Lecture 12: van Emde Boas Trees

Sam McCauley
October 28, 2025

Williams College

Admin

Midterm graded by Friday

Lab Thursday: finish LSH

Today: self-contained; short(?) topic

e Bridge the gap between hashing/tables and strings

Two-week assignment released Thursday

o

) ;Q‘O
'2! bo

Strings (and, today, trees)

e Often used in practice

Strings (and, today, trees)

e Often used in practice

e Lots of magic!

Strings (and, today, trees)

e Often used in practice

e Lots of magic!

e Clever ways of looking at problems that lead to highly effective solutions

Predecessor and Successor Queries

Problem for today:

e Store a set S of size n (must be comparable items: for any i,j € S must have
i<j,i>j,ori=}).

Predecessor and Successor Queries

Problem for today:

e Store a set S of size n (must be comparable items: for any i,j € S must have
i<j,i>j,ori=}).
e Want to answer predecessor and successor queries. On a query q

e Predecessor: Find the largest i € S such thati < q
e Successor: Find the smallest i € S such thati > q

Predecessor and Successor Queries

Problem for today:

e Store a set S of size n (must be comparable items: for any i,j € S must have
i<j,i>j,ori=}).
e Want to answer predecessor and successor queries. On a query q

e Predecessor: Find the largest i € S such thati < q
e Successor: Find the smallest i € S such thati > q

e Also want to be able to insert and delete items

Predecessor and Successor Queries

Problem for today:
e Store a set S of size n (must be comparable items: for any i,j € S must have
i<j,i>j,ori=}).
e Want to answer predecessor and successor queries. On a query q

e Predecessor: Find the largest i € S such thati < q
e Successor: Find the smallest i € S such thati > q

e Also want to be able to insert and delete items

e In CS 136 we saw how to answer this using a

Predecessor and Successor Queries

Problem for today:

e Store a set S of size n (must be comparable items: for any i,j € S must have
i<j,i>j,ori=}).
e Want to answer predecessor and successor queries. On a query q

e Predecessor: Find the largest i € S such thati < q
e Successor: Find the smallest i € S such thati > q

e Also want to be able to insert and delete items

e In CS 136 we saw how to answer this using a balanced binary search tree in
O(logn) time

Predecessor and Successor Queries

Problem for today:
e Store a set S of size n (must be comparable items: for any i,j € S must have
i<j,i>j,ori=}).
e Want to answer predecessor and successor queries. On a query q

e Predecessor: Find the largest i € S such thati < q
e Successor: Find the smallest i € S such thati > q

e Also want to be able to insert and delete items

e In CS 136 we saw how to answer this using a balanced binary search tree in
O(logn) time

e This is optimal if all you can do is compare items

Generalizing the model

e This assumption is often too restrictive! Often we want to perform
predecessor queries on integers or strings

Generalizing the model

e This assumption is often too restrictive! Often we want to perform
predecessor queries on integers or strings

e Know much more about the relative values of integers or strings

Generalizing the model

e This assumption is often too restrictive! Often we want to perform
predecessor queries on integers or strings

e Know much more about the relative values of integers or strings

e Today: let's say that the items of S are taken from a bounded set
{8,....M—1}

Generalizing the model

This assumption is often too restrictive! Often we want to perform
predecessor queries on integers or strings

Know much more about the relative values of integers or strings

Today: let's say that the items of S are taken from a bounded set
{8,....M—1}

For example: if the items of S are 64-bit integers, then we have M = 254, If
items of S are k-character strings, we have M = 256¥.

Generalizing the model

e This assumption is often too restrictive! Often we want to perform
predecessor queries on integers or strings

e Know much more about the relative values of integers or strings
e Today: let's say that the items of S are taken from a bounded set
{8,....M—1}

e For example: if the items of S are 64-bit integers, then we have M = 264, If
items of S are k-character strings, we have M = 256¥.

e In this case, we will show how to get predecessor and successor in
O(log log M) time.
o For a w-bit integer, get O(log w) time
o For a k-character string, get O(log k) time

Data structure for today

e van Emde Boas tree!

Data structure for today

e van Emde Boas tree!

e Clever data structure. Very good constants, used sometimes in practice

Data structure for today

e van Emde Boas tree!
e Clever data structure. Very good constants, used sometimes in practice

e We’'ll only look at insert, successor. Can generalize to predecessor queries and
deletes.

Data structure for today

van Emde Boas tree!

Clever data structure. Very good constants, used sometimes in practice

We’'ll only look at insert, successor. Can generalize to predecessor queries and
deletes.

Let’s not worry about space today (we'll wind up with O(M) space). Some
techniques to achieve O(n) space.

Data structure for today

e van Emde Boas tree!
e Clever data structure. Very good constants, used sometimes in practice

e We’'ll only look at insert, successor. Can generalize to predecessor queries and
deletes.

e Let’s not worry about space today (we’ll wind up with O(M) space). Some
techniques to achieve O(n) space.

e Also, let's assume that log, log, M is an integer (M is 2 to a power of 2; like 28
or 264)

First attempt at Insert, Successor

o Let’s keep a bit array A of length M

10

1

12

13

14

15

First attempt at Insert, Successor

o Let’s keep a bit array A of length M
e Alil =0Qifi¢ S Al =1ifie S

10

1

12

13

14

15

First attempt at Insert, Successor

o Let’s keep a bit array A of length M
e Alil =0Qifi¢ S Al =1ifie S

e Time for insert?

10

1

12

13

14

15

First attempt at Insert, Successor

o Let’s keep a bit array A of length M
e Alil =0Qifi¢ S Al =1ifie S

e Time for insert?

e O(1)

10

1

12

13

14

15

First attempt at Insert, Successor

Q— > @

o Let’s keep a bit array A of length M
e Alil =0Qifi¢ S Al =1ifie S

e Time for insert?

e O(1)

e Time for successor?

12

13

14

15

First attempt at Insert, Successor

Q— > @

o Let’s keep a bit array A of length M
e Alil =0Qifi¢ S Al =1ifie S

e Time for insert?

e O(1)

e Time for successor?

e Could be as bad as O(M)

10

1

12

13

14

15

First attempt at Insert, Successor

Q— > @

o Let’s keep a bit array A of length M
e Alil =0Qifi¢ S Al =1ifie S

e Time for insert?

e O(1)

e Time for successor?

e Could be as bad as O(M)

e Insert is really fast. Can we try to speed up successor?

12

13

14

15

Second attempt at Insert, Successor

e Split our array into “clusters” of v/M elements.

Second attempt at Insert, Successor

e Split our array into “clusters” of v/M elements.
e Let's do a “two-level” query for the successor:

Second attempt at Insert, Successor

e Split our array into “clusters” of v M elements.
e Let's do a “two-level” query for the successor:
e First, find which cluster q is in

Second attempt at Insert, Successor

e Split our array into “clusters” of v/M elements.
e Let's do a “two-level” query for the successor:
e First, find which cluster q is in
e If the successor of q is there then we scan the cluster to find the successor in

O(v/M) time

Second attempt at Insert, Successor

e Split our array into “clusters” of v/M elements.
e Let's do a “two-level” query for the successor:
e First, find which cluster q is in
e If the successor of q is there then we scan the cluster to find the successor in
O(v/M) time

e Otherwise, find the next nonempty cluster

Second attempt at Insert, Successor

e Split our array into “clusters” of v/M elements.
e Let's do a “two-level” query for the successor:
e First, find which cluster q is in
e If the successor of q is there then we scan the cluster to find the successor in
O(v/M) time
e Otherwise, find the next nonempty cluster
e Then, query within the correct cluster for the minimum element (O(\/I\7I) time)

Second attempt at Insert, Successor

e Split our array into “clusters” of v/M elements.
e Let's do a “two-level” query for the successor:
e First, find which cluster q is in
e If the successor of q is there then we scan the cluster to find the successor in
O(v/M) time
e Otherwise, find the next nonempty cluster
e Then, query within the correct cluster for the minimum element (O(\/I\7I) time)
e How can we query for minimum using a successor query?

Second attempt at Insert, Successor

e Split our array into “clusters” of v/M elements.
e Let's do a “two-level” query for the successor:

First, find which cluster q is in

If the successor of q is there then we scan the cluster to find the successor in
O(v/M) time

Otherwise, find the next nonempty cluster

Then, query within the correct cluster for the minimum element (O(\/I\7I) time)
How can we query for minimum using a successor query?

How can we find the next nonempty cluster?

cluster © cluster 1 cluster 2 cluster 3

Iglgl [ofolofofo]o]1]

1 1 12 18 14 15

Q— >

Second attempt at Insert, Successor

e We want to find the next nonempty cluster

Second attempt at Insert, Successor

e We want to find the next nonempty cluster

e That’s a successor query!

Second attempt at Insert, Successor

e We want to find the next nonempty cluster
e That’s a successor query!

e Let's create a second array to keep track of whether or not each cluster is
empty

Second attempt at Insert, Successor

e We want to find the next nonempty cluster
e That’s a successor query!

e Let's create a second array to keep track of whether or not each cluster is

empty
Summary array: 11]e] 1]
0 1 2 3
cluster 1 cluster 2 cluster 3 cluster 4

Iglgl [ofolofofo]o]1]

1
0 1 2 3 4 5 1 1 12 18 14 15

Q— >

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Successor:

« Figure out which cluster q is in (can calculate: |q/vVM|)

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Successor:

« Figure out which cluster q is in (can calculate: |q/vVM|)

e (These are the top w/2 bits of q if q is an integer, or the first k/2 characters if
q is a string.)

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Successor:

« Figure out which cluster q is in (can calculate: |q/vVM|)

e (These are the top w/2 bits of q if q is an integer, or the first k/2 characters if
q is a string.)

e Check for the successor of q in q's cluster

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Successor:

« Figure out which cluster q is in (can calculate: |q/vVM|)

e (These are the top w/2 bits of q if q is an integer, or the first k/2 characters if
q is a string.)

e Check for the successor of q in q's cluster

¢ If it’s not found:

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Successor:

« Figure out which cluster q is in (can calculate: |q/vVM|)

e (These are the top w/2 bits of q if q is an integer, or the first k/2 characters if
q is a string.)

e Check for the successor of q in q's cluster

o If it's not found:

e Find the next nonempty cluster by looking in the summary array (O(\/I\7I) time)

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Successor:

Figure out which cluster q is in (can calculate: |q/vM|)

(These are the top w/2 bits of q if q is an integer, or the first k/2 characters if
q is a string.)

Check for the successor of q in q's cluster

If it’s not found:

e Find the next nonempty cluster by looking in the summary array (O(\/I\7I) time)

e Find the successor of q by looking for the smallest element in that cluster

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Successor:

Figure out which cluster q is in (can calculate: |q/vM|)

(These are the top w/2 bits of q if q is an integer, or the first k/2 characters if
q is a string.)

Check for the successor of q in q's cluster

If it’s not found:

e Find the next nonempty cluster by looking in the summary array (O(\/I\7I) time)

e Find the successor of q by looking for the smallest element in that cluster

e O(vV/M) time

Second attempt at Insert, Successor

Summary array:] 1 | 1 | 0 | 1 \
® 1 2 3

cluster 1 cluster 2 cluster 3 cluster 4

wlelelylefolelelelelolololel))

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Insert:

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Insert:

e Figure out which cluster q is in; set the appropriate bit in that cluster

Second attempt at Insert, Successor

O(1) insert, O(v/M) successor query:

Insert:

e Figure out which cluster q is in; set the appropriate bit in that cluster

e Set the cluster bit in the summary array

Where to go from here?

e Insert is still really fast, we want to improve successor.

Where to go from here?

e Insert is still really fast, we want to improve successor.

e Where can we improve?

Where to go from here?

e Insert is still really fast, we want to improve successor.

e Where can we improve?

e All our time is spent doing array scans for successor queries within a cluster...

Where to go from here?

Insert is still really fast, we want to improve successor.

Where can we improve?

All our time is spent doing array scans for successor queries within a cluster...

But we know how to do better-than-linear successor queries! Let’s recurse.

Recursing: van Emde Boas Tree (almost)

If M =1, just store the array.

Otherwise:

e Store a summary VEB tree of size v/M to keep track of which clusters are full

Recursing: van Emde Boas Tree (almost)

If M =1, just store the array.

Otherwise:

e Store a summary VEB tree of size v/M to keep track of which clusters are full

e For each cluster of size /M, store a VEB tree of size VM

Recursing: van Emde Boas Tree (almost)

If M =1, just store the array.

Otherwise:

e Store a summary VEB tree of size v/M to keep track of which clusters are full
e For each cluster of size /M, store a VEB tree of size VM

e (Keep an array with a pointer to each of these VEB trees)

Recursing: van Emde Boas Tree (almost)

If M =1, just store the array.

Otherwise:

Store a summary VEB tree of size v/M to keep track of which clusters are full

For each cluster of size M, store a VEB tree of size vM

(Keep an array with a pointer to each of these VEB trees)

Let’s draw a picture of it on the board

(almost) VEB Tree Insert

(almost) VEB Tree Insert

e To insert, we need to recursively insert into the summary vEB tree, and we
need to insert into the appropriate cluster

(almost) VEB Tree Insert

e To insert, we need to recursively insert into the summary vEB tree, and we
need to insert into the appropriate cluster

e Recurrence:

(almost) VEB Tree Insert

e To insert, we need to recursively insert into the summary vEB tree, and we
need to insert into the appropriate cluster

e Recurrence:

(almost) VEB Tree Insert

e To insert, we need to recursively insert into the summary vEB tree, and we
need to insert into the appropriate cluster

e Recurrence:
o T(M) =2T(VM) + O(1)

® I promised in 256 that these kinds of recurrences actually come up!

(almost) VEB Tree Insert

To insert, we need to recursively insert into the summary vEB tree, and we
need to insert into the appropriate cluster

Recurrence:

o T(M) =2T(VM) + O(1)

® I promised in 256 that these kinds of recurrences actually come up!

Solves to O(log M) insert time (too slow!)

(almost) vEB Tree Successor

e To find the successor of q, we need to:

(almost) vEB Tree Successor

e To find the successor of q, we need to:

e Query the VEB tree for the cluster containing q to see if the successor is there

(almost) vEB Tree Successor

e To find the successor of q, we need to:

e Query the VEB tree for the cluster containing q to see if the successor is there

¢ If not found, find the next nonempty cluster using a successor query on the
summary VEB tree

(almost) vEB Tree Successor

e To find the successor of q, we need to:

e Query the VEB tree for the cluster containing q to see if the successor is there

¢ If not found, find the next nonempty cluster using a successor query on the
summary VEB tree

e Then query that cluster for the minimum element

(almost) vEB Tree Successor

e To find the successor of q, we need to:

e Query the VEB tree for the cluster containing q to see if the successor is there

¢ If not found, find the next nonempty cluster using a successor query on the
summary VEB tree

e Then query that cluster for the minimum element

e Let’s draw what this might look like on the board.

(almost) vEB Tree Successor

e To find the successor of q, we need to:

e Query the VEB tree for the cluster containing q to see if the successor is there

¢ If not found, find the next nonempty cluster using a successor query on the
summary VEB tree

e Then query that cluster for the minimum element

e Let’s draw what this might look like on the board.

e Recurrence:

(almost) vEB Tree Successor

To find the successor of q, we need to:

e Query the VEB tree for the cluster containing q to see if the successor is there

¢ If not found, find the next nonempty cluster using a successor query on the
summary VEB tree

e Then query that cluster for the minimum element

Let’s draw what this might look like on the board.

Recurrence:

(almost) vEB Tree Successor

To find the successor of q, we need to:

e Query the VEB tree for the cluster containing q to see if the successor is there

¢ If not found, find the next nonempty cluster using a successor query on the
summary VEB tree

e Then query that cluster for the minimum element

Let’s draw what this might look like on the board.

Recurrence:

e T(M) = 3T (VM) + 0(1)

Solves to O((log M)'°823) = O(log-°8° M) insert time (way too slow!)

The Problem

e Too many recursive calls!

The Problem

e Too many recursive calls!

e Can we get rid of some of them? Let’s focus on successor

(almost) vEB Tree Successor

e To find the successor of q, we need to:

e Query the main cluster to see if the successor is there

o If not found, find the next nonempty cluster using a successor query on the
summary VEB tree

e Then query that cluster for the minimum element

(almost) vEB Tree Successor

e To find the successor of q, we need to:

e Query the main cluster to see if the successor is there

o If not found, find the next nonempty cluster using a successor query on the
summary VEB tree

e Then query that cluster for the minimum element
e Finding the minimum element doesn’t require a whole successor call! Let's

just store the minimum element in each cluster. Then finding the minimum
element is O(1).

VEB Tree: Adding Minimum Element

e On insert: proceed like before (insert into summary cluster; insert into the
cluster itself). But, every time you insert into a cluster, check to see if the
element we're inserting is the new minimum. If so, swap it out.

VEB Tree: Adding Minimum Element

e On insert: proceed like before (insert into summary cluster; insert into the
cluster itself). But, every time you insert into a cluster, check to see if the
element we're inserting is the new minimum. If so, swap it out.

e Successor: we still query the main cluster. If the successor is not found, use a
successor query in the summary vEB tree to find the next nonempty cluster.
Return the minimum element in that cluster.

VEB Tree: Adding Minimum Element

e On insert: proceed like before (insert into summary cluster; insert into the
cluster itself). But, every time you insert into a cluster, check to see if the
element we're inserting is the new minimum. If so, swap it out.

e Successor: we still query the main cluster. If the successor is not found, use a
successor query in the summary vEB tree to find the next nonempty cluster.
Return the minimum element in that cluster.

e Recurrence for both: T(M) = 2T(v/M) + O(1); solves to T(M) = log M.

vEB Tree

Sumw)afa(
min vEB tree

Cle mcﬂ'["

] \] ﬁ VA total _
é-\,EB trees -,

vEB B tree on vEB tree o vEB tree on

[ements in o9 e[cheWJrj &lemm‘? fn

e ey 3 LA, ey 2R3 TR

vEB e

vEB Tree

Summafa(
vEB #ree

mfﬂ
ele mcﬂ+'

=S D ¢ VA el 0= |
€ o 7 EEE

vE B tree on vEB tree e o o LB trec on
clements in on elc"’lemb e lemenls [n

2';“!/-{_/‘7\-3 on g'\’ﬂf[D Mj %M”-ﬂﬁ-l[-(./mj

vEB e

Getting to log log M

e Target recurrence?

Getting to log log M

e Target recurrence?

o T(M) = T(v/M) + O(1). This solves to O(log log M).

Getting to log log M

e Target recurrence?
e T(M) = T(v/M) + O(1). This solves to O(log log M).

e Goal: get rid of second recursive call in insert and successor query

Getting to log log M

Target recurrence?

T(M) = T(v/M) + O(1). This solves to O(log log M).

Goal: get rid of second recursive call in insert and successor query

On query: we still query the main cluster. If the successor is not found, use a
successor query in the summary VEB tree to find the next nonempty cluster.
Return the minimum element in that cluster.

Getting to log log M

e Target recurrence?
e T(M) = T(v/M) + O(1). This solves to O(log log M).
e Goal: get rid of second recursive call in insert and successor query

e On query: we still query the main cluster. If the successor is not found, use a
successor query in the summary VEB tree to find the next nonempty cluster.
Return the minimum element in that cluster.

e How can we make this just one call?

Getting to log log M

e Target recurrence?
e T(M) = T(v/M) + O(1). This solves to O(log log M).
e Goal: get rid of second recursive call in insert and successor query

e On query: we still query the main cluster. If the successor is not found, use a
successor query in the summary VEB tree to find the next nonempty cluster.
Return the minimum element in that cluster.

e How can we make this just one call?

e Hint: Can we store something to help us determine if q has a successor in its
cluster without a recursive query?

Getting to log log M

e Target recurrence?
e T(M) = T(v/M) + O(1). This solves to O(log log M).
e Goal: get rid of second recursive call in insert and successor query

e On query: we still query the main cluster. If the successor is not found, use a
successor query in the summary VEB tree to find the next nonempty cluster.
Return the minimum element in that cluster.

e How can we make this just one call?

e Hint: Can we store something to help us determine if q has a successor in its
cluster without a recursive query?

e Store the max element in each cluster!

vEB Tree: Store the Max and Min in each cluster

e On query: find q's cluster.

vEB Tree: Store the Max and Min in each cluster

e On query: find q's cluster.

o If q is less than the max, find successor(q) in that cluster and return it

vEB Tree: Store the Max and Min in each cluster

e On query: find q's cluster.

o If q is less than the max, find successor(q) in that cluster and return it

e Otherwise, use a successor query on the summary VEB tree to find the next
nonempty cluster

vEB Tree: Store the Max and Min in each cluster

On query: find @’s cluster.

If q is less than the max, find successor(q) in that cluster and return it

e Otherwise, use a successor query on the summary VEB tree to find the next
nonempty cluster

Return the minimum element in that cluster

vEB Tree: Store the Max and Min in each cluster

e On query: find q's cluster.
o If q is less than the max, find successor(q) in that cluster and return it

e Otherwise, use a successor query on the summary VEB tree to find the next
nonempty cluster

e Return the minimum element in that cluster

e Example on board: store 3, 5,15 from universe {9, ...15}; query for element 8.

vEB Tree

Sumw)afa(
min vEB tree max

element e lement
] \] ﬁ VA total _
é-\,EB trees -,
yEB tree on JEB tree o o EB trec on
[ements in o9 e[cheMJU &lemm‘? fn
CETI;HI/MS on g'\’ﬂfl ‘) Mj %M”’[ﬁ/\— i—l[-(./Mj

vEB e

vEB Tree

Summafg_ DD
min vEB tree max
e ment e lement

DEp| (D=E0)

EIEaE=m)|
vE B tree on vBEB tree e o o VEB tree on
' B [e(/’/](l’l‘? fn
clements in on e lemen e
S0, ey M3 in §dmtl)y 2VAS EM~ofF ey 1S

vEB e

Speeding up Insert

e Before: insert q in correct cluster; insert cluster into summary data structure

Speeding up Insert

e Before: insert q in correct cluster; insert cluster into summary data structure

e How can we turn this into one recursive call?

Speeding up Insert

e Before: insert q in correct cluster; insert cluster into summary data structure

e How can we turn this into one recursive call?

e We only need to insert q into summary data structure if its cluster was empty

Speeding up Insert

Before: insert q in correct cluster; insert cluster into summary data structure

e How can we turn this into one recursive call?

We only need to insert q into summary data structure if its cluster was empty

In that case: just store q as min!

Speeding up Insert

Before: insert q in correct cluster; insert cluster into summary data structure

e How can we turn this into one recursive call?

We only need to insert q into summary data structure if its cluster was empty

In that case: just store q as min!

Change to the algorithm: don’t store minimum element recursively!

Speeding up Insert

Before: insert q in correct cluster; insert cluster into summary data structure

e How can we turn this into one recursive call?

We only need to insert q into summary data structure if its cluster was empty

In that case: just store q as min!

Change to the algorithm: don’t store minimum element recursively!

Only need to recurse on summary data structure

Making sure successor still works

e Does successor still work if the minimum element is not stored recursively?

Making sure successor still works

e Does successor still work if the minimum element is not stored recursively?

e No, but it's easy to fix: while recursing down just check if ¢ < the minimum
element. If so, the minimum element is the successor.

Making sure successor still works

e Does successor still work if the minimum element is not stored recursively?

e No, but it's easy to fix: while recursing down just check if ¢ < the minimum
element. If so, the minimum element is the successor.

e Done!

van Emde Boas Tree Summary

e If M = 1, just store whether or not the one element is in our set

van Emde Boas Tree Summary

e If M = 1, just store whether or not the one element is in our set

e Otherwise, have a “summary” VEB tree of size vM; and, divide M into vM
parts, with one VEB tree for each

van Emde Boas Tree Summary

e If M = 1, just store whether or not the one element is in our set

e Otherwise, have a “summary” VEB tree of size vM; and, divide M into vM
parts, with one VEB tree for each

e Plus the minimum and maximum elements in our structure, if they exist

van Emde Boas Tree Summary: Insert

To insert an item x:

van Emde Boas Tree Summary: Insert

To insert an item x:

e Find x’s cluster c. If ¢ has no minimum, set the minimum of ¢ to be x, and
insert ¢ into the summary data structure.

van Emde Boas Tree Summary: Insert

To insert an item x:

e Find x’s cluster c. If ¢ has no minimum, set the minimum of ¢ to be x, and
insert ¢ into the summary data structure.

e Otherwise:

e Check if x is less than the minimum m.

e If so, set x to be the minimum, and insert m into x’s cluster.
e Do the same for the maximum.

e Otherwise, insert x into its cluster.

van Emde Boas Tree Summary: Successor

To find the successor of an item x:

van Emde Boas Tree Summary: Successor

To find the successor of an item x:

e If x is less than the current minimum element m, return m.

van Emde Boas Tree Summary: Successor

To find the successor of an item x:

e If x is less than the current minimum element m, return m.

e Find x’s cluster c. If x is smaller than the maximum value in that cluster, query
VEB tree c for the successor of x.

van Emde Boas Tree Summary: Successor

To find the successor of an item x:

e If x is less than the current minimum element m, return m.

e Find x’s cluster c. If x is smaller than the maximum value in that cluster, query
VEB tree c for the successor of x.

e Otherwise, query the summary VEB tree for the successor of c; call it ¢’. Return
the minimum element of ¢’.

Analysis

e Successor does O(1) work and makes one recursive call of size VM.

Analysis

e Successor does O(1) work and makes one recursive call of size VM.

o T(M) = T(v/M) + O(1) gives O(log log M) query time

Analysis

e Successor does O(1) work and makes one recursive call of size VM.

o T(M) = T(v/M) + O(1) gives O(log log M) query time

o Insert does O(1) work and makes one recursive call of size v/M; also
O(log log M) time

Moving forward

e Predecessor queries?

Moving forward

e Predecessor queries?

e Pretty much identical

Moving forward

e Predecessor queries?
e Pretty much identical

e What's the current space usage? Can we set up a recurrence?

Moving forward

Predecessor queries?

Pretty much identical

What's the current space usage? Can we set up a recurrence?

* S(M) = (VM +1)S(vM) + O(vVM)

Moving forward

Predecessor queries?

Pretty much identical

What's the current space usage? Can we set up a recurrence?

* S(M) = (VM +1)S(vM) + O(vVM)

Solves to O(M). Very bad!

Moving forward

Predecessor queries?

Pretty much identical

What's the current space usage? Can we set up a recurrence?

* S(M) = (VM +1)S(vM) + O(vVM)

Solves to O(M). Very bad!

Deletes?

Moving forward

Predecessor queries?

Pretty much identical

What's the current space usage? Can we set up a recurrence?

* S(M) = (VM +1)S(vM) + O(vVM)

Solves to O(M). Very bad!

Deletes?

Can make deletes work pretty easily with what we have.

Smaller space

e We won't go over this

Smaller space

e We won't go over this

e Basic idea: just use hashing! Only store nonempty clusters

Smaller space

e We won't go over this

e Basic idea: just use hashing! Only store nonempty clusters

e Can get O(n) space

Smaller space

We won't go over this

Basic idea: just use hashing! Only store nonempty clusters

Can get O(n) space

Possible to get O(n) space deterministically using another, more complicated
data structure (y-fast tries)

Predecessor/Successor data structures

Foraset S from{®,.... M —1}:

e BBSTs: O(logn)

Predecessor/Successor data structures

Foraset S from{®,.... M —1}:

e BBSTs: O(logn)

e van Emde Boas trees: O(log log M)

Predecessor/Successor data structures

Foraset S from{®,.... M —1}:

e BBSTs: O(logn)

e van Emde Boas trees: O(log log M)

e Takeaway: unless M is very large or n is very small, VEB trees are quite a lot
faster

Predecessor/Successor data structures

Foraset S from{®,.... M —1}:

BBSTs: O(logn)

van Emde Boas trees: O(log log M)

Takeaway: unless M is very large or n is very small, VEB trees are quite a lot
faster

But, they're probably a bit more complicated

