
Applied Algorithms Lec 3: Cache
Efficiency

Sam McCauley

September 12, 2025

Williams College



Admin

• Career fair in Chandler today

• Assignment 1 out! Start early!!

• I’ll get gradescope set up soon

• Don’t do extra credit until you’re done with the rest of the assignment

• 312 Lab computers are now accessible via ssh; link sent and also available on

assignments page

• Meet and greet colloquium today. Next week: an (applied?!) algorithms

colloquium



Wrapping up MITM



Meet in the Middle

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• What is this inner poriton doing?

• Finds the set A2 with height closest to h(S)/2

• How can we preprocess S2 to answer these queries quickly? Let’s split into

pairs and discuss for a few minutes.

• Answer: we’re looking for the largest subset of S2 with height at most

h(S)/2− s1.

• Sort all subsets of S2. Then can answer this query using binary search!



Meet in the Middle

1 Fill array P with all subsets of S2

2 Sort P by height
3 for each subset A1 of S1:
4 s1 ← h(A1)
5 binsearch(P, h(S)/2− s1)
6 updateMax(h(A2) + s1)

• Analysis?

• P has length O(2n/2). Sorting it takes O(n2n/2)

• Each binary search takes O(n) time; perform O(2n/2) of them

• Total: O(n2n/2) space, O(n2n/2) time



Meet in the Middle

• Before we go forward, let’s go over the high level strategy



Meet in the Middle

Let’s say we have a set of blocks. Normally we use will try all subsets of these

blocks and find the largest that’s at most half the total size.



Meet in the Middle

Let’s say we have a set of blocks. Normally we use will try all subsets of these

blocks and find the largest that’s at most half the total size.



Meet in the Middle

Partition the blocks into two equal-sized sets.

Partition the blocks into two equal-sized sets. Question: what subset of the yellow

blocks is used in the correct solution?



Meet in the Middle

Partition the blocks into two equal-sized sets.

Partition the blocks into two equal-sized sets. Question: what subset of the yellow

blocks is used in the correct solution?



Meet in the Middle

0.0 00000
7.2 00001
5.1 00010
12.3 00011
9.8 00100
17.0 00101

. . .

First, let’s do some brute force preprocessing on the blue blocks. Go through all

subsets of the blue blocks, and store their heights in a table.



Meet in the Middle

0.0 00000
5.1 00010
7.2 00001
9.8 00100

. . .

First, let’s do some brute force preprocessing on the blue blocks. Go through all

subsets of the blue blocks, and store their heights in a table. Then, sort the table by

height.



Meet in the Middle

0.0 00000
5.1 00010
7.2 00001
9.8 00100

. . .

First, preprocess the blue blocks. Go through all subsets of the blue blocks, and

store their heights in a table. Then, sort the table by height.



Meet in the Middle

h(S)/2

Now, go through every possible subset of yellow blocks. We want blue blocks with

height as close to h(S)/2− h(A1) as possible.



Meet in the Middle

0.0 00000
5.1 00010
7.2 00001
9.8 00100

. . .

How quickly can we find the best set of blue blocks with height at most

h(S)/2− h(A1)? Why don’t we need to check any other subsets of blue blocks?



What we get

• O(n2n/2) space, O(n2n/2) time. (Everyone remember how?)

• “Meet in the middle”—rather than considering all subsets, we break into two

halves. We search in the yellow and blue halves one at a time, then combine

them to get one solution.

• Very wide uses: optimization problems, cryptography, etc.



What we get

• O(n2n/2) space, O(n2n/2) time. (Everyone remember how?)

• “Meet in the middle”—rather than considering all subsets, we break into two

halves. We search in the yellow and blue halves one at a time, then combine

them to get one solution.

• Very wide uses: optimization problems, cryptography, etc.



What we get

• O(n2n/2) space, O(n2n/2) time. (Everyone remember how?)

• “Meet in the middle”—rather than considering all subsets, we break into two

halves. We search in the yellow and blue halves one at a time, then combine

them to get one solution.

• Very wide uses: optimization problems, cryptography, etc.



What does this mean?

• What is O(n2n) vs O(n2n/2) time? Do they differ by more than a constant?

• O(n2n/2) space is a lot. Is this worth it?

• Wait, can we do better than this?



What does this mean?

• What is O(n2n) vs O(n2n/2) time? Do they differ by more than a constant?

• O(n2n/2) space is a lot. Is this worth it?

• Wait, can we do better than this?



What does this mean?

• What is O(n2n) vs O(n2n/2) time? Do they differ by more than a constant?

• O(n2n/2) space is a lot. Is this worth it?

• Wait, can we do better than this?



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here.



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here.



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here.



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here.



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here.



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here.



Looking at Assignment 1

• You’ll do 4 implementations

• They will (hopefully) get much faster

• But they all have the same asymptotic running time!

• Topic for next couple lectures: why is that??



Looking at Assignment 1

• You’ll do 4 implementations

• They will (hopefully) get much faster

• But they all have the same asymptotic running time!

• Topic for next couple lectures: why is that??



Looking at Assignment 1

• You’ll do 4 implementations

• They will (hopefully) get much faster

• But they all have the same asymptotic running time!

• Topic for next couple lectures: why is that??



Looking at Assignment 1

• You’ll do 4 implementations

• They will (hopefully) get much faster

• But they all have the same asymptotic running time!

• Topic for next couple lectures: why is that??



Any lingering questions about Assignment 1 or MITM?



Optimization



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



What units to measure time?



What units to measure time?

• Overall: CPU time

• Some idiosyncracies in how we’re measuring it
• CPU vs wall clock time shouldn’t make much difference for us
• Parallelism doesn’t help

• Costs of specific operations are sometimes given using number of “CPU

cycles”

• Not-really-accurate-anymore definition of a cycle: time to perform one basic

operation



What units to measure time?

• Overall: CPU time

• Some idiosyncracies in how we’re measuring it
• CPU vs wall clock time shouldn’t make much difference for us
• Parallelism doesn’t help

• Costs of specific operations are sometimes given using number of “CPU

cycles”

• Not-really-accurate-anymore definition of a cycle: time to perform one basic

operation



What units to measure time?

• Overall: CPU time

• Some idiosyncracies in how we’re measuring it
• CPU vs wall clock time shouldn’t make much difference for us
• Parallelism doesn’t help

• Costs of specific operations are sometimes given using number of “CPU

cycles”

• Not-really-accurate-anymore definition of a cycle: time to perform one basic

operation



Easiest way to measure time: just time it using built-in tools!

Easy, probably reflective of what you want.

But some things to bear in mind:

• Make sure your timing is macroscopic.

• No timing is exact.
• CPU clocks usually only have a resolution of ≈ 1 million ticks per second

(sometimes less)
• Minimize issues with overhead, external factors
• Rule of thumb: ideally an experiment will take ≈ 1 second
• Always repeat several times and check consistency

• Let’s look at how test.c times your code on Assignment 1

• Can also use unix time function



Easiest way to measure time: just time it using built-in tools!

Easy, probably reflective of what you want.

But some things to bear in mind:

• Make sure your timing is macroscopic.

• No timing is exact.
• CPU clocks usually only have a resolution of ≈ 1 million ticks per second

(sometimes less)
• Minimize issues with overhead, external factors
• Rule of thumb: ideally an experiment will take ≈ 1 second
• Always repeat several times and check consistency

• Let’s look at how test.c times your code on Assignment 1

• Can also use unix time function



Easiest way to measure time: just time it using built-in tools!

Easy, probably reflective of what you want.

But some things to bear in mind:

• Make sure your timing is macroscopic.

• No timing is exact.
• CPU clocks usually only have a resolution of ≈ 1 million ticks per second

(sometimes less)
• Minimize issues with overhead, external factors
• Rule of thumb: ideally an experiment will take ≈ 1 second
• Always repeat several times and check consistency

• Let’s look at how test.c times your code on Assignment 1

• Can also use unix time function



Making Software Fast: Things to Bear in Mind

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast: Things to Bear in Mind

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast: Things to Bear in Mind

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast: Things to Bear in Mind

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast: Things to Bear in Mind

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast: Things to Bear in Mind

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Let’s say I have a piece of code, and I want to make it
faster. How should I do that?



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: gain the most from the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: gain the most from the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: gain the most from the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: gain the most from the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Amdahl’s Law

If a function takes up a p fraction of

the entire program’s runtime, and you

speed it up by a factor s, then the

overall program speeds up by a fac-

tor

I want you

to know the

principle

here, but not

memorize

the formula.

1
1− p+ p/s



Amdahl’s Law

If a function takes up a p fraction of

the entire program’s runtime, and you

speed it up by a factor s, then the

overall program speeds up by a fac-

tor

I want you

to know the

principle

here, but not

memorize

the formula.
1

1− p+ p/s



Amdahl’s Law and Asymptotics

• Can estimate the total time of an algorithm asymptotically

• Example: Where to improve Dijkstra’s algorithm?



Amdahl’s Law and Asymptotics

• Can estimate the total time of an algorithm asymptotically

• Example: Where to improve Dijkstra’s algorithm?



Dijkstra’s Algorithm

1 function Dijkstra(Graph, source):
2 create vertex set Q
3 for each vertex v in Graph:
4 dist[v] ← INFINITY
5 prev[v] ← UNDEFINED
6 add v to Q
7 dist[source] ← 0
8 while Q is not empty:
9 u ← vertex in Q with min dist[u]

10 remove u from Q
11 for each neighbor v of u still in Q:
12 alt ← dist[u] + length(u, v)
13 if alt < dist[v]:
14 dist[v] ← alt
15 prev[v] ← u
16 return dist[], prev[]



Dijkstra’s Algorithm

1 function Dijkstra(Graph, source):
2 while Q is not empty:
3 u ← vertex in Q with min dist[u]
4 remove u from Q
5 for each neighbor v of u still in Q:
6 alt ← dist[u] + length(u, v)
7 if alt < dist[v]:
8 dist[v] ← alt
9 prev[v] ← u

10 return dist[], prev[]

The inner for loop (blue part) is, at first glance, by far the most important part to

optimize.



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes over all calls. How

can we hope to do that in the real world if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct types of data.
• Make sure the compiler does not optimize out your whole experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will the change in data
affect running time?

3. Profiling! Tools that will time your functions for you.

We’ll come back to this with some examples in the next couple lectures. Bear in

mind: benchmarking itself is an entire area of computer science.



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes over all calls. How

can we hope to do that in the real world if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct types of data.
• Make sure the compiler does not optimize out your whole experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will the change in data
affect running time?

3. Profiling! Tools that will time your functions for you.

We’ll come back to this with some examples in the next couple lectures. Bear in

mind: benchmarking itself is an entire area of computer science.



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes over all calls. How

can we hope to do that in the real world if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct types of data.
• Make sure the compiler does not optimize out your whole experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will the change in data
affect running time?

3. Profiling! Tools that will time your functions for you.

We’ll come back to this with some examples in the next couple lectures. Bear in

mind: benchmarking itself is an entire area of computer science.



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes over all calls. How

can we hope to do that in the real world if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct types of data.
• Make sure the compiler does not optimize out your whole experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will the change in data
affect running time?

3. Profiling! Tools that will time your functions for you.

We’ll come back to this with some examples in the next couple lectures. Bear in

mind: benchmarking itself is an entire area of computer science.



Today: Cost to access data frequently dominates running
time



Takeaway: if I access RAM one extra time, that is the same as doing (very roughly)

two hundred extra operations.



Tradeoff: lower-level caches are much faster, but much smaller. Only store a small

amount of data can be accessed quickly.



How caches work

• Since cache performance is crucial; where data is stored is also crucial

• Your computer stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; recent is good; jumping around is bad.

• Example: sortedlinkedlist.c unsortedlinkedlist.c



How caches work

• Since cache performance is crucial; where data is stored is also crucial

• Your computer stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; recent is good; jumping around is bad.

• Example: sortedlinkedlist.c unsortedlinkedlist.c



How caches work

• Since cache performance is crucial; where data is stored is also crucial

• Your computer stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; recent is good; jumping around is bad.

• Example: sortedlinkedlist.c unsortedlinkedlist.c



How caches work

• Since cache performance is crucial; where data is stored is also crucial

• Your computer stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; recent is good; jumping around is bad.

• Example: sortedlinkedlist.c unsortedlinkedlist.c



How caches work

• Since cache performance is crucial; where data is stored is also crucial

• Your computer stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; recent is good; jumping around is bad.

• Example: sortedlinkedlist.c unsortedlinkedlist.c



How caches work

• Since cache performance is crucial; where data is stored is also crucial

• Your computer stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; recent is good; jumping around is bad.

• Example: sortedlinkedlist.c unsortedlinkedlist.c



How caches work

• Since cache performance is crucial; where data is stored is also crucial

• Your computer stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; recent is good; jumping around is bad.

• Example: sortedlinkedlist.c unsortedlinkedlist.c



Profiler example: cachegrind

• Cachegrind helps us analyze the number of cache misses inccured by a

program!

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind –cache-sim=yes [your
program]

• Outputs number of cache misses for instructions, then data, then combined

• Simulates a simple cache (based on your machine) with separate L1 caches for

instructions and data, and unified L2 and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

• Virtual machine: not 100% accurate; slow



Profiler example: cachegrind

• Cachegrind helps us analyze the number of cache misses inccured by a

program!

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind –cache-sim=yes [your
program]

• Outputs number of cache misses for instructions, then data, then combined

• Simulates a simple cache (based on your machine) with separate L1 caches for

instructions and data, and unified L2 and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

• Virtual machine: not 100% accurate; slow



Profiler example: cachegrind

• Cachegrind helps us analyze the number of cache misses inccured by a

program!

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind –cache-sim=yes [your
program]

• Outputs number of cache misses for instructions, then data, then combined

• Simulates a simple cache (based on your machine) with separate L1 caches for

instructions and data, and unified L2 and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

• Virtual machine: not 100% accurate; slow



Profiler example: cachegrind

• Cachegrind helps us analyze the number of cache misses inccured by a

program!

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind –cache-sim=yes [your
program]

• Outputs number of cache misses for instructions, then data, then combined

• Simulates a simple cache (based on your machine) with separate L1 caches for

instructions and data, and unified L2 and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

• Virtual machine: not 100% accurate; slow



Profiler example: cachegrind

• Cachegrind helps us analyze the number of cache misses inccured by a

program!

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind –cache-sim=yes [your
program]

• Outputs number of cache misses for instructions, then data, then combined

• Simulates a simple cache (based on your machine) with separate L1 caches for

instructions and data, and unified L2 and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

• Virtual machine: not 100% accurate; slow



Profiler example: cachegrind

• Cachegrind helps us analyze the number of cache misses inccured by a

program!

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind –cache-sim=yes [your
program]

• Outputs number of cache misses for instructions, then data, then combined

• Simulates a simple cache (based on your machine) with separate L1 caches for

instructions and data, and unified L2 and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

• Virtual machine: not 100% accurate; slow



Profiler example: cachegrind

• Cachegrind helps us analyze the number of cache misses inccured by a

program!

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind –cache-sim=yes [your
program]

• Outputs number of cache misses for instructions, then data, then combined

• Simulates a simple cache (based on your machine) with separate L1 caches for

instructions and data, and unified L2 and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

• Virtual machine: not 100% accurate; slow



Reading cachegrind output

• I, I1, LLi, etc.: instruction misses

• D, D1: first level of cache

• LL: last layer of cache

• Run cg_annotate cachegrind.out.118717 (the last number will change
based on which cachegrind run you are referring to) for function-by-function
and line-by-line stats

• Extremely wide output; probably want to pipe to a file

• Let’s look at sortedlinkedlist.c and unsortedlinkedlist.c again



Reading cachegrind output

• I, I1, LLi, etc.: instruction misses

• D, D1: first level of cache

• LL: last layer of cache

• Run cg_annotate cachegrind.out.118717 (the last number will change
based on which cachegrind run you are referring to) for function-by-function
and line-by-line stats

• Extremely wide output; probably want to pipe to a file

• Let’s look at sortedlinkedlist.c and unsortedlinkedlist.c again



Reading cachegrind output

• I, I1, LLi, etc.: instruction misses

• D, D1: first level of cache

• LL: last layer of cache

• Run cg_annotate cachegrind.out.118717 (the last number will change
based on which cachegrind run you are referring to) for function-by-function
and line-by-line stats

• Extremely wide output; probably want to pipe to a file

• Let’s look at sortedlinkedlist.c and unsortedlinkedlist.c again



Reading cachegrind output

• I, I1, LLi, etc.: instruction misses

• D, D1: first level of cache

• LL: last layer of cache

• Run cg_annotate cachegrind.out.118717 (the last number will change
based on which cachegrind run you are referring to) for function-by-function
and line-by-line stats

• Extremely wide output; probably want to pipe to a file

• Let’s look at sortedlinkedlist.c and unsortedlinkedlist.c again



Reading cachegrind output

• I, I1, LLi, etc.: instruction misses

• D, D1: first level of cache

• LL: last layer of cache

• Run cg_annotate cachegrind.out.118717 (the last number will change
based on which cachegrind run you are referring to) for function-by-function
and line-by-line stats

• Extremely wide output; probably want to pipe to a file

• Let’s look at sortedlinkedlist.c and unsortedlinkedlist.c again



Real-World Caching

• We looked at simple, constructed examples where caching is easy to reason

about

• But: bear in mind that modern caches are very complicated; interact

nontrivially with other costs (branch mispredictions; expensive operations;

etc.)

• I should at least mention prefetching: if your computer thinks it can get a

head start on fetching your data, it will

• Model things the best you can, but always use experiments when you’re not

sure



Real-World Caching

• We looked at simple, constructed examples where caching is easy to reason

about

• But: bear in mind that modern caches are very complicated; interact

nontrivially with other costs (branch mispredictions; expensive operations;

etc.)

• I should at least mention prefetching: if your computer thinks it can get a

head start on fetching your data, it will

• Model things the best you can, but always use experiments when you’re not

sure



Real-World Caching

• We looked at simple, constructed examples where caching is easy to reason

about

• But: bear in mind that modern caches are very complicated; interact

nontrivially with other costs (branch mispredictions; expensive operations;

etc.)

• I should at least mention prefetching: if your computer thinks it can get a

head start on fetching your data, it will

• Model things the best you can, but always use experiments when you’re not

sure



Real-World Caching

• We looked at simple, constructed examples where caching is easy to reason

about

• But: bear in mind that modern caches are very complicated; interact

nontrivially with other costs (branch mispredictions; expensive operations;

etc.)

• I should at least mention prefetching: if your computer thinks it can get a

head start on fetching your data, it will

• Model things the best you can, but always use experiments when you’re not

sure





Summary

• Algorithms has failed us

• Not all operations are equal in

practice!

• Constants matter!



Return of Algorithms

A very current reference to a comeback story.

• Can we take cache misses into

account?

• What if rather than measuring

operations (as we did in CS 256),

we analyze only cache misses?

• Next topic: the External Memory

Model



External Memory Model



What do we want out of this model?

• Simple, but able to capture the cost of cache misses

• How can we make it universal across computers that may have very different
cache parameters?

• Answer: we’ll use parameters. (The exact size of cache, and a cache line, can
drastically affect algorithmic performance.)

• Do we want asymptotics? Worst case?

• Yes!



What do we want out of this model?

• Simple, but able to capture the cost of cache misses

• How can we make it universal across computers that may have very different
cache parameters?

• Answer: we’ll use parameters. (The exact size of cache, and a cache line, can
drastically affect algorithmic performance.)

• Do we want asymptotics? Worst case?

• Yes!



What do we want out of this model?

• Simple, but able to capture the cost of cache misses

• How can we make it universal across computers that may have very different
cache parameters?

• Answer: we’ll use parameters. (The exact size of cache, and a cache line, can
drastically affect algorithmic performance.)

• Do we want asymptotics? Worst case?

• Yes!



What do we want out of this model?

• Simple, but able to capture the cost of cache misses

• How can we make it universal across computers that may have very different
cache parameters?

• Answer: we’ll use parameters. (The exact size of cache, and a cache line, can
drastically affect algorithmic performance.)

• Do we want asymptotics? Worst case?

• Yes!



What do we want out of this model?

• Simple, but able to capture the cost of cache misses

• How can we make it universal across computers that may have very different
cache parameters?

• Answer: we’ll use parameters. (The exact size of cache, and a cache line, can
drastically affect algorithmic performance.)

• Do we want asymptotics? Worst case?

• Yes!



External memory model basics

• Single cache of size M

• Cache line size is B

• Computation is free: only count number of “cache misses.” Can perform

arbitrary computation on items in cache.

• We will say something like “O(n/B) cache misses” rather than “O(n)

operations” to emphasize the model.



External memory model basics

• Single cache of size M

• Cache line size is B

• Computation is free: only count number of “cache misses.” Can perform

arbitrary computation on items in cache.

• We will say something like “O(n/B) cache misses” rather than “O(n)

operations” to emphasize the model.



External memory model basics

• Single cache of size M

• Cache line size is B

• Computation is free: only count number of “cache misses.” Can perform

arbitrary computation on items in cache.

• We will say something like “O(n/B) cache misses” rather than “O(n)

operations” to emphasize the model.



External memory model basics

• Single cache of size M

• Cache line size is B

• Computation is free: only count number of “cache misses.” Can perform

arbitrary computation on items in cache.

• We will say something like “O(n/B) cache misses” rather than “O(n)

operations” to emphasize the model.



External Memory Model Basics

Transferring B consecutive items to/from the disk costs 1. Can only store M things

in cache.



Memory Evictions

• Can only hold M items in cache!

• So when we bring B in, need to write B items back to disk. (We can bring them

in later if we need them again)

• Assume that the computer does this optimally.

• Reasonable; it’s really good at it. Very cool algorithms behind this!



Memory Evictions

• Can only hold M items in cache!

• So when we bring B in, need to write B items back to disk. (We can bring them

in later if we need them again)

• Assume that the computer does this optimally.

• Reasonable; it’s really good at it. Very cool algorithms behind this!



Memory Evictions

• Can only hold M items in cache!

• So when we bring B in, need to write B items back to disk. (We can bring them

in later if we need them again)

• Assume that the computer does this optimally.

• Reasonable; it’s really good at it. Very cool algorithms behind this!



Vocabulary

• “Cache” of size M; “disk” of unlimited size

• With the cost of one “cache miss” can bring in B consecutive items

• (Sometimes called “memory access” or “I/Os” but I will try not to use those
terms.)

• These B items are called a “block” or a “cache line”.



Vocabulary

• “Cache” of size M; “disk” of unlimited size

• With the cost of one “cache miss” can bring in B consecutive items

• (Sometimes called “memory access” or “I/Os” but I will try not to use those
terms.)

• These B items are called a “block” or a “cache line”.



Vocabulary

• “Cache” of size M; “disk” of unlimited size

• With the cost of one “cache miss” can bring in B consecutive items

• (Sometimes called “memory access” or “I/Os” but I will try not to use those
terms.)

• These B items are called a “block” or a “cache line”.



Let’s revisit sortedlinkedlist.c

• What is the cost of our algorithm in the external memory model if the items

are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items

have stride B+ 1?

• Answer: O(n)

• The external memory model predicts (roughly) the real-world slowdown of this

process.



Let’s revisit sortedlinkedlist.c

• What is the cost of our algorithm in the external memory model if the items

are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items

have stride B+ 1?

• Answer: O(n)

• The external memory model predicts (roughly) the real-world slowdown of this

process.



Let’s revisit sortedlinkedlist.c

• What is the cost of our algorithm in the external memory model if the items

are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items

have stride B+ 1?

• Answer: O(n)

• The external memory model predicts (roughly) the real-world slowdown of this

process.



Let’s revisit sortedlinkedlist.c

• What is the cost of our algorithm in the external memory model if the items

are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items

have stride B+ 1?

• Answer: O(n)

• The external memory model predicts (roughly) the real-world slowdown of this

process.



Let’s revisit sortedlinkedlist.c

• What is the cost of our algorithm in the external memory model if the items

are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items

have stride B+ 1?

• Answer: O(n)

• The external memory model predicts (roughly) the real-world slowdown of this

process.



Finding the minimum element in an array

• How many cache misses in the external memory model?

• Answer: O(n/B)



Finding the minimum element in an array

• How many cache misses in the external memory model?

• Answer: O(n/B)



Binary search?

• What is the recurrence for binary search in terms of number of operations?

• What is the recurrence for binary search in terms of the number of cache

misses?

• Each recursive call takes 1 cache miss.

• Base case: can perform all operations on B items with only 1 cache miss

• Total: O(log2(n/B)) cache misses.



Binary search?

• What is the recurrence for binary search in terms of number of operations?

• What is the recurrence for binary search in terms of the number of cache

misses?

• Each recursive call takes 1 cache miss.

• Base case: can perform all operations on B items with only 1 cache miss

• Total: O(log2(n/B)) cache misses.



Binary search?

• What is the recurrence for binary search in terms of number of operations?

• What is the recurrence for binary search in terms of the number of cache

misses?

• Each recursive call takes 1 cache miss.

• Base case: can perform all operations on B items with only 1 cache miss

• Total: O(log2(n/B)) cache misses.



Binary search?

• What is the recurrence for binary search in terms of number of operations?

• What is the recurrence for binary search in terms of the number of cache

misses?

• Each recursive call takes 1 cache miss.

• Base case: can perform all operations on B items with only 1 cache miss

• Total: O(log2(n/B)) cache misses.



Binary search?

• What is the recurrence for binary search in terms of number of operations?

• What is the recurrence for binary search in terms of the number of cache

misses?

• Each recursive call takes 1 cache miss.

• Base case: can perform all operations on B items with only 1 cache miss

• Total: O(log2(n/B)) cache misses.



Fitting in Cache

• If you have a sequence of operations on a dataset of size at most M, there is

no further cost so long as they all stay in cache!

• O(M/B) to load the items into cache, then all computation is free

• Real-world time: what if instead of a linked list of 100 million items, we

repeatedly access a linked list of 100 thousand items?



Fitting in Cache

• If you have a sequence of operations on a dataset of size at most M, there is

no further cost so long as they all stay in cache!

• O(M/B) to load the items into cache, then all computation is free

• Real-world time: what if instead of a linked list of 100 million items, we

repeatedly access a linked list of 100 thousand items?



Fitting in Cache

• If you have a sequence of operations on a dataset of size at most M, there is

no further cost so long as they all stay in cache!

• O(M/B) to load the items into cache, then all computation is free

• Real-world time: what if instead of a linked list of 100 million items, we

repeatedly access a linked list of 100 thousand items?



Why does the external memory model make sense?

• Simple model that captures one level of the memory hierarchy

• Idea: usually one level has by far the largest cost.

• Small programs may be dominated by L1 cache misses

• Larger programs it may be by L3 cache misses

• External memory model zooms in on one crucial level of the memory hierarchy

(with particular B, M); gives asymptotics for how well we do on that level.



Why does the external memory model make sense?

• Simple model that captures one level of the memory hierarchy

• Idea: usually one level has by far the largest cost.

• Small programs may be dominated by L1 cache misses

• Larger programs it may be by L3 cache misses

• External memory model zooms in on one crucial level of the memory hierarchy

(with particular B, M); gives asymptotics for how well we do on that level.



Why does the external memory model make sense?

• Simple model that captures one level of the memory hierarchy

• Idea: usually one level has by far the largest cost.

• Small programs may be dominated by L1 cache misses

• Larger programs it may be by L3 cache misses

• External memory model zooms in on one crucial level of the memory hierarchy

(with particular B, M); gives asymptotics for how well we do on that level.



Why does the external memory model make sense?

• Simple model that captures one level of the memory hierarchy

• Idea: usually one level has by far the largest cost.

• Small programs may be dominated by L1 cache misses

• Larger programs it may be by L3 cache misses

• External memory model zooms in on one crucial level of the memory hierarchy

(with particular B, M); gives asymptotics for how well we do on that level.



Question about External Memory
Model Basics?


	Wrapping up MITM
	Optimization
	External Memory Model
	Question about External Memory Model Basics?

