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Admin

Assignment 1 due Thursday night

TA Hours Tomorrow (Wed) 7-9pm

e New: Mon 7-8:30pm

Some reading today! Optional/potentially useful for reference. We don’t cover
the topic in exactly the same way

e For ex: we'll have K = 1; no distribution sort; no B-trees

Handout from me also posted with examples of the external memory model
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C Debugging: Step by Step §

e Make sure your code editor is happy with your code

e Then: run gcc (probably using make)
e Then: run valgrind

e Then: valgrind test.out smallData.txt (or larger datasets)

o It's slow. But will (often) literally just tell you every memory-based bug in your
program. Note: it will complain if you don’t free ()

e If you run make clean and make debug so valgrind will give you
line-by-line pointers

e To check for memory leaks: valgrind --leak-check=full test.out
testData.txt timeData.txt

e Then normal debugging with gdb etc.



External Memory Model



Measuring cache misses

Cache performance is often more important than number of operations

But algorithmic analysis measures number of operations

Can we algorithmically examine the cache performance of a program?

Yes: with the external memory model



What do we want out of this model?

e Simple, but able to capture major performance considerations

e Parameters for the model? How can we make it universal across computers
that may have very different cache parameters?

o Answer: we'll use parameters. (The exact size of cache, and a cache line, can
drastically affect algorithmic performance.)

e Do we want asymptotics? Worst case?

e Yes!
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External memory model basics

e Cache of size M
o Usually assume that M = Q(log n); often bigger in practice
e Cache line of size B

e Computation is free: only count number of “cache misses.” Can perform
arbitrary computation on items in cache.

e We will say something like “O(n/B) cache misses” rather than “O(n)
operations” to emphasize the model.



External Memory Model Basics

Transferring B consecutive items to/from the disk costs 1. Can only store M things
in cache.
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Memory Evictions

e Can only hold M items in cache!

e So when we bring B in, need to write B items back to disk. (We can bring them
in later if we need them again)

e Assume that the computer does this optimally.
e Reasonable; it's really good at it. Very cool algorithms behind this!
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Vocabulary

e “Cache” of size M; “disk” of unlimited size
e With the cost of one “cache miss” can bring in B consecutive items
e (Also called “memory access” or “I/0s”; I will try not to use those terms.)

e These B items are called a “block” or a “cache line”.
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Let’s revisit sortedlinkedlist.c

e What is the cost of our algorithm in the external memory model if the items
are stored in order?

e Answer: O(n/B)

e What is the cost of our algorithm in the external memory model if the items
have stride B + 1?7

e Answer: O(n)
e The external memory model predicts the real-world slowdown of this process.

e (Actual performance is better in this case: we get a slowdown of ~ 1.2,
whereas the number of nodes in a cache line is 4. Last year it was worse than
predicted. I imagine that this is due to prefetching???)
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Finding the minimum element in an unsorted array

e How many cache misses in the external memory model?

e Answer: O(n/B)
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Binary search? [

4<6

[ [s]«]e]7]s [o[s]e]

e Does binary search seem cache efficient? Discuss in pairs what its cache
efficiency should be in the external memory model.

e What is the recurrence for binary search in terms of number of operations?

e What is the recurrence for binary search in terms of the number of cache
misses?

o Each recursive call takes 1 cache miss—until we reach an array of size O(B),
after which we are done

e Base case: can perform all operations on B items with only 1 cache miss

e Total: O(log,(n/B)) cache misses.
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Fitting in Cache o

——>|

=[]
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e If you have a sequence of operations on a dataset of size at most M, there is
no further cost so long as they all stay in cache!

e O(M/B) to load the items into cache, then all computation is free

e Real-world time: what if instead of a linked list of 100 million items, we
repeatedly access a linked list of 100 thousand items?

e smallunsortedlist.c
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Why does the external memory model make sense?

e Simple model that captures one level of the memory hierarchy

e Idea: usually one level has by far the largest cost.

e Small programs may be dominated by L1 cache misses

e Larger programs it may be by L3 cache misses

e External memory model zooms in on one crucial level of the memory hierarchy
(with particular B, M); gives asymptotics for how well we do on that level.



Question about External Memory Model Basics?



Matrix Multiplication in External
Memory
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Matrix Multiplication Reminder

e Given two n x n matrices A, B

e Want to compute their product C:
o Cj = D k—1 Aikbkj

Example:
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Compute Product Directly

for i = 1 to n:
for j = 1 to n:
for k = 1 to n:

CL41[4] += AL{1[K] + BIKIL4]

e Recall: c; = > p_;auby
e How many cache misses does this take?

e Assume matrices are stored in row-major order.
o First: assume M > 3n? Then we can fit A, B, and C in cache; O(nz/B) cache
misses

e What if M < n??

o Answer: O(n®) cache misses. Every operation requires a cache miss for matrix B.



Any ideas for how to improve this?

e One idea: transpose B (store in for i =1 to n:
column-major order) for j =1 to n:
L ' for k = 1 to n:
° AgOO.d ldea, works We“ C['I] [J] += A['I] [k]
e What is the cache efficiency? + B[KI[]]
J
Matrix

Row-major 123456

Column-major 147 258 369




Any ideas for how to improve this?

e One idea: transpose B (store in
column-major order)

e A good idea; works well!
e What is the cache efficiency?

Row-major

Column-major

123456738029

14725836

for j to n:
for k 1 to n:
CLil[j] += A[i][K]
+ BLk][]]

for i = 1 to n:
=1

Matrix

1 2 3
4 5 6
7 8 9

-~
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column-major order)
e A good idea; works well!

¢ What is the cache efficiency?

Convert B to column-major
order
for i = 1 to n:
for j = 1 to n:
for k = 1 to n:
CLil[j] += A[i]1[k]
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Any ideas for how to improve this?

e One idea: transpose B (store in

column-major order)
e A good idea; works well!

¢ What is the cache efficiency?

Convert B to column-major
order
for i = 1 to n:
for j = 1 to n:
for k = 1 to n:
CLil[j] += A[i]1[k]
+ B[]

Cache misses for the transposing: O(n?) cache misses

Each time I have a cache miss for B[k][j], no further cache miss until B[k + B][j].

Each time I have a cache miss accessing C[i][j], no further cache miss until
C[i]j + B]. Each time I have a cache miss for A[i][k], no further cache miss until

Alillk + B].

Total: n3/B + n?/B + n3/B = O(n3/B) cache misses.



Any ideas for how to improve this?

e Another idea: swap the loops!

Original:
for i = 1 to n:
for j =1 ton
for k = 1 to
CLil[3] +=
Improved(?):
for i = 1 to n:
for k = 1 to n:
for j = 1 to

CLiJ[3] +=

n:
Ali][k] + B[k][]]

n:

A[1TK] + BLKI[j]
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Any ideas for how to improve this?

e How many cache misses is this?

for i = 1 to n:
for k = 1 to n:
for j = 1 to n:
C[i1[§] += A[i1[k] + B[k][]]

e Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k] with
k' = k+B.

e Let's say BIk][j] is a cache miss. No more cache misses until BJ[i][j'] with
/' =j+B.

e Let's say CJi][j] is a cache miss. No more cache misses until C[i][j] with
J=ji+B.

e Sum up each: O(n3/B) total

e Is this worth doing?



Yep!

I am given two functions for finding the product of two matrices:

void MultiplyMatrices_1(int *%a, int #%b, int #xc, int n){
for (int i = @; i < n; i++)
for (int j = @; j < n; j++)
for (int k = @8; k < n; k++)
clil[j] = c[il[j] + alil [klxb[kI[j]1;
}

void MultiplyMatrices_2(int *%a, int skb, int *kc, int n){
for (int i = @; i < n; i++)
for (int k = 0; k < nj k++)
for (int j = @; j < n; j++)
clil[j] = c[il[j] + alil [klxb[k][j];

I ran and profiled two executables using gprof , each with identical code except for this function. The
second of these is significantly (about 5 times) faster for matrices of size 2048 x 2048. Any ideas as
to why?

¢ algorithm matrix  matrix-multiplication  gprof

= . N A% S Y T maa
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We haven’t used the cache yet!

e We haven't really stored anything in the cache except the current cache line!
(Doesn’t matter how big the cache is.)

e No Ms in any running times—except when the whole problem fits in cache
e Why? All algorithms so far have read the data once and then thrown it away.

e Goal: bring items into cache so that we can perform many computations on
them before writing them back.

e Note: can’t do this with linear scan. O(n/B) is optimal. But we did do this with
smallunsortedlinkedlist.c
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Blocking

e Standard technique for improving cache performance of algorithms.

e Remember: cache efficiency can get WAY better when the problem fits in
cache. Let’s find subproblems that can fit in cache.

e Idea: break problems into subproblems of size O(M)

e Can solve any such problem in O(M/B) cache misses

o Efficiently combine them for a cache-efficient solution



Blocked Matrix Multiplication

e Split A, B, and C into blocks of size M/3

o /M/3 x /M/3 matrices
o Really want blocks with size T = | \/M/3]|. Assume that T divides n for now so
there’s no rounding



Blocked Matrix Multiplication

e Split A, B, and C into blocks of size M/3

o /M/3 x /M/3 matrices
o Really want blocks with size T = | \/M/3]|. Assume that T divides n for now so
there’s no rounding

e Multiply blocks one at a time
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multiply (and add) them as normal, we obtain the same result as we would have in
normal matrix multiplication.
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Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and
multiply (and add) them as normal, we obtain the same result as we would have in
normal matrix multiplication.

e This idea is used in recursive matrix multiplication

e And Strassen’s algorithm for matrix multiplication
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Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:
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Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:

|:A11 A12:| ] |:B11 312:| o |:A11 *Bn + Az - Bx

Ax Axn Bx Bxn| |Az-Bn+Axn-Bx

We can use this principle to multiply two larger matrices.

17 15 20 4 4 12 9
15 3 20 8 4 6 M
1 1® 15 2| |13 18 8
3 19 3 14| |3 11 18

Ay -Biz +Aw-Bx

Az - Bp +Ax -

B2



Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:

An  Aw| [Bn Bin| _
Ax Axn B>1 Ba

|

An - Bi + A1z - Bx
Az - B + Az - Boy

We can use this principle to multiply two larger matrices.

17 15 20 4]

15 3 20
1 10 15
19 3

8
2

14 |

4
4
13
3

17
15

12 9
6 M1
18 8
1 18

15.9
3 il

Ay -Biz +Aw-Bx
Ao - Bia +Ax - B




Blocked Matrix Multiplication

e Decompose matrix into blocks of length T (where T2 = M/3)



Blocked Matrix Multiplication

» Decompose matrix into blocks of length T (where T2 = M/3)
e Do anormaln/T x n/T matrix multiplication

tile size T’ matrix size N
- -

—
H
Matrix A Matrix B Matrix C
[ Outer loop over tiles [] nner loop over elements [l] Temporary result tile

[ Current tile in outer loop [[] Current element in inner loop



Blocked Matrix Multiplication Pseudocode

MatrixMultiply(A, B, C, n, T):
for i = 1 to n/T:
for j = 1 to n/T:
for k = 1 to n/T:

A’ = TxT matrix with upper left corner A[Ti][Tk]
B’ = TxT matrix with upper left corner B[Tk][Tj]
C’ = TxT matrix with upper left corner C[Ti][Tj]

BlockMultiply(A’, B’, C’, T)

BlockMultiply(A, B, C, n):
for i = 1 to n:
for j = 1 to n:
for k = 1 to n:
CLil[j] += A[i][k] + B[kI[]]



Blocked Matrix Multiplication Pseudocode

MatrixMultiply(A, B, C, n, T):
for i = 1 to n/T:
for j = 1 to n/T:
for k = 1 to n/T:

A’ = TxT matrix with upper left corner A[Ti][Tk]
B’ = TxT matrix with upper left corner B[Tk][Tj]
C’ = TxT matrix with upper left corner C[Ti][Tj]

BlockMultiply(A’, B’, C’, T)

BlockMultiply(A, B, C, n):
for i = 1 to n:
for j = 1 to n:
for k = 1 to n:
CLill3] += A[i]1[k] + B[KI[]]

Let’s analyze the cost of this algorithm in the EM model together on the board!
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Analysis

e Creating A, B, C’ and passing them to BlockMultiply all can be done in
O(T?/B + T) cache misses. If B = O(T) then we can just write O(T?/B); let's
assume this for simplicity.

e BlockMultiply only accesses elements of A, B/, C'. Since all three matrices
are in cache, it requires zero additional cache misses

e Therefore, our total running time is the number of loop iterations times the
cost of a loop. This is O((n/T)% - T?/B) = O((n/v/M)3 - M/B) = O(n3/BVM).
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e What do we do if n is not divisible by T?

e Easy answer: pad it out! Doesn’t change asymptotics.
e Can carefully make it work without padding as well
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e How do we figure out M?

¢ We can look up the size of the cache on the computer
e But: this is a simplified model. We don’t have a two-level cache and we're
ignoring that space is used for other programs, other variables, etc.

e Experiment! Try different values of M and see what’s fastest on a particular
machine.



Implementation questions!

e What do we do if n is not divisible by T?

e Easy answer: pad it out! Doesn’t change asymptotics.
e Can carefully make it work without padding as well

e How do we figure out M?

¢ We can look up the size of the cache on the computer
e But: this is a simplified model. We don’t have a two-level cache and we're
ignoring that space is used for other programs, other variables, etc.

e Experiment! Try different values of M and see what’s fastest on a particular
machine.

e Is blocking actually worthwhile?

e Yes; it is used all the time to speed up programs with poor cache performance.

¢ (Not a panacea; some programs (like linear scan, binary search) can’t be
blocked.)



Sorting in External Memory
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What about algorithms we know? ﬁ g

0000000000

In pairs: how long does Mergesort take in external memory?

Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).

How about quicksort?

Essentially same; partition is O(n/B); total is O(n/Blog, n/B).



What about algorithms we know?

66&6666666

In pairs: how long does Mergesort take in external memory?

Merge is O(n/B); base case is when n = B, so total is O(n/Blog, n/B).

How about quicksort?

Essentially same; partition is O(n/B); total is O(n/Blog, n/B).

Seems pretty good! Can we do better?
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Using the cache

e Blocking? A little unclear. (We'll come back to this.)
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Blocking? A little unclear. (We'll come back to this.)

HyperTransport™ PHY. i5c 10

Does anyone know the sorting lower bound? Where does nlogn come from?

Answer: each time you compare two numbers, can only have two outcomes.

Each time we bring a cache line into cache, how many more things can we
compare it to?



Merge sort reminder

e Divide array into two equal parts

e Recursively sort both parts

e Merge them in O(n) time (and O(n/B) cache misses)

L1l 2]3]s

1 [ 2] 4]

| 4 | 16 | 64 | 256
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e Divide array into M/B equal parts

e Recursively sort all M/B parts



M /B-way merge sort

e Divide array into M/B equal parts

e Recursively sort all M/B parts

e Merge all M/B arrays in O(n) time (and O(n/B) cache misses)



Diagram of M/B-way merge sort
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Diagram of M/B-way merge sort
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Diagram of M/B-way merge sort

’ 1 |/2 | 3 | 5\[ B elements from each fit in cache

| 4] 16 | 64 [ 256 |

| 7] 6] 5 ] 37

| 2| 9 | 18] 27 1 2] 4] ... ]

|-198| © | 100 | 200

\
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More Detail on merges
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More Detail on merges

e Keep B slots for each array in cache. (M/B arrays so this fits!)

e When all B slots are empty for the array, take B more items from the array in
cache.

e Example on board
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Analysis

Divide array into M/B parts; combine in O(N/B) cache misses.

Recursion:

T(N) = T(N/(M/B)) + O(N/B)

Solves to O(g logy 5 g) cache misses

Optimal!
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Useful?

Can be useful if your data is VERY large

Distribution sort: similar idea, but with Quicksort instead of Mergesort

Another method is most popular in practice: Timsort

Merges a “stack” of runs. Somewhat similar to M/B-way merge sort, achieves
strong cache efficiency in practice.

If we have time, let’s talk about engineering a sorting algorithm on the board
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