
Applied Algorithms Lec 2: Meet
in the Middle

Sam McCauley

September 9, 2025

Williams College



Admin

• Assignment 0 out!

• Please clone your git repo and fill in the questions

• If you are off-campus, ssh to lohani.cs.williams.edu, and then ssh to a

lab computer

• I’ll post the lab computer addresses once they are set up. Right now, can use

Ward lab computers:

cow-i23-nuc23.cs.williams.edu
cow-i23-nuc24.cs.williams.edu
. . .

cow-i23-nuc40.cs.williams.edu



Finishing C Review



Memory Allocation

• malloc and free
• Also use calloc and realloc
• Need stdlib.h

• If you call C++ code, be careful with mixing new and malloc

• Use useful library functions like memset and memcpy

• Example: memory1.c



Variable types

• int, long, etc. not necessarily the same on different systems

• On Windows long is probably 32 bits, on Mac and Unix it’s probably 64 bits
• long long is probably 64 bits

• Instead: include stdint.h, describe types explicitly

• Keep an eye out for unsigned vs signed.

• Quick example: variabletypes.c

• printf does expect primitive types



Variable types

• int, long, etc. not necessarily the same on different systems

• On Windows long is probably 32 bits, on Mac and Unix it’s probably 64 bits
• long long is probably 64 bits

• Instead: include stdint.h, describe types explicitly

• Keep an eye out for unsigned vs signed.

• Quick example: variabletypes.c

• printf does expect primitive types



Variable types

• int, long, etc. not necessarily the same on different systems

• On Windows long is probably 32 bits, on Mac and Unix it’s probably 64 bits
• long long is probably 64 bits

• Instead: include stdint.h, describe types explicitly

• Keep an eye out for unsigned vs signed.

• Quick example: variabletypes.c

• printf does expect primitive types



Variable types

• int, long, etc. not necessarily the same on different systems

• On Windows long is probably 32 bits, on Mac and Unix it’s probably 64 bits
• long long is probably 64 bits

• Instead: include stdint.h, describe types explicitly

• Keep an eye out for unsigned vs signed.

• Quick example: variabletypes.c

• printf does expect primitive types



Variable types

• int, long, etc. not necessarily the same on different systems

• On Windows long is probably 32 bits, on Mac and Unix it’s probably 64 bits
• long long is probably 64 bits

• Instead: include stdint.h, describe types explicitly

• Keep an eye out for unsigned vs signed.

• Quick example: variabletypes.c

• printf does expect primitive types



Variable types cont.

• int (etc.) is OK for things like small loops

• If you care at all about size you should use the type explicitly

• Up to you when and where you use unsigned

• Controversial in terms of style
• Can help with overflow; often changes shift behavior



List of particularly useful integer variable types

• int64_t, int32_t: signed integers of given size

• uint64_t, uint8_t: unsigned integers of given size

• INT64_MAX (etc.): maximum value of an object of type int64_t



Sorting in C

• qsort() from stdlib.h

• Takes as arguments array pointer, size of array, size of each element, and a

comparison function. Let’s look at an example of how it works

• What’s a downside to this in terms of efficiency?

• Many ways to get better sorts in C:
• Nicely-written homemade sort

• Real world: Get an LLM to write one for you. But make sure it works

• Reminder: not allowed in this class; I’ll give you a sort for Assignment 1

• C++ boost library

• Third-party code



Architecture this Semester

• x86 architecture (not AMD, not M2 etc.)

• Intel i7; run lscpu on a lab computer for details

• This is likely to have an effect on performance in some cases

• Your home computers are acceptable (but not recommended) for correctness

and coarse optimization; use lab computers for fine-grained optimization

• If I ask you to do a performance comparison, you should do it on lab

computers. (In the rare case where you don’t, you should always write down

exactly what machine it was done on.)



Where are things stored?

• In CPU register (never touching
memory)

• Temporary variables like loop
indices

• Compiler decides this

• Call stack

• Small amount of dedicated
memory to keep track of current
function and local variables

• Pop back to last function when
done

• temporary



Where are things stored?

• In CPU register (never touching
memory)

• Temporary variables like loop
indices

• Compiler decides this

• Call stack

• Small amount of dedicated
memory to keep track of current
function and local variables

• Pop back to last function when
done

• temporary



Other place to store things

• The heap!

• Very large amount of memory (basically all of RAM)

• Create space on heap using malloc

• Need stdlib.h to use malloc



Other place to store things

• The heap!

• Very large amount of memory (basically all of RAM)

• Create space on heap using malloc

• Need stdlib.h to use malloc



Other place to store things

• The heap!

• Very large amount of memory (basically all of RAM)

• Create space on heap using malloc

• Need stdlib.h to use malloc



Other place to store things

• The heap!

• Very large amount of memory (basically all of RAM)

• Create space on heap using malloc

• Need stdlib.h to use malloc



How to decide stack vs heap?

• Java rules work out well:

• “objects” and arrays on the heap

• Anything that needs to be around after the function is over should be on the
heap

• Otherwise declare primitive types and let the compiler work it out

• Keep scope in mind!



Makefile

• Each time we change a file, need to recompile that file

• Need to build output file (but don’t need to recompile other unchanged files)

• Makefile does this automatically



In this class

• I’ll give you a makefile

• You don’t need to change it unless you use multiple files or want to set
compiler options

• Probably don’t need to use multiple files in this class
• (Some exceptions for things like wrapper functions.)



Let’s look quickly at the default Makefile

• make, make clean, make debug



Compiler flags

• -g for debug, -c for compile without build (creates .o file)

• Different optimization flags:

• -O2 is the default level
• -O3, -Ofast is more aggressive; doesn’t promise correctness in some corner

cases
• -O0 doesn’t optimize; -Og is no optimization for debugging
• Other flags to specifically take advantage of certain compiler features (we’ll

come back to this)
• Let’s build a (really efficient) Assignment 1 implementation with each flag and

see what happens

• -S (along with -fverbose-asm for helpful info) to get assembly

• Also: “Compiler Explorer” online



Compiler flags

• -g for debug, -c for compile without build (creates .o file)

• Different optimization flags:

• -O2 is the default level
• -O3, -Ofast is more aggressive; doesn’t promise correctness in some corner

cases
• -O0 doesn’t optimize; -Og is no optimization for debugging
• Other flags to specifically take advantage of certain compiler features (we’ll

come back to this)
• Let’s build a (really efficient) Assignment 1 implementation with each flag and

see what happens

• -S (along with -fverbose-asm for helpful info) to get assembly

• Also: “Compiler Explorer” online



Compiler flags

• -g for debug, -c for compile without build (creates .o file)

• Different optimization flags:

• -O2 is the default level
• -O3, -Ofast is more aggressive; doesn’t promise correctness in some corner

cases
• -O0 doesn’t optimize; -Og is no optimization for debugging
• Other flags to specifically take advantage of certain compiler features (we’ll

come back to this)
• Let’s build a (really efficient) Assignment 1 implementation with each flag and

see what happens

• -S (along with -fverbose-asm for helpful info) to get assembly

• Also: “Compiler Explorer” online



Compiler flags

• -g for debug, -c for compile without build (creates .o file)

• Different optimization flags:

• -O2 is the default level
• -O3, -Ofast is more aggressive; doesn’t promise correctness in some corner

cases
• -O0 doesn’t optimize; -Og is no optimization for debugging
• Other flags to specifically take advantage of certain compiler features (we’ll

come back to this)
• Let’s build a (really efficient) Assignment 1 implementation with each flag and

see what happens

• -S (along with -fverbose-asm for helpful info) to get assembly

• Also: “Compiler Explorer” online



Meet in the Middle



Plan for today

• This part of the course: how time and space interact

• Today: using space to make things run faster

• Specifically, store results of frequently-computed values to save time



Two towers reminder (?)

• Input: n square (2D) blocks of given

area. Taking the square root of the

area gives us the height of each

block (let’s call the set of heights S)

• (This means the heights are

floating-point numbers.)

• Goal: make two towers with height

as close as possible

• This is the problem we will solve on

Assignment 1



Two towers reminder (?)

• Input: n square (2D) blocks of given

area. Taking the square root of the

area gives us the height of each

block (let’s call the set of heights S)

• (This means the heights are

floating-point numbers.)

• Goal: make two towers with height

as close as possible

• This is the problem we will solve on

Assignment 1



Two towers reminder (?)

• Input: n square (2D) blocks of given

area. Taking the square root of the

area gives us the height of each

block (let’s call the set of heights S)

• (This means the heights are

floating-point numbers.)

• Goal: make two towers with height

as close as possible

• This is the problem we will solve on

Assignment 1



Two towers reminder (?)

• Input: n square (2D) blocks of given

area. Taking the square root of the

area gives us the height of each

block (let’s call the set of heights S)

• (This means the heights are

floating-point numbers.)

• Goal: make two towers with height

as close as possible

• This is the problem we will solve on

Assignment 1



Let’s Rephrase

• Making the towers as close as possible is the same as:

• Make the smaller tower as large as possible.

• This means our goal is: find the subset of blocks with largest total height

that’s at most half the total height; i.e. 1
2

∑
s∈S s.

• How can we solve this? (Let’s go to the board.)

• Try all subsets as the smaller tower; keeping track of largest seen

• Running time? Space (what do we need to store)?

• Time: O(2n). Space: Only need to store current subset; best height seen so far



Let’s Rephrase

• Making the towers as close as possible is the same as:

• Make the smaller tower as large as possible.

• This means our goal is: find the subset of blocks with largest total height

that’s at most half the total height; i.e. 1
2

∑
s∈S s.

• How can we solve this? (Let’s go to the board.)

• Try all subsets as the smaller tower; keeping track of largest seen

• Running time? Space (what do we need to store)?

• Time: O(2n). Space: Only need to store current subset; best height seen so far



Let’s Rephrase

• Making the towers as close as possible is the same as:

• Make the smaller tower as large as possible.

• This means our goal is: find the subset of blocks with largest total height

that’s at most half the total height; i.e. 1
2

∑
s∈S s.

• How can we solve this? (Let’s go to the board.)

• Try all subsets as the smaller tower; keeping track of largest seen

• Running time? Space (what do we need to store)?

• Time: O(2n). Space: Only need to store current subset; best height seen so far



Let’s Rephrase

• Making the towers as close as possible is the same as:

• Make the smaller tower as large as possible.

• This means our goal is: find the subset of blocks with largest total height

that’s at most half the total height; i.e. 1
2

∑
s∈S s.

• How can we solve this? (Let’s go to the board.)

• Try all subsets as the smaller tower; keeping track of largest seen

• Running time? Space (what do we need to store)?

• Time: O(2n). Space: Only need to store current subset; best height seen so far



Let’s Rephrase

• Making the towers as close as possible is the same as:

• Make the smaller tower as large as possible.

• This means our goal is: find the subset of blocks with largest total height

that’s at most half the total height; i.e. 1
2

∑
s∈S s.

• How can we solve this? (Let’s go to the board.)

• Try all subsets as the smaller tower; keeping track of largest seen

• Running time? Space (what do we need to store)?

• Time: O(2n). Space: Only need to store current subset; best height seen so far



Let’s Rephrase

• Making the towers as close as possible is the same as:

• Make the smaller tower as large as possible.

• This means our goal is: find the subset of blocks with largest total height

that’s at most half the total height; i.e. 1
2

∑
s∈S s.

• How can we solve this? (Let’s go to the board.)

• Try all subsets as the smaller tower; keeping track of largest seen

• Running time? Space (what do we need to store)?

• Time: O(2n). Space: Only need to store current subset; best height seen so far



Some implementation details

• Can store a subset using an unsigned integer of at most n bits (all instances in

Assignment 1 have n ≤ 64, so uint64_t should always work)

• Then, can iterate through the subsets by starting at 0 and incrementing to

2n − 1.

• For each subset, calculate the height by going through the bits and adding

when you see a 1. Keep the heights as an array of floats.



Some implementation details

• Can store a subset using an unsigned integer of at most n bits (all instances in

Assignment 1 have n ≤ 64, so uint64_t should always work)

• Then, can iterate through the subsets by starting at 0 and incrementing to

2n − 1.

• For each subset, calculate the height by going through the bits and adding

when you see a 1. Keep the heights as an array of floats.



Some implementation details

• Can store a subset using an unsigned integer of at most n bits (all instances in

Assignment 1 have n ≤ 64, so uint64_t should always work)

• Then, can iterate through the subsets by starting at 0 and incrementing to

2n − 1.

• For each subset, calculate the height by going through the bits and adding

when you see a 1. Keep the heights as an array of floats.



Meet in the middle

• Divide S into two sets: S1 and S2.

• There must be SOME subset of S1 in the correct final smaller tower.

• Let’s make an algorithm on the board based on this observation. (It won’t be

faster yet.)



Meet in the middle

• Divide S into two sets: S1 and S2.

• There must be SOME subset of S1 in the correct final smaller tower.

• Let’s make an algorithm on the board based on this observation. (It won’t be

faster yet.)



Meet in the middle

• Divide S into two sets: S1 and S2.

• There must be SOME subset of S1 in the correct final smaller tower.

• Let’s make an algorithm on the board based on this observation. (It won’t be

faster yet.)



Meet in the middle

• Divide S into two sets: S1 and S2.

For any set S′, let h(S′) be the height of all elements in S′. Then:

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• Running time? 2n/2 · O(2n/2) = O(2n). Same as before!



Meet in the middle

• Divide S into two sets: S1 and S2.

For any set S′, let h(S′) be the height of all elements in S′. Then:

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• Running time?

2n/2 · O(2n/2) = O(2n). Same as before!



Meet in the middle

• Divide S into two sets: S1 and S2.

For any set S′, let h(S′) be the height of all elements in S′. Then:

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• Running time? 2n/2 · O(2n/2) = O(2n). Same as before!



Meet in the Middle

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• What is this inner poriton doing?

• Finds the set A2 with height closest to h(S)/2

• How can we preprocess S2 to answer these queries quickly? Let’s split into

pairs and discuss for a few minutes.

• Answer: we’re looking for the largest subset of S2 with height at most

h(S)/2− s1.

• Sort all subsets of S2. Then can answer this query using binary search!



Meet in the Middle

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• What is this inner poriton doing?

• Finds the set A2 with height closest to h(S)/2

• How can we preprocess S2 to answer these queries quickly? Let’s split into

pairs and discuss for a few minutes.

• Answer: we’re looking for the largest subset of S2 with height at most

h(S)/2− s1.

• Sort all subsets of S2. Then can answer this query using binary search!



Meet in the Middle

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• What is this inner poriton doing?

• Finds the set A2 with height closest to h(S)/2

• How can we preprocess S2 to answer these queries quickly? Let’s split into

pairs and discuss for a few minutes.

• Answer: we’re looking for the largest subset of S2 with height at most

h(S)/2− s1.

• Sort all subsets of S2. Then can answer this query using binary search!



Meet in the Middle

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• What is this inner poriton doing?

• Finds the set A2 with height closest to h(S)/2

• How can we preprocess S2 to answer these queries quickly? Let’s split into

pairs and discuss for a few minutes.

• Answer: we’re looking for the largest subset of S2 with height at most

h(S)/2− s1.

• Sort all subsets of S2. Then can answer this query using binary search!



Meet in the Middle

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• What is this inner poriton doing?

• Finds the set A2 with height closest to h(S)/2

• How can we preprocess S2 to answer these queries quickly? Let’s split into

pairs and discuss for a few minutes.

• Answer: we’re looking for the largest subset of S2 with height at most

h(S)/2− s1.

• Sort all subsets of S2. Then can answer this query using binary search!



Meet in the Middle

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• What is this inner poriton doing?

• Finds the set A2 with height closest to h(S)/2

• How can we preprocess S2 to answer these queries quickly? Let’s split into

pairs and discuss for a few minutes.

• Answer: we’re looking for the largest subset of S2 with height at most

h(S)/2− s1.

• Sort all subsets of S2. Then can answer this query using binary search!



Meet in the Middle

1 Fill array P with all subsets of S2

2 Sort P by height
3 for each subset A1 of S1:
4 s1 ← h(A1)
5 binsearch(P, h(S)/2− s1)
6 updateMax(h(A2) + s1)

• Analysis?

• P has length O(2n/2). Sorting it takes O(n2n/2)

• Each binary search takes O(n) time; perform O(2n/2) of them

• Total: O(n2n/2) space, O(n2n/2) time



Meet in the Middle

1 Fill array P with all subsets of S2

2 Sort P by height
3 for each subset A1 of S1:
4 s1 ← h(A1)
5 binsearch(P, h(S)/2− s1)
6 updateMax(h(A2) + s1)

• Analysis?

• P has length O(2n/2). Sorting it takes O(n2n/2)

• Each binary search takes O(n) time; perform O(2n/2) of them

• Total: O(n2n/2) space, O(n2n/2) time



Meet in the Middle

1 Fill array P with all subsets of S2

2 Sort P by height
3 for each subset A1 of S1:
4 s1 ← h(A1)
5 binsearch(P, h(S)/2− s1)
6 updateMax(h(A2) + s1)

• Analysis?

• P has length O(2n/2). Sorting it takes O(n2n/2)

• Each binary search takes O(n) time; perform O(2n/2) of them

• Total: O(n2n/2) space, O(n2n/2) time



Meet in the Middle

1 Fill array P with all subsets of S2

2 Sort P by height
3 for each subset A1 of S1:
4 s1 ← h(A1)
5 binsearch(P, h(S)/2− s1)
6 updateMax(h(A2) + s1)

• Analysis?

• P has length O(2n/2). Sorting it takes O(n2n/2)

• Each binary search takes O(n) time; perform O(2n/2) of them

• Total: O(n2n/2) space, O(n2n/2) time



Meet in the Middle

• Before we go forward, let’s go over the high level strategy



Meet in the Middle

Let’s say we have a set of blocks. Normally we use will try all subsets of these

blocks and find the largest that’s at most half the total size.



Meet in the Middle

Let’s say we have a set of blocks. Normally we use will try all subsets of these

blocks and find the largest that’s at most half the total size.



Meet in the Middle

Partition the blocks into two equal-sized sets.

Partition the blocks into two equal-sized sets. Question: what subset of the yellow

blocks is used in the correct solution?



Meet in the Middle

Partition the blocks into two equal-sized sets.

Partition the blocks into two equal-sized sets. Question: what subset of the yellow

blocks is used in the correct solution?



Meet in the Middle

0.0 00000
7.2 00001
5.1 00010
12.3 00011
9.8 00100
17.0 00101

. . .

First, let’s do some brute force preprocessing on the blue blocks. Go through all

subsets of the blue blocks, and store their heights in a table.



Meet in the Middle

0.0 00000
5.1 00010
7.2 00001
9.8 00100

. . .

First, let’s do some brute force preprocessing on the blue blocks. Go through all

subsets of the blue blocks, and store their heights in a table. Then, sort the table by

height.



Meet in the Middle

0.0 00000
5.1 00010
7.2 00001
9.8 00100

. . .

First, preprocess the blue blocks. Go through all subsets of the blue blocks, and

store their heights in a table. Then, sort the table by height.



Meet in the Middle

h(S)/2

Now, go through every possible subset of yellow blocks. We want blue blocks with

height as close to h(S)/2− h(A1) as possible.



Meet in the Middle

0.0 00000
5.1 00010
7.2 00001
9.8 00100

. . .

How quickly can we find the best set of blue blocks with height at most

h(S)/2− h(A1)? Why don’t we need to check any other subsets of blue blocks?



What we get

• O(n2n/2) space, O(n2n/2) time. (Everyone remember how?)

• “Meet in the middle”—rather than considering all subsets, we break into two

halves. We search in the yellow and blue halves one at a time, then combine

them to get one solution.

• Very wide uses: optimization problems, cryptography, etc.



What we get

• O(n2n/2) space, O(n2n/2) time. (Everyone remember how?)

• “Meet in the middle”—rather than considering all subsets, we break into two

halves. We search in the yellow and blue halves one at a time, then combine

them to get one solution.

• Very wide uses: optimization problems, cryptography, etc.



What we get

• O(n2n/2) space, O(n2n/2) time. (Everyone remember how?)

• “Meet in the middle”—rather than considering all subsets, we break into two

halves. We search in the yellow and blue halves one at a time, then combine

them to get one solution.

• Very wide uses: optimization problems, cryptography, etc.



What does this mean?

• What is O(n2n) vs O(n2n/2) time? Do they differ by more than a constant?

• O(n2n/2) space is a lot. Is this worth it?

• Wait, can we do better than this?



What does this mean?

• What is O(n2n) vs O(n2n/2) time? Do they differ by more than a constant?

• O(n2n/2) space is a lot. Is this worth it?

• Wait, can we do better than this?



What does this mean?

• What is O(n2n) vs O(n2n/2) time? Do they differ by more than a constant?

• O(n2n/2) space is a lot. Is this worth it?

• Wait, can we do better than this?



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here. On Assignment 1 you’ll look into this
further



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here. On Assignment 1 you’ll look into this
further



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here. On Assignment 1 you’ll look into this
further



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here. On Assignment 1 you’ll look into this
further



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here. On Assignment 1 you’ll look into this
further



Some questions about meet in the middle

• How else can we store solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here. On Assignment 1 you’ll look into this
further



Any lingering questions about Assignment 1 or MITM?



Optimization



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



Making Software Fast

What do we mean by fast?

• Generally: runs in a small amount of time (wall-clock time)

• Lots of caveats:

• Can be very machine-dependent

• May depend on the structure of the data

• May depend on random choices of the program

• Can be impacted by other software running on the computer

• May depend on the compiler used

• Oftentimes: not obvious what causes the improvement!



What units to measure time?



What units to measure time?

• Overall: CPU time

• Some idiosyncracies in how we’re measuring it
• CPU vs wall clock time shouldn’t make much difference for us
• Parallelism doesn’t help

• Costs of specific operations are sometimes given using number of “CPU

cycles”

• Not-really-accurate-anymore definition of a cycle: time to perform one basic

operation



What units to measure time?

• Overall: CPU time

• Some idiosyncracies in how we’re measuring it
• CPU vs wall clock time shouldn’t make much difference for us
• Parallelism doesn’t help

• Costs of specific operations are sometimes given using number of “CPU

cycles”

• Not-really-accurate-anymore definition of a cycle: time to perform one basic

operation



What units to measure time?

• Overall: CPU time

• Some idiosyncracies in how we’re measuring it
• CPU vs wall clock time shouldn’t make much difference for us
• Parallelism doesn’t help

• Costs of specific operations are sometimes given using number of “CPU

cycles”

• Not-really-accurate-anymore definition of a cycle: time to perform one basic

operation



Easiest way to measure time: just time it using built-in tools!

Easy, probably reflective of what you want.

But some things to bear in mind:

• Make sure your timing is macroscopic.

• No timing is exact.
• CPU clocks usually only have a resolution of ≈ 1 million ticks per second

(sometimes less)
• Minimize issues with overhead, external factors
• Rule of thumb: ideally an experiment will take ≈ 1 second
• Always repeat several times and check consistency

• Let’s look at how test.c times your code on Homework 1

• Can also use unix time function



Easiest way to measure time: just time it using built-in tools!

Easy, probably reflective of what you want.

But some things to bear in mind:

• Make sure your timing is macroscopic.

• No timing is exact.
• CPU clocks usually only have a resolution of ≈ 1 million ticks per second

(sometimes less)
• Minimize issues with overhead, external factors
• Rule of thumb: ideally an experiment will take ≈ 1 second
• Always repeat several times and check consistency

• Let’s look at how test.c times your code on Homework 1

• Can also use unix time function



Easiest way to measure time: just time it using built-in tools!

Easy, probably reflective of what you want.

But some things to bear in mind:

• Make sure your timing is macroscopic.

• No timing is exact.
• CPU clocks usually only have a resolution of ≈ 1 million ticks per second

(sometimes less)
• Minimize issues with overhead, external factors
• Rule of thumb: ideally an experiment will take ≈ 1 second
• Always repeat several times and check consistency

• Let’s look at how test.c times your code on Homework 1

• Can also use unix time function



Making Software Fast

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Making Software Fast

In this class:

• Measure time using built-in tools

• On lab machines

• Always be specific about datasets

• Run multiple times to try to avoid issues where other software interferes, or we

get lucky/unlucky with random choices

• Look for significant improvement: usually you want experiments where the
running time is close to a second, or more

• Very difficult to draw conclusions from “Program A ran in 10 milliseconds;
Program B ran in 15 milliseconds.”



Let’s say I have a piece of code, and I want to make it
faster. How should I do that?



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Amdahl’s Law

If a function takes up a p fraction of

the entire program’s runtime, and you

speed it up by a factor s, then the

overall program speeds up by a fac-

tor

I want you

to know the

principle

here, but not

memorize

the formula.

1
1− p+ p/s



Amdahl’s Law

If a function takes up a p fraction of

the entire program’s runtime, and you

speed it up by a factor s, then the

overall program speeds up by a fac-

tor

I want you

to know the

principle

here, but not

memorize

the formula.

1
1− p+ p/s



Amdahl’s Law

If a function takes up a p fraction of

the entire program’s runtime, and you

speed it up by a factor s, then the

overall program speeds up by a fac-

tor

I want you

to know the

principle

here, but not

memorize

the formula.
1

1− p+ p/s



Amdahl’s Law and Asymptotics

• Can estimate the total time of an algorithm asymptotically

• Example: Where to improve Dijkstra’s algorithm?



Amdahl’s Law and Asymptotics

• Can estimate the total time of an algorithm asymptotically

• Example: Where to improve Dijkstra’s algorithm?



Dijkstra’s Algorithm

1 function Dijkstra(Graph, source):
2 create vertex set Q
3 for each vertex v in Graph:
4 dist[v] ← INFINITY
5 prev[v] ← UNDEFINED
6 add v to Q
7 dist[source] ← 0
8 while Q is not empty:
9 u ← vertex in Q with min dist[u]

10 remove u from Q
11 for each neighbor v of u still in Q:
12 alt ← dist[u] + length(u, v)
13 if alt < dist[v]:
14 dist[v] ← alt
15 prev[v] ← u
16 return dist[], prev[]



Dijkstra’s Algorithm

1 function Dijkstra(Graph, source):
2 while Q is not empty:
3 u ← vertex in Q with min dist[u]
4 remove u from Q
5 for each neighbor v of u still in Q:
6 alt ← dist[u] + length(u, v)
7 if alt < dist[v]:
8 dist[v] ← alt
9 prev[v] ← u

10 return dist[], prev[]

The inner for loop (blue part) is, at first glance, by far the most important part to

optimize.



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes over all calls. How

can we hope to do that if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct types of data.
• Make sure the compiler does not optimize out your whole experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will the change in data
affect running time?

3. Profiling! Tools that will time your functions for you.

We’ll come back to this with some examples later this week. Bear in mind:

benchmarking itself is an entire area of computer science.



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes over all calls. How

can we hope to do that if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct types of data.
• Make sure the compiler does not optimize out your whole experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will the change in data
affect running time?

3. Profiling! Tools that will time your functions for you.

We’ll come back to this with some examples later this week. Bear in mind:

benchmarking itself is an entire area of computer science.



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes over all calls. How

can we hope to do that if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct types of data.
• Make sure the compiler does not optimize out your whole experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will the change in data
affect running time?

3. Profiling! Tools that will time your functions for you.

We’ll come back to this with some examples later this week. Bear in mind:

benchmarking itself is an entire area of computer science.



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes over all calls. How

can we hope to do that if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct types of data.
• Make sure the compiler does not optimize out your whole experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will the change in data
affect running time?

3. Profiling! Tools that will time your functions for you.

We’ll come back to this with some examples later this week. Bear in mind:

benchmarking itself is an entire area of computer science.



Optimization

Code Profiling



Profiling code

• Why not just have your computer tell you what functions are caused the most,

or keep track of how long they run, or monitor specific high-cost operations?

• Lots of such tools! We’ll look at a couple of them right now, and use them
throughout the class.

• gprof
• cachegrind
• We won’t use perf but some people like it
• We won’t use Intel VTune either but seems very cool and powerful

• What do you think some advantages and disadvantages are of using profiling

software?



gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

• We’ll look at some examples later



gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

• We’ll look at some examples later



gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

• We’ll look at some examples later



gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

• We’ll look at some examples later



gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

• We’ll look at some examples later



gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

• We’ll look at some examples later



callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a virtual machine

• Gives information about costs you could not otherwise get, but VERY slow.



callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a virtual machine

• Gives information about costs you could not otherwise get, but VERY slow.



callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a virtual machine

• Gives information about costs you could not otherwise get, but VERY slow.



callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a virtual machine

• Gives information about costs you could not otherwise get, but VERY slow.



callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a virtual machine

• Gives information about costs you could not otherwise get, but VERY slow.



Amdahl’s Law Takeaways

• When optimizing code, always think first about where your effort is best spent!

• Looking for the portion of the code with most total time

• Can estimate using asymptotics. And/or, run experiments.



Thought Question in Pairs

We want to make our code faster. What makes code fast? What makes a specific

function fast? What slows it down?



Things to consider

• Good asymptotics (avoid doing too many operations)

• Expensive vs cheap operations

• Branch mispredictions

• Next topic: cache efficiency



Things to consider

• Good asymptotics (avoid doing too many operations)

• Expensive vs cheap operations

• Branch mispredictions

• Next topic: cache efficiency



Things to consider

• Good asymptotics (avoid doing too many operations)

• Expensive vs cheap operations

• Branch mispredictions

• Next topic: cache efficiency



Things to consider

• Good asymptotics (avoid doing too many operations)

• Expensive vs cheap operations

• Branch mispredictions

• Next topic: cache efficiency


	Finishing C Review
	Meet in the Middle
	Optimization
	Code Profiling


