Lecture 20: Integer Linear Programming

Sam McCauley

November 21, 2025

Williams College

Admin

- Assignment 7 posted; look over topic ideas presented there so you're ready to email me on the Monday after Thanksgiving
- Practice problems for the final out soon; graded assignments out right after
- TA feedback form posted; please fill out if you've talked to Alex this semester
- Colloquium today: Cryptography!
- Questions?

Wrapping up LPs

What makes an LP Solution Efficient?

One question I often get: how efficient is your LP?

• Short answer: I'd like your LPs to have polynomial size (in the size of the input to the original problem)

 In this class, I do not think we will look at any problem which can be effectively solved with an exponential-sized LP

LPs and Real-World Solutions

- I often ask you to write a recipe to create an LP for any specific problem instance
- What happens when there is no solution to the instance?
 - The LP is infeasible. The solver will tell you that!
- What happens when you can achieve arbitrarily good solutions?
 - The LP is <u>unbounded</u>. The solver will tell you that too!

Integer Linear Programming

Definitions

- Integer Linear Program (ILP): has linear constraints and objectives, but all variables are required to be integers
- Mixed Integer Linear Program (MIP): linear constraints and objectives. Some variables are required to be integers, some variables are continuous
- Sometimes I might call something an "ILP" when it is actually an MIP. Sorry in advance. (The distinction is not particularly important in this class.)

Why ILP is Useful

Benefits from some structure (not as much as LP)

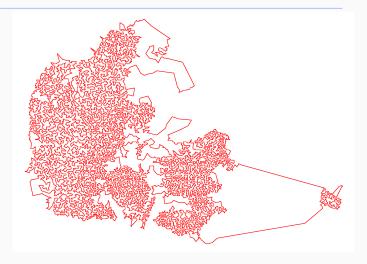
• Efficient solvers in practice

• Extremely widely applicable

Some good and bad news

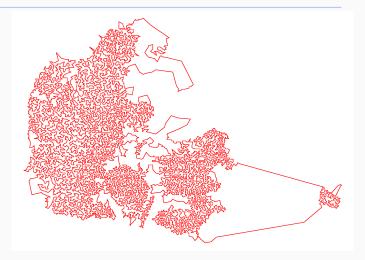
- Solving an ILP or an MIP is NP-hard
- Bad news: this means that we can't give a guarantee to solve an ILP efficiently
- Good news: if an ILP solver tends to be efficient in practice, we can use it to solve real-life NP hard problems
- Can guarantee optimal solutions!
 - It just may take a long time to get them...

Travelling Salesman



This is an *optimal* solution for a TSP instance with tens of thousands of points; obtained using MIP-like techniques.

Travelling Salesman



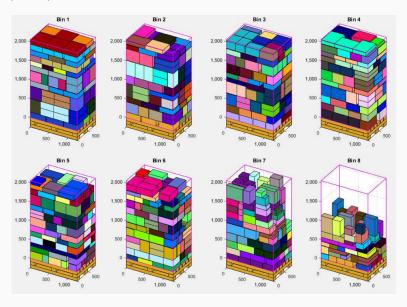
The best-known worst case solution $(O(n^2 \cdot 2^n))$ time) would not work for 100 points, even if all computers in the world were run for a century.

(Literally) Packaging Items

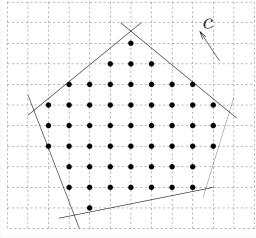
- Real-world example of something you may way to solve with an MIP:
- Pack items onto pallets (bins)
 - · Items are 3 dimensional, can be rotated
 - Items may not have integral sizes
 - Constraints for what goes on top of what

Packaging Items

From Elhedhli, Gzara, and Yildiz 2019:



Visualization of an ILP



(Figure from L. Vandenberghe)

- Still a polytope given by inequalities
- But now, we're restricted to integer grid points

ILP and MIP Examples: Diet

Revisited

Simple MIP

Diet problem from last lecture, but peanuts and rice only come in 100g bags. Chicken we may order as many grams as we want.

Objective:
$$\min 1.61p + .79r + .7c$$
 This means p and r are integers.
$$25.8p + 2.5r + 13.5c = 46$$

$$16.1p + 28.7r + 130$$

$$p \ge 0, r \ge 0, c \ge 0$$

$$p, r \in \mathbb{Z}$$

Using GLPK for ILP and MIP

- after "bounds" section (or after "constraints" section if no bounds)
- can write general, integer, or binary
- Then list variables of that type. (Binary variables must be 0 or 1; integer must be integer; general are just normal LP variables)
- Default: general
- Let's look at the diet problem as an ILP

ILP and MIP Examples: Two

Towers

Two Towers!

• Get a list of heights (let's forget about taking square roots—it's OK if the heights are not integers) $h_1, \ldots h_n$

• Want to divide into two towers T_1 and T_2 to minimize $|\sum_{i \in T_1} h_i - \sum_{j \in T_2} h_j|$.

How can we do this using an ILP?

Two Towers as an ILP

- Idea: build the smaller tower, make it as large as possible (but less than half total height)
- Variables x_1, \ldots, x_n . We have $x_i \in \{0, 1\}$ for all i. Goal: $x_i = 1$ if i is in the smaller tower
- Objective: $\max \sum_{i=1}^{n} x_i h_i$
- · Constraints:

$$\sum_{i=1}^n x_i h_i \leq \frac{1}{2} \sum_{i=1}^n h_i$$

$$x_i \in \{0,1\}$$
 for all $i = 1, \dots, n$

Why does this work?

Every x_i is 0 or 1

• The total height of all items i with $x_i = 1$ is less than half the height (so it's the smaller tower), and is as large as possible

• So every assignment of 0 and 1 to x_i corresponds to a two tower solution. The ILP solution picks the best one.

First attempt: rounding

• Can we solve this as an LP and then round the solution?

• No! LP is trivially solvable with all but one variable being an integer.

How does GLPK do on two towers?

- It seems to give wrong answers for larger inputs (suboptimal, or even over the threshold)
- Appear to be some precision issues.
- Might not come up if we call GLPK from C rather than using the CPLEX format?
- If you want, you can have your Assignment 7 be implementing this ILP using the C or python interface into GLPK and investigate what's going wrong

Assignments

ILP and MIP Examples: Doctor

Doctor Assignments

- Let's say we have *n* doctors and *n* hospitals
- Want to match doctors to hospitals
- Doctor i lives distance d_{i,j} from hospital j
- Goal: match doctors with hospitals to minimize total driving distance
- Side question: can we solve this algorithmically without using ILP/MIP?
 - Yes, but this one generalizes easily to allow for further constraints
 - One example: two doctors are in a relationship and they need to be matched to hospitals that are within a certain distance of each other.

Doctor Assignments: ILP

- What should our variables be?
- $x_{ij} = 1$ if doctor i is assigned to hospital j, $x_{ij} = 0$ otherwise
- · Constraints?
 - $x_{ij} \in \{0,1\}$
 - For all $i: \sum_{j=1}^{n} x_{ij} = 1$ (every doctor has one hospital)
 - For all j: $\sum_{i=1}^{n} x_{ij} = 1$ (every hospital has one doctor)

Doctor Assignments: ILP

Constraints:

- $x_{ij} \in \{0,1\}$
- For all $i: \sum_{j=1}^{n} x_{ij} = 1$
- For all $j: \sum_{i=1}^{n} x_{ij} = 1$

Objective? (Recall: goal is minimize total distance)

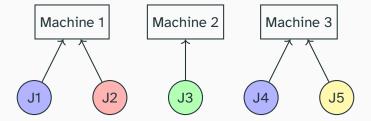
• $\min \sum_{i=1}^n \sum_{j=1}^n x_{ij} d_{ij}$

Scheduling With ILP

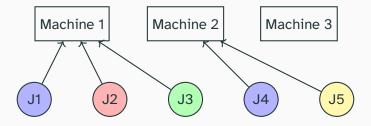
Scheduling

- (Aside: scheduling is a major application of ILPs. Lots of different techniques; this is just one simple example.)
- Assign *n* unit-cost jobs to machines.
- Each job j_i has a type t_i . Two jobs of the same type cannot be assigned to the same machine.
- How can we schedule the jobs with the minimum number of machines?

Scheduling



Scheduling



This solution is better. (Yes, you can solve this with a greedy approach. Our goal today is to get MIP practice.)

- *n* jobs, job *i* has type *t_i*
- Two jobs of same type cannot be assigned to the same machine
- Min number of machines

- What variables do we want?
- Probably: keep track of what job is assigned to what machine
- s_{i,m} = 1 if job i is assigned to machine m
- How many machines do we need?
- At most n. So have n^2 variables: $s_{i,m} \in \{0,1\}$, for $1 \le i \le n$ and $1 \le m \le n$.

- n jobs, job i has type t_i
- Two jobs of same type cannot be assigned to the same machine
- · Min number of machines
- s_{i,m} = 1 if job i assigned to machine m

- Constraints?
- Want every job assigned to exactly one machine
- For all $1 \le i \le n$, $\sum_{m=1}^{n} s_{i,m} = 1$

- *n* jobs, job *i* has type t_i
- Two jobs of same type cannot be assigned to the same machine
- · Min number of machines
- s_{i,m} = 1 if job i assigned to machine m

- Constraints?
- Two jobs of the same type can't be assigned to the same machine
- Rephrased: for every machine m, no two jobs of the same type can be assigned to m

- *n* jobs, job *i* has type *t_i*
- Two jobs of same type cannot be assigned to the same machine
- Min number of machines
- s_{i,m} = 1 if job i assigned to machine m

- · Constraints?
- For every machine i, no two jobs of the same type can be assigned to i
- For all $1 \le m \le n$, for all jobs i_1 and i_2 with the same type $t_{i_1} = t_{i_2}$, $s_{i_1,m} + s_{i_2,m} \le 1$
- (Up to n³ constraints. Also: constraints depend on the input.)

- *n* jobs, job *i* has type *t_i*
- Two jobs of same type cannot be assigned to the same machine
- Min number of machines
- s_{i,m} = 1 if job i assigned to machine m

- Objective?
- Let c_m be the cost of machine m. Want $c_m = 1$ if there is a job assigned to machine i, $c_m = 0$ otherwise.
- $\min \sum_{m=1}^{n} c_m$
- Constraint for c_m?
- For all jobs i and all machines m, $c_m \ge s_{i,m}$

Size and Computation Time for an ILP/MIP

- The <u>size</u> of an ILP/MIP is the number of variables times the number of constraints
- We will usually want this to be polynomial in the size of the original problem input
- The computation time is the time it takes to go from an ILP/MIP recipe to a
 .lp file
- In other words: the time to calculate all the *constants*!
- We also want this to be *polynomial* in the size of the original problem input
- I will not ask you to calculate these values. I am going over this because any ILP/MIP you give should have polynomial size and polynomial computation time.

Objective: $\min \sum_{m=1}^{n} c_m$

Constraints:

For all $1 \le m \le n$ and $1 \le i \le n$, $c_m \ge s_{i,m}$

For all $1 \le m \le n$, for all jobs i_1 and i_2 with the same type $t_{i_1} = t_{i_2}$, $s_{i_1,m} + s_{i_2,m} \le 1$

For all $1 \le i \le n$, $\sum_{m=1}^{n} s_{i,m} = 1$

 $s_{i,m} \in \{0,1\}$ for all $1 \le i \le n$, $1 \le m \le n$.

What is the size of this ILP?

 $n+n^2=O(n^2)$ variables, at most $n^2+n^3+n=O(n^3)$ constraints. Multiplying, total size is $O(n^5)$

So the size is polynomial in n.

Objective: $\min \sum_{m=1}^{n} c_m$

Constraints:

For all $1 \le m \le n$ and $1 \le i \le n$, $c_m \ge s_{i,m}$

For all $1 \le m \le n$, for all jobs i_1 and i_2 with the same type $t_{i_1} = t_{i_2}$, $s_{i_1,m} + s_{i_2,m} \le 1$

For all $1 \le i \le n$, $\sum_{m=1}^{n} s_{i,m} = 1$

 $s_{i,m} \in \{0,1\}$ for all $1 \le i \le n$, $1 \le m \le n$.

Computation time?

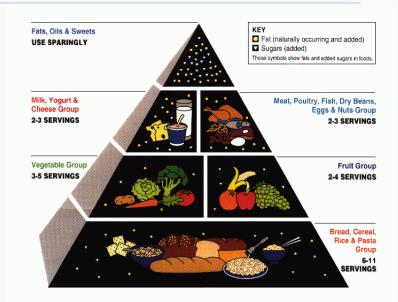
Polynomial. (All the constants can be calculated in O(1) time.) More specifically, this can be calculated in $O(n^5)$ time.

Revisiting Discussion from Last Class

- Idea here: we talked about how LPs can only really "AND" constraints
- With ILP and MIP, can do something much more like "OR":
 - · One of these constraints must be satisfied, or
 - Pick one of these items (in an assignment)

Simple example: optimal eating while being able to choose your diet

Food Pyramid



Choice of diet

- You need to satisfy one of the three following diet goals:
 - 46 grams of protein and 130 grams of carbs every day; or
 - 20 grams of protein and 200 grams of carbs every day; or
 - 100 grams of protein and 30 grams of carbs every day
- 100g Peanuts: 25.8g of protein, 16.1g carbs, \$1.61
- 100g Rice: 2.5g protein, 28.7g carbs, \$.79
- 100g Chicken: 13.5g protein, 0g carbs, \$.70

What is the cheapest way you can hit one of these diet goals?

MIP for Choice of Diet

- How to encode which diet I choose?
- $x_1 = 1$ if I choose the first diet; $x_2 = 1$ if I choosed the second diet; $x_3 = 1$ if I choose the third diet
- Make sure I choose exactly one diet?
- $x_i \in \{0, 1\}$
- $x_1 + x_2 + x_3 = 1$

MIP for Choice of Diet

- You need to satisfy one of the three following diet goals:
 - 46 grams of protein and 130 grams of carbs every day; or
 - 20 grams of protein and 200 grams of carbs every day; or
 - 100 grams of protein and 30 grams of carbs every day
- How can I encode this?
- Previously: $25.8p + 2.5r + 13.5c \ge 46...$
- Hint: if $x_1 = 0$, I want to do something to these constraint so that they're always satisfied
- $25.8p + 2.5r + 13.5c + 46(1 x_1) \ge 46$

Choice of diet LP

- Diet options:
 - 46 g protein; 130 g carbs; or
 - 20 g protein; 200 g carbs; or
 - 100 g protein; 30 g carbs
- 100g Peanuts: 25.8g protein, 16.1g carbs, \$1.61
- 100g Rice: 2.5g protein, 28.7g carbs, \$.79
- 100g Chicken: 13.5g protein, 0g carbs, \$.70

min 1.61p + .79r + .7c

- $25.8p + 2.5r + 13.5c + 46(1 x_1) \ge 46$;
- $16.1p + 28.7r + 130(1 x_1) \ge 130$
- $25.8p + 2.5r + 13.5c + 20(1 x_2) \ge 20$;
- $16.1p + 28.7r + 200(1 x_2) \ge 200$
- $25.8p + 2.5r + 13.5c + 100(1 x_3) \ge 100$;
- $16.1p + 28.7r + 30(1 x_2) \ge 30$
- $x_1 + x_2 + x_3 = 1$
- $p, r, c \ge 0; p, r \in \mathbb{Z}; x_i \in \{0, 1\}$

Technique summary

- When want to choose one of several constraints to satisfy:
- Multiply the indicator variable for whether or not you choose by a large enough constant to make the constraint trivial
- Need to be able to bound the constraint to do this!
- What happens with rounding when you use this technique?