Lecture 12: Locality-Sensitive Hashing and MinHash

Sam McCauley

October 17, 2025

Williams College

Admin

- Midterm a week from today in class
- Practice midterm out in the next 24 hours; solutions early next week
- I created both the midterm and the practice midterm at the same time; they should be extremely similar in terms of structure and very similar in terms of topics
- No writing code on the midterm
- Review session Tuesday; bring questions
- Assignment 4 out tonight (I'm adding some extra starter code because I know you're also studying)
- I will grade everything before the midterm

Finding Similar Items

• Today: no more streaming! Have all data available to us.

- Today: no more streaming! Have all data available to us.
- But data is still big!

- Today: no more streaming! Have all data available to us.
- But data is still big!
 - In particular: high-dimensional

- Today: no more streaming! Have all data available to us.
- But data is still big!
 - In particular: high-dimensional
 - Table with many columns

- Today: no more streaming! Have all data available to us.
- But data is still big!
 - In particular: high-dimensional
 - Table with many columns
 - For each Netflix user, what movies have they seen

- BIG DATA

 MACHINE
 HEARNING

 CLOUP

 INFORMED INTELLIGENT
 DECISIONS
- Today: no more streaming! Have all data available to us.
- But data is still big!
 - In particular: high-dimensional
 - Table with many columns
 - For each Netflix user, what movies have they seen
- Goal: solve a computationally difficult, but important, problem. If you've taken an ML course it's reasonably likely that you've seen some variant of this problem.

Finding Similar Pair

• Given a set of objects

Finding Similar Pair

- Given a set of objects
- Find the most similar pair of objects in the set

 Find similar news articles for user suggestions.

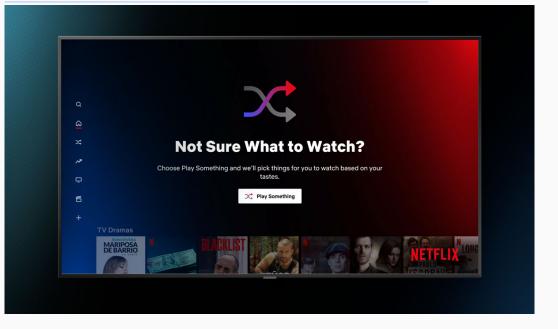
- Find similar news articles for user suggestions.
- Similar music: Spotify suggests music by finding similar users, and selecting what they listen to

- Find similar news articles for user suggestions.
- Similar music: Spotify suggests music by finding similar users, and selecting what they listen to
- Machine learning in general (training, evaluation, actual algorithms, etc.)

- Find similar news articles for user suggestions.
- Similar music: Spotify suggests music by finding similar users, and selecting what they listen to
- Machine learning in general (training, evaluation, actual algorithms, etc.)
- Data deduplication, etc.

- Find similar news articles for user suggestions.
- Similar music: Spotify suggests music by finding similar users, and selecting what they listen to
- Machine learning in general (training, evaluation, actual algorithms, etc.)
- Data deduplication, etc.
- "Give me a similar pair in this dataset" is a common query!

Similarity Search Example



Strategies for Similarity Search

• Given a list of numbers

- · Given a list of numbers
- "Similarity" is the absolute value of the difference between them

- Given a list of numbers
- "Similarity" is the absolute value of the difference between them
- How can we find the closest numbers (i.e. ones with smallest difference)?

• How efficiently can we do this?

7
23
44
60
65
67
80
92

- How efficiently can we do this?
- Step 1: Sort!

- How efficiently can we do this?
- Step 1: Sort!
- Step 2: Scan through list, find most similar adjacent elements.

7	
23	
44	
60	
65	
67	
80	
92	

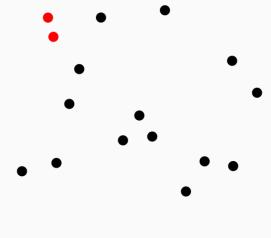
- How efficiently can we do this?
- Step 1: Sort!
- Step 2: Scan through list, find most similar adjacent elements.
- $O(n \log n)$ time

80 92

Aside: can we do better? Yes, there's a clever O(n) algorithm based on sampling. 44 Step 1: Sort! 60 65 67

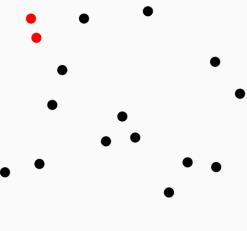
- now emciently can we do this?
- Step 2: Scan through list, find most similar adjacent elements.
- $O(n \log n)$ time

Two-dimensional Data?



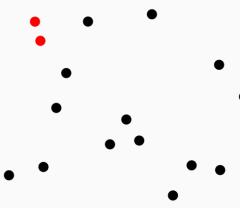
You might have seen this in CS 256.
 (Not with me ⊕)

Two-dimensional Data?



- You might have seen this in CS 256. (Not with me ⁽²⁾)
- Divide and conquer, $O(n \log n)$ time.

Two-dimensional Data?



- You might have seen this in CS 256.
 (Not with me ②)
- Divide and conquer, $O(n \log n)$ time.
- (Again, possible in O(n) with sampling.)

• We want VERY high dimensions (tens, hundreds, or even millions)

- We want VERY high dimensions (tens, hundreds, or even millions)
- Songs listened to, movies watched, image tags, etc.

- We want VERY high dimensions (tens, hundreds, or even millions)
- Songs listened to, movies watched, image tags, etc.
- Words that appear in a book, k-grams that appear in a DNA sequence

- We want VERY high dimensions (tens, hundreds, or even millions)
- Songs listened to, movies watched, image tags, etc.

- Words that appear in a book, k-grams that appear in a DNA sequence
- In ML applications, often want to search in the embedded space

What I mean by "dimension"

Josefine S. (Protected by ...

(k) The 38 movies I saw in 2010:)

Only counting movies I saw for the first time. Faves: 4, atm. Best: "Harry Potter and the Deathly Hallows: Part I". :D
WARNING: LIST MAY CONTAIN SPOILERS!

9-Jan-2010: 1. Fish tank

17-Jan-2010: 2. The cove
Fave! People = shit. I saw it with Miss C, who was rendered speechless with rage.

29-Jan-2010: 3. The sound of insects: Record of a mummy

1-Feb-2010: 4. Dreamland

3-Feb-2010: 5. A mother's courage: Talking back to autism

5-Feb-2010: 6. **Creation** Charles Darwin biopic.

 I mean that each datapoint is a long vector.

What I mean by "dimension"

Josefine S. (Protected by ...

(k) The 38 movies I saw in 2010:)

Only counting movies I saw for the first time. Faves: 4, atm. Best: "Harry Potter and the Deathly Hallows: Part I". :D
WARNING: LIST MAY CONTAIN SPOILERS!

9-Jan-2010: 1. Fish tank

17-Jan-2010: 2. The cove
Fave! People = shit. I saw it with Miss C, who was rendered speechless with rage.

29-Jan-2010: 3. The sound of insects: Record of a mummy

1-Feb-2010: 4. Dreamland

3-Feb-2010: 5. A mother's courage: Talking back to autism

5-Feb-2010: 6. **Creation** Charles Darwin biopic.

- I mean that each datapoint is a long vector.
- "The songs this user has listened to are: [...]"

What I mean by "dimension"

Josefine S. (Protected by ...

(k) The 38 movies I saw in 2010:)

Only counting movies I saw for the first time. Faves: 4, atm. Best: "Harry Potter and the Deathly Hallows: Part I". :D
WARNING: LIST MAY CONTAIN SPOILERS!

9-Jan-2010: 1. Fish tank

17-Jan-2010: 2. The cove
Fave! People = shit. I saw it with Miss C, who was rendered speechless with rage.

29-Jan-2010: 3. The sound of insects: Record of a mummy

1-Feb-2010: 4. **Dreamland** Icelandic festival docu.

3-Feb-2010: 5. A mother's courage: Talking back to autism

5-Feb-2010: 6. **Creation** Charles Darwin biopic.

- I mean that each datapoint is a long vector.
- "The songs this user has listened to are: [...]"
- "The movies this user has watched are: [...]"

What I mean by "dimension"

Josefine S. (Protected by ...

(k) The 38 movies I saw in 2010:)

Only counting movies I saw for the first time. Faves: 4, atm. Best: "Harry Potter and the Deathly Hallows: Part I". :D
WARNING: LIST MAY CONTAIN SPOILERS!

9-Jan-2010: 1. Fish tank

17-Jan-2010: 2. The cove Fave! People = shit. I saw it with Miss C, who was rendered speechless with rage.

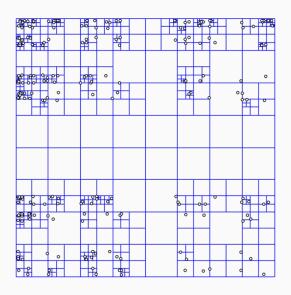
29-Jan-2010: 3. The sound of insects: Record of a mummy

1-Feb-2010: 4. **Dreamland** Icelandic festival docu.

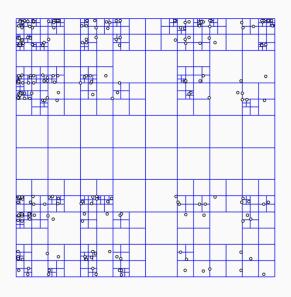
3-Feb-2010: 5. A mother's courage: Talking back to autism

5-Feb-2010: 6. **Creation** Charles Darwin biopic.

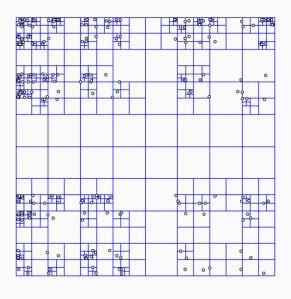
- I mean that each datapoint is a long vector.
- "The songs this user has listened to are: [...]"
- "The movies this user has watched are: [...]"
- "The tags generated for this image are: [...]"



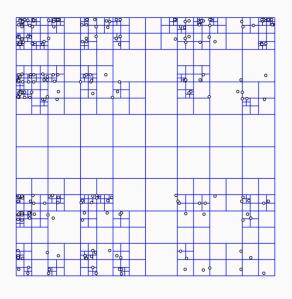
- I mentioned: O(n log n) for 1 or 2 dimensions
- In fact, can get O(n log n) for constant dimensions



- I mentioned: O(n log n) for 1 or 2 dimensions
- In fact, can get O(n log n) for constant dimensions
- But: exponential time in the dimension!



- I mentioned: O(n log n) for 1 or 2 dimensions
- In fact, can get O(n log n) for constant dimensions
- But: exponential time in the dimension!
- Something like $O(2^d \cdot n \log n)$



- I mentioned: O(n log n) for 1 or 2 dimensions
- In fact, can get O(n log n) for constant dimensions
- But: exponential time in the dimension!
- Something like $O(2^d \cdot n \log n)$
- Worse than trying all pairs if > log n dimensions

Curse of Dimensionality

• Curse of dimensionality: Many problems have running time exponential in the dimension of the objects.

Curse of Dimensionality

• Curse of dimensionality: Many problems have running time exponential in the dimension of the objects.

• Well-known phenomenon

Curse of Dimensionality

- Curse of dimensionality: Many problems have running time exponential in the dimension of the objects.
- Well-known phenomenon
- Applies to similarity search, machine learning, combinatorics
 - Approximation techniques, like those we learn about today, are underused to a slightly shocking extent—even in ML people sometimes keep dimensionality low to avoid this issue, affecting the quality of results

• Today we're talking about how to get efficient algorithms for arbitrarily large dimensions.

- Today we're talking about how to get efficient algorithms for arbitrarily large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).

- Today we're talking about how to get efficient algorithms for arbitrarily large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).
- Two tools to get us there:

- Today we're talking about how to get efficient algorithms for arbitrarily large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).
- Two tools to get us there:
 - Assume that the close pair is much closer than any other (approximate closest pair)

- Today we're talking about how to get efficient algorithms for arbitrarily large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).

 We'll come back
- Two tools to get us there: to this later
 - Assume that the close pair is much closer than any other (approximate closest pair)

- Today we're talking about how to get efficient algorithms for arbitrarily large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).

 We'll come back
- Two tools to get us there: to this later
 - Assume that the close pair is much closer than any other (approximate closest pair)
 - Use hashing! ...A special kind of hashing

- Today we're talking about how to get efficient algorithms for arbitrarily large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).

 We'll come back
- Two tools to get us there: to this later
 - Assume that the close pair is much closer than any other (approximate closest pair)
 - · Use hashing! ... A special kind of hashing
- For many of these problems, random inputs are worst-case inputs
 - Worst case behavior actually occurs for many common use cases; guarantees (even approximate) can be very valuable

• Normally, hashing spreads out elements.

- Normally, hashing spreads out elements.
- This is key to hashing: no matter how clustered my data begins, I wind up with a nicely-distributed hash table

- Normally, hashing spreads out elements.
- This is key to hashing: no matter how clustered my data begins, I wind up with a nicely-distributed hash table
- Locality-sensitive hashing tries to act like a normal hash for items that are dissimilar, but wants collisions for similar elements

- Normally, hashing spreads out elements.
- This is key to hashing: no matter how clustered my data begins, I wind up with a nicely-distributed hash table
- Locality-sensitive hashing tries to act like a normal hash for items that are dissimilar, but wants collisions for similar elements
- Similar items are likely to wind up in the same bucket. But dissimilar items are not

• Needs a similarity threshold r, an approximation factor c < 1

- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:

- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:
 - If two items x and y have similarity $\geq r$, h(x) = h(y) with probability at least p_1 .

- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:
 - If two items x and y have similarity $\geq r$, h(x) = h(y) with probability at least p_1 .
 - If two items x and y have similarity $\leq cr$, h(x) = h(y) with probability at most p_2 .

- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:
 - If two items x and y have similarity $\geq r$, h(x) = h(y) with probability at least p_1 .
 - If two items x and y have similarity $\leq cr$, h(x) = h(y) with probability at most p_2 .
- High level idea: close items are likely to collide. Far items are unlikely to collide.

- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:
 - If two items x and y have similarity $\geq r$, h(x) = h(y) with probability at least p_1 .
 - If two items x and y have similarity $\leq cr$, h(x) = h(y) with probability at most p_2 .
- High level idea: close items are likely to collide. Far items are unlikely to collide.
- Generally want p_2 to be about 1/n; then we get a normal hash table for far (i.e. similarity $\leq cr$) elements.

Why Locality-Sensitive Hashing Helps

	(101, 37, 65)	(91, 84, 3)		(100, 18, 79)
	(103, 37, 64)			
0	1	2	3	4

Ideally, close items hash to the same bucket.

• If we have $p_2 = 1/n$, then p_1 is usually very small.

We'll put numbers on this later

- If we have $p_2 = 1/n$, then p_1 is usually very small.
 - Think something like $1/\sqrt{n}$: a lot bigger than 1/n, but nowhere near 1.

- If we have $p_2 = 1/n$, then p_1 is usually very small.
 - Think something like $1/\sqrt{n}$: a lot bigger than 1/n, but nowhere near 1.

How can we increase this probability?

- If we have $p_2 = 1/n$, then p_1 is usually very small.
 - Think something like $1/\sqrt{n}$: a lot bigger than 1/n, but nowhere near 1.

- How can we increase this probability?
- Repetitions! Maintain many hash tables, each with a different locality-sensitive hash function, and try all of them.

LSH with Repetitions

(101, 37, 65)	(103,37,64)	(91,84,3)	(100,18,79)	
0	1	2	3	4
	(101,37,65) (103,37,64)	(91,84,3)		(100,18,79)
0	1	2	3	4
(101, 37, 65)		(103,37,64)		(91,84,3) (100,18,79)
0	1	2	3	4

Similarity

What Do We Mean by "Similar"?

• How can we measure the similarity of objects?

What Do We Mean by "Similar"?

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)

What Do We Mean by "Similar"?

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user
 - Movies watched by a user

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user
 - Movies watched by a user
 - Human-generated tags given to an image

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user
 - Movies watched by a user
 - Human-generated tags given to an image
 - · Words that appear in a document

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user
 - Movies watched by a user
 - Human-generated tags given to an image
 - Words that appear in a document
- Need a way to measure set similarity

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

• When are two sets similar?

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap
- I.e. lots of artists in common, compared to total artists in either list

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

Very similar!

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap
- I.e. lots of artists in common, compared to total artists in either list

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap
- I.e. lots of artists in common, compared to total artists in either list

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

Not very similar!

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap
- I.e. lots of artists in common, compared to total artists in either list

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap
- I.e.: lots of artists in common, compared to total artists in either list

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

Moderatly similar!

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of overlap
- I.e.: lots of artists in common, compared to total artists in either list

• Similarity measure for sets A and B

• Similarity measure for sets A and B

• Defined as:

$$\frac{|A \cap B|}{|A \cup B|}$$

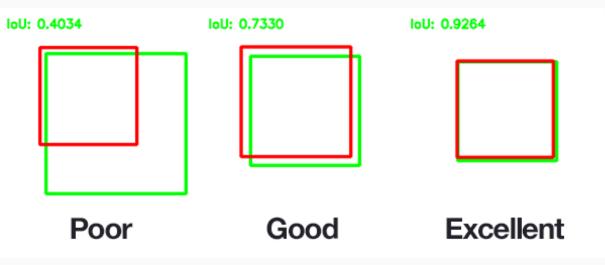
• Similarity measure for sets A and B

• Defined as:

$$\frac{|A \cap B|}{|A \cup B|}$$

• Intuitively: Jaccard similarity says what fraction of two sets overlaps.

Jaccard Similarity Intuition 1



Jaccard Similarity Intuition 2

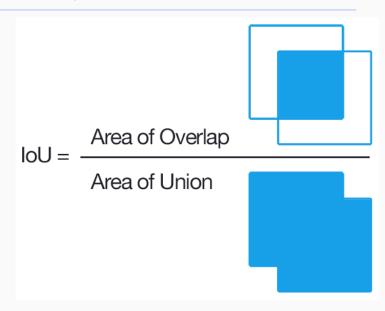
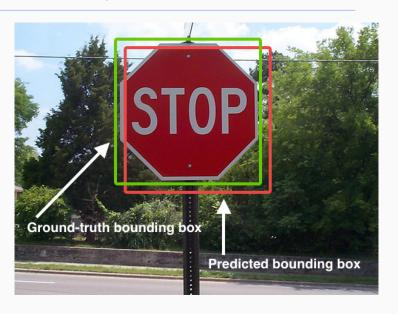


Image Search Example



User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

• Similarity: $|A \cap B|/|A \cup B|$.

User 2
Ariana Grande
Khalid
Drake
Travis Scott

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 4$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 4$
- $|A \cup B| = 5$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 4$
- $|A \cup B| = 5$
- Jaccard Similarity: 4/5 = .8

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

• Similarity: $|A \cap B|/|A \cup B|$.

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 1$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 1$
- $|A \cup B| = 5$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 1$
- $|A \cup B| = 5$
- Jaccard Similarity: 1/5 = .2

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

• Similarity: $|A \cap B|/|A \cup B|$.

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 3$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 3$
- $|A \cup B| = 7$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 3$
- $|A \cup B| = 7$
- Jaccard Similarity: 3/7 = 0.428

 Works on sets (each dimension is binary—an item is in the set, or not in the set)

- Works on sets (each dimension is binary—an item is in the set, or not in the set)
- Always gives a number between 0 and 1

- Works on sets (each dimension is binary—an item is in the set, or not in the set)
- Always gives a number between 0 and 1
- 1 means identical, 0 means no items in common

- Works on sets (each dimension is binary—an item is in the set, or not in the set)
- Always gives a number between 0 and 1
- 1 means identical, 0 means no items in common
- Jaccard similarity ignores items not in either set. So we learn nothing if neither of us like an artist. (Is this good?)

Jaccard Similarity: Properties

- Works on sets (each dimension is binary—an item is in the set, or not in the set)
- Always gives a number between 0 and 1
- 1 means identical, 0 means no items in common
- Jaccard similarity ignores items not in either set. So we learn nothing if neither of us like an artist. (Is this good?)
- Still works if one list is much longer than the other. (Generally, they'll have small similarity)

Locality-Sensitive Hash for Jaccard Similarity

• Want: items with high Jaccard Similarity are likely to hash together

Locality-Sensitive Hash for Jaccard Similarity

· Want: items with high Jaccard Similarity are likely to hash together

Items with low Jaccard Similarity are unlikely to hash together

Locality-Sensitive Hash for Jaccard Similarity

· Want: items with high Jaccard Similarity are likely to hash together

Items with low Jaccard Similarity are unlikely to hash together

Classic method: MinHash

• Developed by Andrei Broder in 1997 while working at AltaVista

Developed by Andrei Broder in 1997 while working at AltaVista

 (AltaVista was probably the most popular search engine before Google, they wanted to detect similar web pages to eliminate them from search results)

Developed by Andrei Broder in 1997 while working at AltaVista

 (AltaVista was probably the most popular search engine before Google, they wanted to detect similar web pages to eliminate them from search results)

Now used for similarity search, database joins, clustering—LOTS of things.

AltaVista in 2001

Try your search in: Shopping • Images • Video • MP3/Audio • News • Autos • Technology

Search for:

Help | Customize Settings | Family Filter is off

any language ▼

Search Assistant | Advanced Search

Shopping: Compare Prices • Local Deals & Coupons • Web Deals & Rebates • uBid Auction

Tools: Email • @Translate • Maps • Directions • Yellow Pages • People Finder • Find A Job

Find Downloads • Text-Only Search • Weight Calculator • Find A Date • More ...

News: As California Sweats It Out, 2 Funds Profit . More News...

Web Site Hosting • Insurance Quotes • Radio Pet Fence • Rebates Center • Buy A Computer
Travel Planning • Online Casinos & Gambling • Electronics Store • NBA Tickets • Win Free Travel

Arts & Entertainment

Culture, Celebrities, Movies... Artis

Music Artists, Genres, MP3...

Business Center Internet Search Services AltaVista Enterprise Software

• Can represent any set as a vector of bits

- Can represent any set as a vector of bits
- Each bit is an item. "1" means that that item is in the set, "0" means it's not

- Can represent any set as a vector of bits
- Each bit is an item. "1" means that that item is in the set, "0" means it's not
- So if I'm keeping track of different people's favorite colors, my universe may be {red, yellow, blue, green, purple, orange}

- Can represent any set as a vector of bits
- Each bit is an item. "1" means that that item is in the set, "0" means it's not
- So if I'm keeping track of different people's favorite colors, my universe may be {red, yellow, blue, green, purple, orange}
- If someone likes red and blue, we can store that information as 101000.

- Can represent any set as a vector of bits
- Each bit is an item. "1" means that that item is in the set, "0" means it's not
- So if I'm keeping track of different people's favorite colors, my universe may be {red, yellow, blue, green, purple, orange}
- If someone likes red and blue, we can store that information as 101000.
- Effective if universe is fairly small; use a list for larger universe

• How can we determine $A \cap B$?

- How can we determine $A \cap B$?
 - This is exactly A & B in C-style notation

- How can we determine $A \cap B$?
 - This is exactly A & B in C-style notation
- What about $A \cup B$?

- How can we determine $A \cap B$?
 - This is exactly A & B in C-style notation
- What about $A \cup B$?
 - This is exactly A | B in C-style notation

- How can we determine $A \cap B$?
 - This is exactly A & B in C-style notation
- What about $A \cup B$?
 - This is exactly A | B in C-style notation
- We want the size of these sets—need to count the number of 1s in A & B, or A |
 B.

- The hash consists of a *permutation* of all possible items in the universe
 - $\{0, \dots, 127\}$ in the assignment

- The hash consists of a *permutation* of all possible items in the universe
 - $\{0, \dots, 127\}$ in the assignment

• To hash a set A: find the first item in A in the order given by the permutation.

That item is the hash value!

• Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

- Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}
- To hash, we randomly permute them. Let's say our current hash is given by the permutation (blue, orange, green, purple, red, yellow). Some examples:

- Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}
- To hash, we randomly permute them. Let's say our current hash is given by the permutation (blue, orange, green, purple, red, yellow). Some examples:
- First set is 101000 (same as {red, blue}).

- Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}
- To hash, we randomly permute them. Let's say our current hash is given by the permutation (blue, orange, green, purple, red, yellow). Some examples:
- First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is blue.

- Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}
- To hash, we randomly permute them. Let's say our current hash is given by the permutation (blue, orange, green, purple, red, yellow). Some examples:
- First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is blue.
- Second set is 110010 (we could also write {red, yellow, purple}).

- Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}
- To hash, we randomly permute them. Let's say our current hash is given by the permutation (blue, orange, green, purple, red, yellow). Some examples:
- First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is blue.
- Second set is 110010 (we could also write {red, yellow, purple}). blue is not in the set; nor is orange; nor is green. purple is, so purple is the hash value

• On the assignment, have bit vectors of length 128

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of $\{0,1,2,\ldots,127\}$

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0, 1, 2, ..., 127}
- To hash an item *x*, go through the random permutation. Find the first index *i* in the list such that the *i*th bit of *x* is 1.

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0, 1, 2, ..., 127}
- To hash an item *x*, go through the random permutation. Find the first index *i* in the list such that the *i*th bit of *x* is 1.
- Let's say x = 10100101, and the permutation is (1, 5, 2, 0, 7, 6, 4, 3).

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0, 1, 2, ..., 127}
- To hash an item x, go through the rand of space let's Find the first index i in the list such that the ith bit of x is 1 do 8 bits
- Let's say x = 10100101, and the permutation is (1, 5, 2, 0, 7, 6, 4, 3).

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0, 1, 2, ..., 127}
- To hash an item *x*, go through the random permutation. Find the first index *i* in the list such that the *i*th bit of *x* is 1.
- Let's say x = 10100101, and the permutation is (1, 5, 2, 0, 7, 6, 4, 3).
 - On your own: what is the minhash of *x* for this permutation?

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0, 1, 2, ..., 127}
- To hash an item *x*, go through the random permutation. Find the first index *i* in the list such that the *i*th bit of *x* is 1.
- Let's say x = 10100101, and the permutation is (1, 5, 2, 0, 7, 6, 4, 3).
 - On your own: what is the minhash of *x* for this permutation?
- The minhash of x is 5.

 A single MinHash: hashes each set to one of its elements (i.e. the position of one of its one bits)

- A single MinHash: hashes each set to one of its elements (i.e. the position of one of its one bits)
- What happens when we store elements in buckets according to this hash table?

MinHash

- A single MinHash: hashes each set to one of its elements (i.e. the position of one of its one bits)
- What happens when we store elements in buckets according to this hash table?
- Not useful yet—output is too small! Almost all items will have one of the first few items in the permutation, so will hash to the first few buckets

MinHash

- A single MinHash: hashes each set to one of its elements (i.e. the position of one of its one bits)
- What happens when we store elements in buckets according to this hash table?
- Not useful yet—output is too small! Almost all items will have one of the first few items in the permutation, so will hash to the first few buckets
- Let's do some analysis to look at this issue in more detail

Analysis of Basic MinHash

• What is the probability that h(A) = h(B)?

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines h. We can ignore any item that is not in A or B (why?)

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines h. We can ignore any item that is not in A or B (why?)
- Look at the first index in the permutation that is in A or B (i.e. it is in $A \cup B$)

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines h. We can ignore any item that is not in A or B (why?)
- Look at the first index in the permutation that is in A or B (i.e. it is in $A \cup B$)
 - If this index is in **both** A and B, then h(A) = h(B)

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines h. We can ignore any item that is not in A or B (why?)
- Look at the first index in the permutation that is in A or B (i.e. it is in $A \cup B$)
 - If this index is in **both** A and B, then h(A) = h(B)
 - If this index is in only one of A or B, then $h(A) \neq h(B)$

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines h. We can ignore any item that is not in A or B (why?)
- Look at the first index in the permutation that is in A or B (i.e. it is in $A \cup B$)
 - If this index is in **both** A and B, then h(A) = h(B)
 - If this index is in only one of A or B, then $h(A) \neq h(B)$
- Any index in $A \cup B$ is equally likely to be first. If the index is in $A \cap B$, they hash together; otherwise they do not

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines h. We can ignore any item that is not in A or B (why?)
- Look at the first index in the permutation that is in A or B (i.e. it is in $A \cup B$)
 - If this index is in **both** A and B, then h(A) = h(B)
 - If this index is in only one of A or B, then $h(A) \neq h(B)$
- Any index in $A \cup B$ is equally likely to be first. If the index is in $A \cap B$, they hash together; otherwise they do not
- Therefore: probability of hashing together is $|A \cap B|/|A \cup B|$.

MinHash as an LSH

• This means MinHash is an LSH!

MinHash as an LSH

This means MinHash is an LSH!

• If two items have similarity at least r, they collide with probability at least $p_1 = r$

MinHash as an LSH

• This means MinHash is an LSH!

• If two items have similarity at least r, they collide with probability at least $p_1 = r$

• If two items have similarity at most cr, they collide with probability at most $p_2 = cr$

Analysis: Phrased as bit vectors

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines h. We can ignore any index that is 0 in both A and B.
- Look at the first index in the permutation that is 1 in A or B
 - If this index is in **both** A and B, then h(A) = h(B)
 - If this index is in only one of A or B, then $h(A) \neq h(B)$
- Any index that is 1 in A|B is equally likely to be first. If the index is in A&B, they hash together; otherwise they do not
- Therefore: probability of hashing together is (number of 1s in A&B)/(number of 1s in A|B).

• Let's say we have $A = \{\text{red, blue, green}\}\$ and $B = \{\text{red, orange, purple, green}\}\$.

- Let's say we have $A = \{\text{red, blue, green}\}\$ and $B = \{\text{red, orange, purple, green}\}\$.
- When do A and B hash together?

- Let's say we have $A = \{\text{red, blue, green}\}\$ and $B = \{\text{red, orange, purple, green}\}\$.
- When do A and B hash together?
- If red or green appears before blue, orange, and purple then they hash together

- Let's say we have $A = \{\text{red, blue, green}\}\$ and $B = \{\text{red, orange, purple, green}\}\$.
- When do A and B hash together?
- If red or green appears before blue, orange, and purple then they hash together
- If blue or orange or purple appear before red and green, then they don't hash together

- Let's say we have $A = \{\text{red, blue, green}\}\$ and $B = \{\text{red, orange, purple, green}\}\$.
- When do A and B hash together?
- If red or green appears before blue, orange, and purple then they hash together
- If blue or orange or purple appear before red and green, then they don't hash together
- Probability that red or green is first out of {red, blue, green, orange, purple} is 2/5.

- Let's say we have $A = \{\text{red, blue, green}\}\$ and $B = \{\text{red, orange, purple, green}\}\$.
- When do A and B hash together?
- If red or green appears before blue, orange, and purple then they hash together
- If blue or orange or purple appear before red and green, then they don't hash together
- Probability that red or green is first out of {red, blue, green, orange, purple} is 2/5.
- Therefore, A and B hash together with probability 2/5.

• To find the close pair, compare all pairs of items that hash to the same value

- To find the close pair, compare all pairs of items that hash to the same value
 - (We'll talk about how to do this in a moment)

- To find the close pair, compare all pairs of items that hash to the same value
 - (We'll talk about how to do this in a moment)
- Let's say our close pair has similarity .5. How many times do we need to repeat?

- To find the close pair, compare all pairs of items that hash to the same value
 - (We'll talk about how to do this in a moment)
- Let's say our close pair has similarity .5. How many times do we need to repeat?
- Each repetition has the close pair in the same bucket with probability .5. So need 2 repetitions in expectation.

Lemma

If a random process succeeds with probability p, then in expectation it takes 1/p iterations of the process before success.

Examples:

Lemma

If a random process succeeds with probability p, then in expectation it takes 1/p iterations of the process before success.

Examples:

It takes two coin flips in expectation before we see a heads

Lemma

If a random process succeeds with probability p, then in expectation it takes 1/p iterations of the process before success.

Examples:

- It takes two coin flips in expectation before we see a heads
- We need to roll a 6-sided die 6 times before we see (say) a three.

Lemma

If a random process succeeds with probability p, then in expectation it takes 1/p iterations of the process before success.

Examples:

- It takes two coin flips in expectation before we see a heads
- We need to roll a 6-sided die 6 times before we see (say) a three.

Proof: the expectation is

$$\sum_{i=1}^{\infty} i \rho (1-\rho)^{i-1} = \rho \sum_{i=1}^{\infty} i (1-\rho)^{i-1} = \rho \frac{1}{(1-(1-\rho))^2} = \frac{1}{\rho}.$$

Concatenations and Repetitions

Problems with this Approach

• Buckets are really big!! (After all, lots of items are pretty likely to have a given bit set.)

Problems with this Approach

 Buckets are really big!! (After all, lots of items are pretty likely to have a given bit set.)

How can we decrease the probability that items hash together?

Problems with this Approach

 Buckets are really big!! (After all, lots of items are pretty likely to have a given bit set.)

How can we decrease the probability that items hash together?

• Answer: concatenate multiple hashes together.

• Rather than one hash h, concatenate k independent hashes $h_1, h_2, \dots h_k$, each with its own permutation $P_1, P_2, \dots P_k$.

- Rather than one hash h, concatenate k independent hashes $h_1, h_2, \dots h_k$, each with its own permutation $P_1, P_2, \dots P_k$.
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)

- Rather than one hash h, concatenate k independent hashes $h_1, h_2, \dots h_k$, each with its own permutation $P_1, P_2, \dots P_k$.
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)
- How does this affect the probability for sets A and B?

- Rather than one hash h, concatenate k independent hashes $h_1, h_2, \dots h_k$, each with its own permutation $P_1, P_2, \dots P_k$.
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)
- How does this affect the probability for sets A and B?
 - For each of the k independent hashes, A and B collide with probability $|A \cap B|/|A \cup B|$.

Concatenating Hashes

- Rather than one hash h, concatenate k independent hashes $h_1, h_2, \dots h_k$, each with its own permutation $P_1, P_2, \dots P_k$.
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)
- How does this affect the probability for sets A and B?
 - For each of the k independent hashes, A and B collide with probability $|A \cap B|/|A \cup B|$.
 - We only obtain the same concatenated hashes if all of the hashes are the same.

Concatenating Hashes

- Rather than one hash h, concatenate k independent hashes $h_1, h_2, \dots h_k$, each with its own permutation $P_1, P_2, \dots P_k$.
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)
- How does this affect the probability for sets A and B?
 - For each of the k independent hashes, A and B collide with probability $|A \cap B|/|A \cup B|$.
 - We only obtain the same concatenated hashes if all of the hashes are the same.
 - They are independent, so we can multiply to obtain probability $(|A \cap B|/|A \cup B|)^k$ of A and B colliding.

• Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.
 - First hash: red is in A.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.
 - First hash: red is in A.
 - Second hash: orange not in A, nor is green. Blue is in A.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.
 - First hash: red is in A.
 - Second hash: orange not in A, nor is green. Blue is in A.
 - Third hash: red is in A.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.
 - First hash: red is in A.
 - Second hash: orange not in A, nor is green. Blue is in A.
 - Third hash: red is in A.
- Concatenating, we have h(A) = redbluered

• Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.
 - First hash: red is in B.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.
 - First hash: red is in B.
 - Second hash: orange is in B.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.
 - First hash: red is in B.
 - Second hash: orange is in B.
 - Third hash: red is in B.

- Let's say we have $A = \{\text{red, blue}\}\$ and $B = \{\text{red, orange}\}\$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.
 - First hash: red is in B.
 - Second hash: orange is in B.
 - Third hash: red is in B.
- Concatenating, we have h(B) = redorangered

• For each hash table, we concatenate *k* hashes to obtain a *signature*

- For each hash table, we concatenate *k* hashes to obtain a *signature*
- Hash the signature of each item to obtain a bucket to place the item in

- For each hash table, we concatenate *k* hashes to obtain a *signature*
- Hash the signature of each item to obtain a bucket to place the item in
- Check every pair of items in each bucket and see if it's the closest

- For each hash table, we concatenate k hashes to obtain a signature
- Hash the signature of each item to obtain a bucket to place the item in
- Check every pair of items in each bucket and see if it's the closest
- Quite often we'll get unlucky and the close pair won't be in the same bucket.
 What can we do?

- For each hash table, we concatenate k hashes to obtain a signature
- Hash the signature of each item to obtain a bucket to place the item in
- Check every pair of items in each bucket and see if it's the closest
- Quite often we'll get unlucky and the close pair won't be in the same bucket.
 What can we do?
- Need to repeat all of that multiple times until we find the close pair (let's say we repeat R times)

- For each hash table, we concatenate k hashes to obtain a signature
- Hash the signature of each item to obtain a bucket to place the item in
- Check every pair of items in each bucket and see if it's the closest
- Quite often we'll get unlucky and the close pair won't be in the same bucket.
 What can we do?
- Need to repeat all of that multiple times until we find the close pair (let's say we repeat R times)
- So: overall need kR permutations

- For each hash table, we concatenate k hashes to obtain a signature
- Hash the signature of each item to obtain a bucket to place the item in
- Check every pair of items in each bucket and see if it's the closest
- Quite often we'll get unlucky and the close pair won't be in the same bucket.
 What can we do?
- Need to repeat all of that multiple times until we find the close pair (let's say we repeat R times)
- So: overall need kR permutations
- What kind of values work for k and R?

• Let's say we have a set of n items x_1, \ldots, x_n

- Let's say we have a set of n items x_1, \ldots, x_n
- The close pair of items has Jaccard similarity 3/4

- Let's say we have a set of n items x_1, \ldots, x_n
- The close pair of items has Jaccard similarity 3/4
- \bullet Every other pair of items has similarity 1/3

- Let's say we have a set of n items x_1, \ldots, x_n
- The close pair of items has Jaccard similarity 3/4
- Every other pair of items has similarity 1/3
- How should we set k? How many repetitions R is it likely to take?

• Non-similar pairs have similarity 1/3

- Non-similar pairs have similarity 1/3
- We want buckets to be small (have O(1) size)

- Non-similar pairs have similarity 1/3
- We want buckets to be small (have O(1) size)
- Look at an element x_i . What is the expected size of its bucket?

- Non-similar pairs have similarity 1/3
- We want buckets to be small (have O(1) size)
- Look at an element x_i . What is the expected size of its bucket?
- $\sum_{j\neq i} (1/3)^k$ (since x_i and any x_j with $j\neq i$ share a hash value with probability $1/3^k$)

- Non-similar pairs have similarity 1/3
- We want buckets to be small (have O(1) size)
- Look at an element x_i . What is the expected size of its bucket?
- $\sum_{j\neq i} (1/3)^k$ (since x_i and any x_j with $j\neq i$ share a hash value with probability $1/3^k$)
- We can then solve $(n-1)(1/3)^k = 1$ to get $k = \log_3(n-1)$.

• The similar pair has Jaccard similarity .75

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability $(.75)^k$

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability $(.75)^k$

• We have $k = (\log_3 n - 1)$. So....we need to do some algebra. (Let's assume that k is already an integer)

• $(.75)^{\log_3(n-1)}$

- $(.75)^{\log_3(n-1)}$
- $(.75)^{\log_3(n-1)} = 2^{\log_2(n-1)\log_2(3/4)/\log(3)}$

- $(.75)^{\log_3(n-1)}$
- $(.75)^{\log_3(n-1)} = 2^{\log_2(n-1)\log_2(3/4)/\log(3)}$
- $2^{\log_2(n-1)\log_2(3/4)/\log(3)} = (n-1)^{\log(3/4)/\log(3)}$

- $(.75)^{\log_3(n-1)}$
- $(.75)^{\log_3(n-1)} = 2^{\log_2(n-1)\log_2(3/4)/\log(3)}$
- $2^{\log_2(n-1)\log_2(3/4)/\log(3)} = (n-1)^{\log(3/4)/\log(3)}$
- $\approx n^{\log(3/4)/\log(3)} = 1/n^{.26}$

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^k$
- We have $k = (\log_3 n 1)$. So....we need to do some algebra. (Let's assume that k is already an integer)
- $(.75)^{\log_3(n-1)} = 2^{\log_2(n-1)\log_2(3/4)/\log(3)} = (n-1)^{\log(3/4)/\log(3)} \approx 1/n^{.26}$

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^k$
- We have $k = (\log_3 n 1)$. So....we need to do some algebra. (Let's assume that k is already an integer)
- $(.75)^{\log_3(n-1)} = 2^{\log_2(n-1)\log_2(3/4)/\log(3)} = (n-1)^{\log(3/4)/\log(3)} \approx 1/n^{.26}$
- So we expect about $R = n^{.26}$ repetitions. That's a lot!

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^k$
- We have $k = (\log_3 n 1)$. So....we need to do some algebra. (Let's assume that k is already an integer)
- $(.75)^{\log_3(n-1)} = 2^{\log_2(n-1)\log_2(3/4)/\log(3)} = (n-1)^{\log(3/4)/\log(3)} \approx 1/n^{.26}$
- So we expect about $R = n^{.26}$ repetitions. That's a lot!
- But it's not far from the state of the art.

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^k$
- We have $k = (\log_3 n 1)$. So....we need to do some algebra. (Let's assume that k is already an integer)
- $(.75)^{\log_3(n-1)} = 2^{\log_2(n-1)\log_2(3/4)/\log(3)} = (n-1)^{\log(3/4)/\log(3)} \approx 1/n^{.26}$
- So we expect about $R = n^{.26}$ repetitions. That's a lot!
- But it's not far from the state of the art.
- And way better than brute force!

Finding R and k in general

Let's say we have n points where the close pairs have similarity j_1 , and all other pairs have similarity at most j_2

• First, set k so that each bucket has size O(1): $k = \log_{1/j_2} n$.

Finding R and k in general

Let's say we have n points where the close pairs have similarity j_1 , and all other pairs have similarity at most j_2

- First, set k so that each bucket has size O(1): $k = \log_{1/j_2} n$.
 - Doable at home: show that this is the optimal value for *k* using the below analysis.

Finding R and k in general

Let's say we have n points where the close pairs have similarity j_1 , and all other pairs have similarity at most j_2

- First, set k so that each bucket has size O(1): $k = \log_{1/j_2} n$.
 - Doable at home: show that this is the optimal value for *k* using the below analysis.
- Then, number of *R* we need in expectation is:

$$\left(\frac{1}{j_1}\right)^k = \left(\frac{1}{j_1}\right)^{\log_{1/j_2} n} = n^{\log_{(1/j_2)}(1/j_1)}.$$

• Until we find the close pair of items:

- Until we find the close pair of items:
- Hash all *n* items using MinHash

- Until we find the close pair of items:
- Hash all *n* items using MinHash
- For each bucket, compare all pair of items in the bucket to see if they are close. If a close pair is found, return return it

- Until we find the close pair of items:
- Hash all *n* items using MinHash
- For each bucket, compare all pair of items in the bucket to see if they are close. If a close pair is found, return return it
- (Our analysis shows that we'll need to hash all n items $n^{\log_{1/j_2}(1/j_1)}$ times in expectation)

Practical MinHash Considerations

ullet OK, so kR repetitions is a LOT of preprocessing, and a lot of random number generation

- OK, so kR repetitions is a LOT of preprocessing, and a lot of random number generation
- And most of this won't ever be used! Most of the time, when we hash, we don't
 make it more than a few indices into the permutation.

- OK, so kR repetitions is a LOT of preprocessing, and a lot of random number generation
- And most of this won't ever be used! Most of the time, when we hash, we don't
 make it more than a few indices into the permutation.
- Idea: Instead of taking just the first hash item that appears in the permutation, take the first (say) 3. Concatenate them together. Then we just need k/3 permutations per hash table to get similar bounds.

- OK, so kR repetitions is a LOT of preprocessing, and a lot of random number generation
- And most of this won't ever be used! Most of the time, when we hash, we don't
 make it more than a few indices into the permutation.
- Idea: Instead of taking just the first hash item that appears in the permutation, take the first (say) 3. Concatenate them together. Then we just need k/3 permutations per hash table to get similar bounds.
- So let's say we have A = {black, red, green, blue, orange}, and we're looking at
 a permutation P = {purple, red, white, orange, yellow, blue, green, black}.

- OK, so kR repetitions is a LOT of preprocessing, and a lot of random number generation
- And most of this won't ever be used! Most of the time, when we hash, we don't
 make it more than a few indices into the permutation.
- Idea: Instead of taking just the first hash item that appears in the permutation, take the first (say) 3. Concatenate them together. Then we just need k/3 permutations per hash table to get similar bounds.
- So let's say we have A = {black, red, green, blue, orange}, and we're looking at
 a permutation P = {purple, red, white, orange, yellow, blue, green, black}.
- Then A hashes to redorangeblue

• If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.

- If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.
- Does this affect the analysis?

- If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.
- Does this affect the analysis?
 - Yes; the *k* we're concatenating for each hash table are no longer independent!

- If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.
- Does this affect the analysis?
 - Yes; the *k* we're concatenating for each hash table are no longer independent!
 - But this works fine in practice (and is used all the time)

- If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.
- Does this affect the analysis?
 - Yes; the k we're concatenating for each hash table are no longer independent!
 - But this works fine in practice (and is used all the time)
- We will do this on the Assignment; in fact I recommend using $\hat{k} = k$. That means that each repetition has only one permutation.

- If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.
- Does this affect the analysis?
 - Yes; the k we're concatenating for each hash table are no longer independent!
 - But this works fine in practice (and is used all the time)
- We will do this on the Assignment; in fact I recommend using $\hat{k} = k$. That means that each repetition has only one permutation.
- I think it makes life very significantly easier. In the real world you want a smaller value of \hat{k}

• 128 bit integers (stored as a struct of two unsigned 64 bit ints; called an Item)

- 128 bit integers (stored as a struct of two unsigned 64 bit ints; called an Item)
- Universe: $\{0, ..., 127\}$. (You can pretend that these are images, each of which is labelled with a subset of 128 possible tags.)

- 128 bit integers (stored as a struct of two unsigned 64 bit ints; called an Item)
- Universe: $\{0, ..., 127\}$. (You can pretend that these are images, each of which is labelled with a subset of 128 possible tags.)
- Each bit is a 0 or 1 at random

- 128 bit integers (stored as a struct of two unsigned 64 bit ints; called an Item)
- Universe: $\{0, ..., 127\}$. (You can pretend that these are images, each of which is labelled with a subset of 128 possible tags.)
- Each bit is a 0 or 1 at random
- (Not realistic case, but hard case!)

• MinHash: go through each index in the permutation

- MinHash: go through each index in the permutation
- See if the corresponding bit is a 1 in the Item we're hashing.

- MinHash: go through each index in the permutation
- See if the corresponding bit is a 1 in the Item we're hashing.
- How can we do this?

- MinHash: go through each index in the permutation
- See if the corresponding bit is a 1 in the Item we're hashing.
- How can we do this?
- Most efficient way I know is not clever. Just go through each index, and check to see if that bit is set (say by calculating x & (1 « index) —but remember that these are 128 bits)

Concatenating Indices

• Each time you hash you'll get k indices

Concatenating Indices

- Each time you hash you'll get k indices
- Each is a number from 0 to 127

Concatenating Indices

- Each time you hash you'll get k indices
- Each is a number from 0 to 127
- How can these get concatenated together?

Concatenating Indices

- Each time you hash you'll get k indices
- Each is a number from 0 to 127
- How can these get concatenated together?
- Option 1: convert to strings, call strcat

Concatenating Indices

- Each time you hash you'll get k indices
- Each is a number from 0 to 127
- How can these get concatenated together?
- Option 1: convert to strings, call strcat
- Note: need to make sure to convert to three-digit strings! Otherwise hashing to 12 and then 1 will look the same as hashing to 1 and then 21. (012 and 001 instead)

Concatenating Indices

- Each time you hash you'll get k indices
- Each is a number from 0 to 127
- How can these get concatenated together?
- Option 1: convert to strings, call strcat
- Note: need to make sure to convert to three-digit strings! Otherwise hashing to 12 and then 1 will look the same as hashing to 1 and then 21. (012 and 001 instead)
- Option 2: Treat as bits. 0 to 127 can be stored in 7 bits. Store the hash as a sequence of k 8-bit chunks.

• In theory we want buckets of size 1.

- In theory we want buckets of size 1.
- In practice, we want slightly bigger.

- In theory we want buckets of size 1.
- In practice, we want slightly bigger.
- Why? Having a large number of buckets and/or repetitions leads to bad constants

- In theory we want buckets of size 1.
- In practice, we want slightly bigger.
- Why? Having a large number of buckets and/or repetitions leads to bad constants
- Smaller *k* means fewer buckets, fewer repetitions (but bigger buckets and more comparisons)

- In theory we want buckets of size 1.
- In practice, we want slightly bigger.
- Why? Having a large number of buckets and/or repetitions leads to bad constants
- Smaller k means fewer buckets, fewer repetitions (but bigger buckets and more comparisons)
- Start with $k \approx \log_3 n$, but experiment with slightly smaller values.

Repetitions?

• You're guaranteed that there exists a close pair in the dataset

Repetitions?

• You're guaranteed that there exists a close pair in the dataset

 My implementation just keeps repeating until the pair is found (no maximum number of repetitions)

Repetitions?

You're guaranteed that there exists a close pair in the dataset

 My implementation just keeps repeating until the pair is found (no maximum number of repetitions)

• The discussion of repetitions in the lecture is for two reasons: 1. analysis, 2. give intuition for the tradeoff by varying k

• Each time we hash, (i.e. build a new "hash table") need to figure out what hashes where so that we can compare elements with the same hash

- Each time we hash, (i.e. build a new "hash table") need to figure out what hashes where so that we can compare elements with the same hash
- Unfortunately, we're not hashing to a number from (say) 0 to n-1. We're instead concatenating indices

- Each time we hash, (i.e. build a new "hash table") need to figure out what hashes where so that we can compare elements with the same hash
- Unfortunately, we're not hashing to a number from (say) 0 to n-1. We're instead concatenating indices
- How to keep track of buckets?

- Each time we hash, (i.e. build a new "hash table") need to figure out what hashes where so that we can compare elements with the same hash
- Unfortunately, we're not hashing to a number from (say) 0 to n-1. We're instead concatenating indices
- How to keep track of buckets?
- Answer: take the concatenated indices and put them into MurmurHash, then take modulo *n*.

- Each time we hash, (i.e. build a new "hash table") need to figure out what hashes where so that we can compare elements with the same hash
- Unfortunately, we're not hashing to a number from (say) 0 to n-1. We're instead concatenating indices
- How to keep track of buckets?
- Answer: take the concatenated indices and put them into MurmurHash, then take modulo n.
- Then, we are hashing to a number from 0 to n-1!

• Get a list of 128-bit bit vectors

- Get a list of 128-bit bit vectors
- First, minhash each to put it in a bucket from 0 to n-1

- Get a list of 128-bit bit vectors
- First, minhash each to put it in a bucket from 0 to n-1
- For each bucket, compare all pairs of vectors in the bucket; if a similar one is ever found return it

- Get a list of 128-bit bit vectors
- First, minhash each to put it in a bucket from 0 to n-1
- For each bucket, compare all pairs of vectors in the bucket; if a similar one is ever found return it
- If a similar one is not found, repeat with new minhashes

We begin by generating a random permutation of the numbers from 0 to 127 We find the minhash of a 128-bit vector x as follows:

1. Find the first $k \approx \log_3 n$ numbers i in the permutation where x has a 1 in position i

We begin by generating a random permutation of the numbers from 0 to 127 We find the minhash of a 128-bit vector x as follows:

- 1. Find the first $k \approx \log_3 n$ numbers i in the permutation where x has a 1 in position i
- 2. Concatenate these numbers to form a string s

We begin by generating a random permutation of the numbers from 0 to 127 We find the minhash of a 128-bit vector x as follows:

- 1. Find the first $k \approx \log_3 n$ numbers i in the permutation where x has a 1 in position i
- 2. Concatenate these numbers to form a string s
- 3. Use Murmurhash on s to get a large random integer back

We begin by generating a random permutation of the numbers from 0 to 127 We find the minhash of a 128-bit vector x as follows:

- 1. Find the first $k \approx \log_3 n$ numbers i in the permutation where x has a 1 in position i
- 2. Concatenate these numbers to form a string s
- 3. Use Murmurhash on s to get a large random integer back
- 4. Take mod n to get a number from 0 to n-1