-sorted portions of the array

e When you call sort in python, it is either Timsort or Powersort

	Assignment 2: Hirschberg's Algorithm
	Sorting in External Memory

