Lecture 15: Suffix Arrays 2

Sam McCauley

November 7, 2025

Williams College

Admin

- Suffix Array "checkin" out
 - By Thursday at 10pm: Submit one function (suffix array construction)
 - I would *highly* recommend: before Thursday, go through the C++ code linked on the website, and map each step to what we do today on the board/slides

Any questions?

From Last Time: Radix Sort

• Radix sort: can sort n k-character strings in time O(nk) (so long as there are at most n characters)

From Last Time: Radix Sort

• Radix sort: can sort n k-character strings in time O(nk) (so long as there are at most n characters)

• Idea: sort one character at a time using O(n) time counting sort

From Last Time: Radix Sort

• Radix sort: can sort n k-character strings in time O(nk) (so long as there are at most n characters)

• Idea: sort one character at a time using O(n) time counting sort

 Specifically, proceed backwards: sort by last character, then (stable) sort by second to last character, and so on

• We can sort strings by their first character in O(n) time using cc

- We can sort strings by their *first* character in O(n) time using cc
- Now, assume we have sorted the prefixes by their first 2^k charac k. Goal: sort them by the first 2^{k+1} characters

- We can sort strings by their *first* character in O(n) time using cc
- Now, assume we have sorted the prefixes by their first 2^k charac k. Goal: sort them by the first 2^{k+1} characters
 - For every prefix, we know the ordering of the first 2^k characters. Assign each prefix a "class" based on where it is in sorted order

- We can sort strings by their *first* character in O(n) time using cc
- Now, assume we have sorted the prefixes by their first 2^k charac k. Goal: sort them by the first 2^{k+1} characters

- For every prefix, we know the ordering of the first 2^k characters. Assign each prefix a "class" based on where it is in sorted order
- First 2^{k+1} characters is the same as the first 2^k characters, then the second 2^k characters

- We can sort strings by their first character in O(n) time using cc
- Now, assume we have sorted the prefixes by their first 2^k charac k. Goal: sort them by the first 2^{k+1} characters

- For every prefix, we know the ordering of the first 2^k characters. Assign each prefix a "class" based on where it is in sorted order
- First 2^{k+1} characters is the same as the first 2^k characters, then the second 2^k characters
- Radix sort by: (class of first 2^k characters, class of second 2^k characters)

- We can sort strings by their first character in O(n) time using cc
- Now, assume we have sorted the prefixes by their first 2^k charac k. Goal: sort them by the first 2^{k+1} characters

- For every prefix, we know the ordering of the first 2^k characters. Assign each prefix a "class" based on where it is in sorted order
- First 2^{k+1} characters is the same as the first 2^k characters, then the second 2^k characters
- Radix sort by: (class of first 2^k characters, class of second 2^k characters)
- Same as sorting by first 2^{k+1} characters! Then we increment k and continue, until we are sorted

- We can sort strings by their *first* character in O(n) time using cc
- Now, assume we have sorted the prefixes by their first 2^k charac k. Goal: sort them by the first 2^{k+1} characters

- For every prefix, we know the ordering of the first 2^k characters. Assign each prefix a "class" based on where it is in sorted order
- First 2^{k+1} characters is the same as the first 2^k characters, then the second 2^k characters
- Radix sort by: (class of first 2^k characters, class of second 2^k characters)
- Same as sorting by first 2^{k+1} characters! Then we increment k and continue, until we are sorted
- Let's do this for CACATACACAGACACAC\$

- We can sort strings by their first character in O(n) time using cc
- Now, assume we have sorted the prefixes by their first 2^k charac k. Goal: sort them by the first 2^{k+1} characters

- For every prefix, we know the ordering of the first 2^k characters. Assign each prefix a "class" based on where it is in sorted order
- First 2^{k+1} characters is the same as the first 2^k characters, then the second 2^k characters
- Radix sort by: (class of first 2^k characters, class of second 2^k characters)
- Same as sorting by first 2^{k+1} characters! Then we increment k and continue, until we are sorted
- Let's do this for CACATACACAGACACAC\$
- Correct answer:
 - 17 15 13 11 5 7 1 9 3 16 14 12 6 0 8 2 10 4

Suffix Array Construction: Detailed

Description

What we Store

• Two arrays: p[] stores order of the suffixes sorted so far; c stores the class of the 2^k -length prefix of the suffix

What we Store

- Two arrays: p[] stores order of the suffixes sorted so far; c stores the class of the 2^k-length prefix of the suffix
- Goal: after we are done, p[] will store our suffix array (the suffixes will be entirely sorted)

What we Store

- Two arrays: p[] stores order of the suffixes sorted so far; c stores the class of the 2^k-length prefix of the suffix
- Goal: after we are done, p[] will store our suffix array (the suffixes will be entirely sorted)
- Will also use two temporary arrays pn[], cn[] as we move items around, and a temporary array cnt[] to count items in the counting sort.

Step 1

First, sort all suffixes by their first character using counting sort.

• Count the number of occurrences of each first character using cnt

Step 1

First, sort all suffixes by their first character using counting sort.

• Count the number of occurrences of each first character using cnt

 Go through each suffix one at a time; look at its first character and place it into p using cnt

• Remember: we have sorted all suffixes by their first 2^k characters. Our goal is to sort them by their first 2^{k+1} characters

- Remember: we have sorted all suffixes by their first 2^k characters. Our goal is to sort them by their first 2^{k+1} characters
- The first 2^{k+1} characters can be viewed as a pair: $(1^{st} 2^k \text{ chars}, 2^{nd} 2^k \text{ characters})$

- Remember: we have sorted all suffixes by their first 2^k characters. Our goal is to sort them by their first 2^{k+1} characters
- The first 2^{k+1} characters can be viewed as a pair: $(1^{st} 2^k \text{ chars}, 2^{nd} 2^k \text{ characters})$
- We can radix sort this pair in O(n) time: first counting sort all suffixes by the second 2^k characters, then counting sort by the first 2^k characters

- Remember: we have sorted all suffixes by their first 2^k characters. Our goal is to sort them by their first 2^{k+1} characters
- The first 2^{k+1} characters can be viewed as a pair: $(1^{st} 2^k \text{ chars, } 2^{nd} 2^k \text{ characters})$
- We can radix sort this pair in O(n) time: first counting sort all suffixes by the second 2^k characters, then counting sort by the first 2^k characters
- Then we're sorted by 2^{k+1} ! If $2^{k+1} < n$, then increment k and go again; otherwise we're done

Our current status: p[] contains all suffixes sorted by their first 2^k characters. We want to sort them by the second 2^k characters

Let's say the ith prefix of the string is in position j

- Let's say the ith prefix of the string is in position j
- Then the $i-2^k$ th prefix of the string should be in position j after we sort!

- Let's say the ith prefix of the string is in position j
- Then the $i-2^k$ th prefix of the string should be in position j after we sort!
- This step can be accomplished as follows: for each entry of p, subtract 2^k ; store the result in pn[]

- Let's say the ith prefix of the string is in position j
- Then the $i-2^k$ th prefix of the string should be in position j after we sort!
- This step can be accomplished as follows: for each entry of p, subtract 2^k ; store the result in pn[]
- Can't be less than 0; wrap around by adding *n* if so

- Let's say the ith prefix of the string is in position j
- Then the $i-2^k$ th prefix of the string should be in position j after we sort!
- This step can be accomplished as follows: for each entry of p, subtract 2^k ; store the result in pn[]
- Can't be less than 0; wrap around by adding n if so
- (I love this step)

Doubling Step: Then, Sort by *first* 2^k characters

Our current status: pn[] contains all suffixes sorted by their second 2^k characters. We want to sort them by the *first* 2^k characters. We have that c[] contains, for each suffix, "which class" it is in

Use counting sort to place each suffix of pn[] in the correct place by its first 2^k characters:

Doubling Step: Then, Sort by *first* 2^k characters

Our current status: pn[] contains all suffixes sorted by their second 2^k characters. We want to sort them by the *first* 2^k characters. We have that c[] contains, for each suffix, "which class" it is in

- Use counting sort to place each suffix of pn[] in the correct place by its first 2^k characters:
 - Use cnt[] to count the number of suffixes strictly before each class

Doubling Step: Then, Sort by *first* 2^k characters

Our current status: pn[] contains all suffixes sorted by their second 2^k characters. We want to sort them by the *first* 2^k characters. We have that c[] contains, for each suffix, "which class" it is in

- Use counting sort to place each suffix of pn[] in the correct place by its first 2^k characters:
 - Use cnt[] to count the number of suffixes strictly before each class
 - Go through each suffix in pn[]; c[] gives its class. Look up the class in cnt[], decrement it, and place it in p[].

Doubling Step: finally, update *c*[]

Our current status: p[] contains all suffixes sorted by their first 2^{k+1} characters. We want to update c[] so we can use it in the next iteration. We'll place the new values into cn[]; then swap c[] and cn[]. To begin, cn[p[0]] = 0: the first prefix in alphabetical order has class 0.

• Remember that we sorted by: $c[i], c[i+2^k]$

Doubling Step: finally, update *c*[]

Our current status: p[] contains all suffixes sorted by their first 2^{k+1} characters. We want to update c[] so we can use it in the next iteration. We'll place the new values into cn[]; then swap c[] and cn[]. To begin, cn[p[0]] = 0: the first prefix in alphabetical order has class 0.

- Remember that we sorted by: $c[i], c[i+2^k]$
- Go through each suffix j in order of p; let j' be the next suffix in p (so j = p[i] and j' = p[i+1]). If c[j] = c[j'] and $c[j'+2^k] = c[j'+2^k]$, then we keep cn[j'] = cn[j]; otherwise, cn[j] = cn[j'] + 1.

Putting it all Together

First, counting sort by first letter.

For k = 1 to $\lceil \log_2 n \rceil$:

1. Place suffixes from p[] into pn[], sorted by second set of 2^k characters. [Performed using subtraction]

Putting it all Together

First, counting sort by first letter.

For
$$k = 1$$
 to $\lceil \log_2 n \rceil$:

- 1. Place suffixes from p[] into pn[], sorted by second set of 2^k characters. [Performed using subtraction]
- 2. Place suffixes from pn[] into p[], sorted by *first* set of 2^k characters. [Performed using counting sort]

Putting it all Together

First, counting sort by first letter.

For
$$k = 1$$
 to $\lceil \log_2 n \rceil$:

- 1. Place suffixes from p[] into pn[], sorted by second set of 2^k characters. [Performed using subtraction]
- 2. Place suffixes from pn[] into p[], sorted by *first* set of 2^k characters. [Performed using counting sort]
- 3. Store classes of length 2^{k+1} in cn[] by iterating through p[] and comparing successive classes. This is the new c[] for the next loop

Each inner step requires O(1) array scans; $O(n \log n)$ time!

Suffix Array Conclusion

• This sorts the suffixes in $O(n \log n)$ time; called the "prefix-doubling approach"

- This sorts the suffixes in $O(n \log n)$ time; called the "prefix-doubling approach"
- Is this good/bad? Can we do better? What is known?

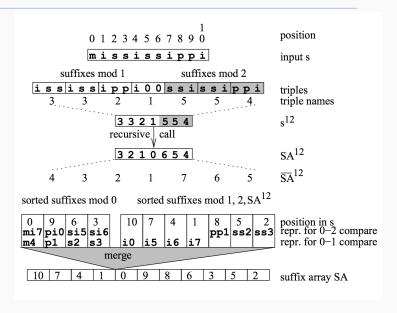
- This sorts the suffixes in $O(n \log n)$ time; called the "prefix-doubling approach"
- Is this good/bad? Can we do better? What is known?
- Can find the suffix array in O(n) time

- This sorts the suffixes in $O(n \log n)$ time; called the "prefix-doubling approach"
- Is this good/bad? Can we do better? What is known?
- Can find the suffix array in O(n) time
- Two ways to do this:

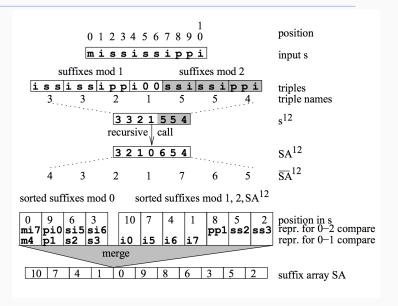
- This sorts the suffixes in $O(n \log n)$ time; called the "prefix-doubling approach"
- Is this good/bad? Can we do better? What is known?
- Can find the suffix array in O(n) time
- Two ways to do this:
 - Using suffix links, and

- This sorts the suffixes in $O(n \log n)$ time; called the "prefix-doubling approach"
- Is this good/bad? Can we do better? What is known?
- Can find the suffix array in O(n) time
- Two ways to do this:
 - Using suffix links, and
 - using recursion

Linear-time Algorithm Diagram



Linear-time Algorithm Diagram



(There's a reason why we're not going to use this algorithm. But, let's go over the

Recursive Suffix Array Construction: Basic Idea [Farach-Colton 97]

• Let's sort the odd-numbered suffixes recursively. (The base case is when there's just one odd-numbered suffix, which is trivial to sort.)

Recursive Suffix Array Construction: Basic Idea [Farach-Colton 97]

- Let's sort the odd-numbered suffixes recursively. (The base case is when there's just one odd-numbered suffix, which is trivial to sort.)
- Then: we can assume (recursively) that the odd-numbered suffixes are sorted.

Recursive Suffix Array Construction: Basic Idea [Farach-Colton 97]

- Let's sort the odd-numbered suffixes recursively. (The base case is when there's just one odd-numbered suffix, which is trivial to sort.)
- Then: we can assume (recursively) that the odd-numbered suffixes are sorted.
- Use the ordering of the odd-numbered suffixes to build the suffix tree for the even-numbered suffixes

Recursive Suffix Array Construction: Combining

On the one hand, this seems impossible: the even-numbered suffixes all start
with entirely different characters than the odd-numbered suffixes, so the
ordering is, right off the bat, 100% different.

Recursive Suffix Array Construction: Combining

- On the one hand, this seems impossible: the even-numbered suffixes all start
 with entirely different characters than the odd-numbered suffixes, so the
 ordering is, right off the bat, 100% different.
- On the other hand, this first character is the only difference: once we sort the
 even-numbered suffixes by their first character, the odd-numbered suffixes
 determine the rest of their ordering.

Recursive Suffix Array Construction: Combining

- On the one hand, this seems impossible: the even-numbered suffixes all start
 with entirely different characters than the odd-numbered suffixes, so the
 ordering is, right off the bat, 100% different.
- On the other hand, this first character is the only difference: once we sort the
 even-numbered suffixes by their first character, the odd-numbered suffixes
 determine the rest of their ordering.
- It's possible in O(n) time with some bookkeeping!

• An extremely practical O(n) time suffix array construction algorithm (far faster than version we did)

- An extremely practical O(n) time suffix array construction algorithm (far faster than version we did)
 - Your algorithm will run in about 40s on timeData.txt; SA-IS runs in about 2s.

- An extremely practical O(n) time suffix array construction algorithm (far faster than version we did)
 - Your algorithm will run in about 40s on timeData.txt; SA-IS runs in about 2s.
- I posted a writeup on the website; this is also how your code will be tested for correctness.

- An extremely practical O(n) time suffix array construction algorithm (far faster than version we did)
 - Your algorithm will run in about 40s on timeData.txt; SA-IS runs in about 2s.
- I posted a writeup on the website; this is also how your code will be tested for correctness.
- Incredibly short, clean, and unintuitive

Suffix Array Uses

 One of the most ubiquitous string problems involves searching for occurrences of one string in another.

- One of the most ubiquitous string problems involves searching for occurrences of one string in another.
- In particular, let's say you have a large text T. You want to preprocess T (using at most O(|T|) space) so that for any pattern P, you can quickly determine if P is a substring of T.

- One of the most ubiquitous string problems involves searching for occurrences of one string in another.
- In particular, let's say you have a large text T. You want to preprocess T (using at most O(|T|) space) so that for any pattern P, you can quickly determine if P is a substring of T.
- Let's say that |T| = n and |P| = m. How fast can we solve this?

- One of the most ubiquitous string problems involves searching for occurrences of one string in another.
- In particular, let's say you have a large text T. You want to preprocess T (using at most O(|T|) space) so that for any pattern P, you can quickly determine if P is a substring of T.
- Let's say that |T| = n and |P| = m. How fast can we solve this?
- First: compute the suffix array on T

- One of the most ubiquitous string problems involves searching for occurrences of one string in another.
- In particular, let's say you have a large text T. You want to preprocess T (using at most O(|T|) space) so that for any pattern P, you can quickly determine if P is a substring of T.
- Let's say that |T| = n and |P| = m. How fast can we solve this?
- First: compute the suffix array on T
- Then: binary search for *P* in the suffix array

• Binary search requires $O(\log n)$ comparisons

- Binary search requires $O(\log n)$ comparisons
- Each comparison takes O(m) time (may need to walk through whole pattern)

- Binary search requires $O(\log n)$ comparisons
- Each comparison takes O(m) time (may need to walk through whole pattern)
- Gives $O(m \log n)$ time overall

- Binary search requires $O(\log n)$ comparisons
- Each comparison takes O(m) time (may need to walk through whole pattern)
- Gives $O(m \log n)$ time overall
- Can be improved to O(m) time—can search for all occurrences of a pattern in the time it takes to read the pattern!

• Already: Can count the # of occurrences of P in $O(m \log n)$ total time (how?)

- Already: Can count the # of occurrences of P in $O(m \log n)$ total time (how?)
 - Also improvable to O(m)

- Already: Can count the # of occurrences of P in $O(m \log n)$ total time (how?)
 - Also improvable to O(m)
- List all locations of P in T

- Already: Can count the # of occurrences of P in $O(m \log n)$ total time (how?)
 - Also improvable to O(m)
- List all locations of P in T
- Useful for calculating BWT

- Already: Can count the # of occurrences of P in $O(m \log n)$ total time (how?)
 - Also improvable to O(m)
- List all locations of P in T
- Useful for calculating BWT
- Find the longest common substring between two strings S_1 and S_2 in $O(S_1+S_2)$ time

- Already: Can count the # of occurrences of P in $O(m \log n)$ total time (how?)
 - Also improvable to O(m)
- List all locations of P in T
- Useful for calculating BWT
- Find the longest common substring between two strings S_1 and S_2 in $O(S_1+S_2)$ time
- Find the longest palindrome in S in O(|S|) time

- Already: Can count the # of occurrences of P in $O(m \log n)$ total time (how?)
 - Also improvable to O(m)
- List all locations of P in T
- Useful for calculating BWT
- Find the longest common substring between two strings S_1 and S_2 in $O(S_1+S_2)$ time
- Find the longest palindrome in S in O(|S|) time
- With more work: searching for *P* in *T* with errors