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Admin

• Assignment 1 due Thursday night

• TA Hours Tomorrow (Wed) 7–9pm

• New: Mon 7–8:30pm

• Some reading today! Optional/potentially useful for reference. We don’t cover
the topic in exactly the same way

• For ex: we’ll have K = 1; no distribution sort; no B-trees

• Handout from me also posted with examples of the external memory model



C Debugging: Step by Step

• Make sure your code editor is happy with your code

• Then: run gcc (probably using make)

• Then: run valgrind

• Then: valgrind test.out smallData.txt (or larger datasets)

• It’s slow. But will (often) literally just tell you every memory-based bug in your
program. Note: it will complain if you don’t free()

• If you run make clean and make debug so valgrind will give you
line-by-line pointers

• To check for memory leaks: valgrind --leak-check=full test.out
testData.txt timeData.txt

• Then normal debugging with gdb etc.
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External Memory Model



Measuring cache misses

• Cache performance is often more important than number of operations

• But algorithmic analysis measures number of operations

• Can we algorithmically examine the cache performance of a program?

• Yes: with the external memory model



What do we want out of this model?

• Simple, but able to capture major performance considerations

• Parameters for the model? How can we make it universal across computers
that may have very different cache parameters?

• Answer: we’ll use parameters. (The exact size of cache, and a cache line, can
drastically affect algorithmic performance.)

• Do we want asymptotics? Worst case?

• Yes!



External memory model basics

• Cache of size M

• Usually assume that M = Ω(log n); often bigger in practice

• Cache line of size B

• Computation is free: only count number of “cache misses.” Can perform

arbitrary computation on items in cache.

• We will say something like “O(n/B) cache misses” rather than “O(n)

operations” to emphasize the model.
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External Memory Model Basics

Transferring B consecutive items to/from the disk costs 1. Can only store M things

in cache.



Memory Evictions

• Can only hold M items in cache!

• So when we bring B in, need to write B items back to disk. (We can bring them

in later if we need them again)

• Assume that the computer does this optimally.

• Reasonable; it’s really good at it. Very cool algorithms behind this!
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Vocabulary

• “Cache” of size M; “disk” of unlimited size

• With the cost of one “cache miss” can bring in B consecutive items
• (Also called “memory access” or “I/Os”; I will try not to use those terms.)

• These B items are called a “block” or a “cache line”.
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Let’s revisit sortedlinkedlist.c

• What is the cost of our algorithm in the external memory model if the items

are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items

have stride B+ 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown of this process.

• (Actual performance is better in this case: we get a slowdown of ≈ 1.2,

whereas the number of nodes in a cache line is 4. Last year it was worse than

predicted. I imagine that this is due to prefetching???)
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Finding the minimum element in an unsorted array

• How many cache misses in the external memory model?

• Answer: O(n/B)
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Binary search?

• Does binary search seem cache efficient? Discuss in pairs what its cache

efficiency should be in the external memory model.

• What is the recurrence for binary search in terms of number of operations?

• What is the recurrence for binary search in terms of the number of cache

misses?

• Each recursive call takes 1 cache miss—until we reach an array of size O(B),

after which we are done

• Base case: can perform all operations on B items with only 1 cache miss

• Total: O(log2(n/B)) cache misses.
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Fitting in Cache

• If you have a sequence of operations on a dataset of size at most M, there is

no further cost so long as they all stay in cache!

• O(M/B) to load the items into cache, then all computation is free

• Real-world time: what if instead of a linked list of 100 million items, we
repeatedly access a linked list of 100 thousand items?

• smallunsortedlist.c
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Why does the external memory model make sense?

• Simple model that captures one level of the memory hierarchy

• Idea: usually one level has by far the largest cost.

• Small programs may be dominated by L1 cache misses

• Larger programs it may be by L3 cache misses

• External memory model zooms in on one crucial level of the memory hierarchy

(with particular B, M); gives asymptotics for how well we do on that level.
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Question about External Memory Model Basics?



Matrix Multiplication in External
Memory



Matrix Multiplication Reminder

• Given two n× n matrices A, B

• Want to compute their product C:

• cij =
∑n

k=1 aikbkj

Example:

[
1 2

8 −1

]
×

[
2 3

−2 7

]
=

[
−2 17

18 17

]
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Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does this take?

• Assume matrices are stored in row-major order.

• First: assume M > 3n2 Then we can fit A, B, and C in cache; O(n2/B) cache
misses

• What if M < n2?

• Answer: O(n3) cache misses. Every operation requires a cache miss for matrix B.
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Any ideas for how to improve this?

• One idea: transpose B (store in
column-major order)

• A good idea; works well!
• What is the cache efficiency?

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k]

+ B[k][j]
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Any ideas for how to improve this?

• One idea: transpose B (store in
column-major order)

• A good idea; works well!
• What is the cache efficiency?

1 Convert B to column-major
order

2 for i = 1 to n:
3 for j = 1 to n:
4 for k = 1 to n:
5 C[i][j] += A[i][k]

+ B[k][j]

Cache misses for the transposing:

O(n2) cache misses

Each time I have a cache miss for B[k][j], no further cache miss until B[k + B][j].

Each time I have a cache miss accessing C[i][j], no further cache miss until

C[i][j + B]. Each time I have a cache miss for A[i][k], no further cache miss until

A[i][k + B].

Total: n3/B+ n2/B+ n3/B = O(n3/B) cache misses.
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• One idea: transpose B (store in
column-major order)

• A good idea; works well!
• What is the cache efficiency?

1 Convert B to column-major
order

2 for i = 1 to n:
3 for j = 1 to n:
4 for k = 1 to n:
5 C[i][j] += A[i][k]

+ B[k][j]
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Any ideas for how to improve this?

• Another idea: swap the loops!
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1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

Improved(?):

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]



Any ideas for how to improve this?

• How many cache misses is this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k′] with

k′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until B[i][j′] with

j′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j′] with

j′ = j + B.

• Sum up each: O(n3/B) total

• Is this worth doing?
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Yep!



We haven’t used the cache yet!

• We haven’t really stored anything in the cache except the current cache line!

(Doesn’t matter how big the cache is.)

• No Ms in any running times—except when the whole problem fits in cache

• Why? All algorithms so far have read the data once and then thrown it away.

• Goal: bring items into cache so that we can perform many computations on

them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal. But we did do this with

smallunsortedlinkedlist.c
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Blocking

• Standard technique for improving cache performance of algorithms.

• Remember: cache efficiency can get WAY better when the problem fits in

cache. Let’s find subproblems that can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) cache misses

• Efficiently combine them for a cache-efficient solution
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Blocked Matrix Multiplication

• Split A, B, and C into blocks of size M/3

•
√
M/3 ×

√
M/3 matrices

• Really want blocks with size T = ⌊
√
M/3⌋. Assume that T divides n for now so

there’s no rounding

• Multiply blocks one at a time
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Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and

multiply (and add) them as normal, we obtain the same result as we would have in

normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication
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Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

We can use this principle to multiply two larger matrices.
17 15 20 4
15 3 20 8
1 10 15 2
3 19 3 14

 ·


4 12 9 1
4 6 11 2
13 18 8 20
3 11 18 9

 =



[
17 15
15 3

]
·
[

4 12
4 6

]
+

[
20 4
20 8

]
·
[

13 8
3 11

] [
17 15
15 3

]
·
[

9 1
11 2

]
+

[
20 4
20 8

]
·
[

8 20
18 9

]
[

1 10
3 19

]
·
[

4 12
4 6

]
+

[
15 2
3 14

]
·
[

13 8
3 11

] [
1 10
3 19

]
·
[

9 1
11 2

]
+

[
15 2
3 14

]
·
[

8 20
18 9

]

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Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (where T2 = M/3)

• Do a normal n/T × n/T matrix multiplication
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Blocked Matrix Multiplication Pseudocode

1 MatrixMultiply(A, B, C, n, T):
2 for i = 1 to n/T:
3 for j = 1 to n/T:
4 for k = 1 to n/T:
5 A’ = TxT matrix with upper left corner A[Ti][Tk]
6 B’ = TxT matrix with upper left corner B[Tk][Tj]
7 C’ = TxT matrix with upper left corner C[Ti][Tj]
8 BlockMultiply(A’, B’, C’, T)
9

10 BlockMultiply(A, B, C, n):
11 for i = 1 to n:
12 for j = 1 to n:
13 for k = 1 to n:
14 C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model together on the board!
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Analysis

• Creating A′, B′, C′ and passing them to BlockMultiply all can be done in

O(T2/B+ T) cache misses.

If B = O(T) then we can just write O(T2/B); let’s

assume this for simplicity.

• BlockMultiply only accesses elements of A′, B′, C′. Since all three matrices

are in cache, it requires zero additional cache misses

• Therefore, our total running time is the number of loop iterations times the

cost of a loop. This is O((n/T)3 · T2/B) = O((n/
√
M)3 ·M/B) = O(n3/B

√
M).
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Implementation questions!

• What do we do if n is not divisible by T?

• Easy answer: pad it out! Doesn’t change asymptotics.
• Can carefully make it work without padding as well

• How do we figure out M?

• We can look up the size of the cache on the computer
• But: this is a simplified model. We don’t have a two-level cache and we’re

ignoring that space is used for other programs, other variables, etc.
• Experiment! Try different values of M and see what’s fastest on a particular

machine.

• Is blocking actually worthwhile?

• Yes; it is used all the time to speed up programs with poor cache performance.
• (Not a panacea; some programs (like linear scan, binary search) can’t be

blocked.)
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Sorting in External Memory



What about algorithms we know?

• In pairs: how long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is O(n/B log2 n/B).

• How about quicksort?

• Essentially same; partition is O(n/B); total is O(n/B log2 n/B).

• Seems pretty good! Can we do better?
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Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?
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Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)
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1 2 4 . . .
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1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

B elements from each fit in cache



Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

B elements from each fit in cache



Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

B elements from each fit in cache



More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in

cache.

• Example on board
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Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)

T(B) = O(1)

• Solves to O( nB logM/B
n
B) cache misses

• Optimal!
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Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Timsort

• Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves

strong cache efficiency in practice.

• If we have time, let’s talk about engineering a sorting algorithm on the board
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