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Admin

Midterm a week from today in class
Practice midterm out in the next 24 hours; solutions early next week

I created both the midterm and the practice midterm at the same time; they
should be extremely similar in terms of structure and very similar in terms of
topics

No writing code on the midterm
Review session Tuesday; bring questions

Assignment 4 out tonight (I'm adding some extra starter code because I know
you're also studying)

I will grade everything before the midterm



Finding Similar Items
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Back to Normal Inputs

e Today: no more streaming! Have all data available to us.

e But data is still big!
e In particular: high-dimensional
e Table with many columns

e For each Netflix user, what movies have they seen

INFORMERD,INTELLIGENT
DECISIONS

e Goal: solve a computationally difficult, but important, problem. If you've taken
an ML course it's reasonably likely that you've seen some variant of this

problem.
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Finding Similar Pair
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e Given a set of objects

e Find the most similar pair of
objects in the set
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Why Find Similar Objects?

Find similar news articles for user
suggestions.

Similar music: Spotify suggests music by
finding similar users, and selecting what
they listen to

Machine learning in general (training,
evaluation, actual algorithms, etc.)

Data deduplication, etc.

“Give me a similar pair in this dataset” is a
common query!



Similarity Search Example

Not Sure What to Watch?

Choose Play Something and we'll pick things for you to watch based on your
tastes.




Strategies for Similarity Search
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First attempt: 1-dimensional data

92

44 e Given a list of numbers

7 e “Similarity" is the absolute value of
65 the difference between them

60  How can we find the closest

23 numbers (i.e. ones with smallest
80 difference)?

67
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First attempt: 1-dimensional data

Aside: can we do better? Yes, there's a clever
O(n) algorithm based on sampling.

® MUW EllILIelIly Lall we do this?
i e Step 1: Sort!
60 . .
65 e Step 2: Scan through list, find most
67 similar adjacent elements.
80 e O(nlogn) time
92
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Two-dimensional Data?

e You might have seen this in CS 256.
° ® (Not with me ®)

@ ° Divide and conquer, O(nlogn) time.

o © e (Again, possible in O(n) with
PY P sampling.)
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What About Higher Dimensions?

We want VERY high dimensions (tens, hundreds, or even millions)

Songs listened to, movies watched, image tags, etc.

Words that appear in a book, k-grams that appear in a DNA sequence

In ML applications, often want to search in the embedded space
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e I mean that each datapoint is a
Only counting movies | saw for the first time. Faves: 4, atm. Best:

"Harry Potter and the Deathly Hallows: Part I". :D [ong Vector.
WARNING: LIST MAY CONTAIN SPOILERS!

9-Jan-2010: 1. Fish tank

17-Jan-2010: 2. The cove

Fave! People = shit. | saw it with Miss C, who was rendered
speechless with rage.

29-Jan-2010: 3. The sound of insects: Record of a mummy

1-Feb-2010: 4. Dreamland
Icelandic festival docu.

3-Feb-2010: 5. A mother’s courage: Talking back to autism

5-Feb-2010: 6. Creation
Charles Darwin biopic.
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What | mean by “dimension”

Josefine S. (Protected by ...

(k) The 38 movies | saw in 2010 :)

Only counting movies | saw for the first time. Faves: 4, atm. Best:

"Harry Potter and the Deathly Hallows: Part I". :D
WARNING: LIST MAY CONTAIN SPOILERS!

9-Jan-2010: 1. Fish tank

17-Jan-2010: 2. The cove

Fave! People = shit. | saw it with Miss C, who was rendered
speechless with rage.

29-Jan-2010: 3. The sound of insects: Record of a mummy

1-Feb-2010: 4. Dreamland
Icelandic festival docu.

3-Feb-2010: 5. A mother’s courage: Talking back to autism

5-Feb-2010: 6. Creation
Charles Darwin biopic.

I mean that each datapoint is a
long vector.

“The songs this user has listened to
are: [...I"

“The movies this user has watched
are: [...]"

“The tags generated for this image
are: [...]"
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I mentioned: O(n logn) for 1or 2
dimensions

In fact, can get O(nlogn) for
constant dimensions

But: exponential time in the
dimension!

Something like O(2% - nlogn)
Worse than trying all pairs if > logn
dimensions
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Curse of Dimensionality

e Curse of dimensionality: Many problems have running time exponential in the
dimension of the objects.

e Well-known phenomenon

e Applies to similarity search, machine learning, combinatorics
e Approximation techniques, like those we learn about today, are underused to a
slightly shocking extent—even in ML people sometimes keep dimensionality low
to avoid this issue, affecting the quality of results
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Avoiding the Curse of Dimensionality

Today we’'re talking about how to get efficient algorithms for arbitrarily large
dimensions.

Linear cost in terms of dimension (but expensive in terms of the problem

size).
We'll come back

to this later

Two tools to get us the

e Assume that the
pair)
e Use hashing! ...A special kind of hashing

ose pair is much closer than any other (approximate closest

For many of these problems, random inputs are worst-case inputs

e Worst case behavior actually occurs for many common use cases; guarantees
(even approximate) can be very valuable
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Locality-Sensitive Hashing

Normally, hashing spreads out elements.

This is key to hashing: no matter how clustered my data begins, I wind up with
a nicely-distributed hash table

Locality-sensitive hashing tries to act like a normal hash for items that are
dissimilar, but wants collisions for similar elements

Similar items are likely to wind up in the same bucket. But dissimilar items are
not
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Locality-Sensitive Hashing: Formal Definition

Needs a similarity threshold r, an approximation factor ¢ < 1

Two guarantees:
o If two items x and y have similarity > r, h(x) = h(y) with probability at least p-.

o If two items x and y have similarity < cr, h(x) = h(y) with probability at most p».

High level idea: close items are likely to collide. Far items are unlikely to
collide.

Generally want p, to be about 1/n; then we get a normal hash table for far (i.e.
similarity < cr) elements.



Why Locality-Sensitive Hashing Helps

(101, 37, 65) (91, 84, 3) (190, 18, 79)
(193, 37, 64)
o 1 2 3 4

Ideally, close items hash to the same bucket.
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Issue: Low probability of success!

e If we have p, = 1/n, then p is usually very small.

e Think something like 1/y/n: a lot bigger than 1/n, but nowhere near 1.

e How can we increase this probability?

e Repetitions! Maintain many hash tables, each with a different locality-sensitive
hash function, and try all of them.



LSH with Repetitions

(181, 37, 65) (183,37,64) (91,84,3) (100,18,79)
(181,37,65)
(193,37,64) (91,84,3) (100,18,79)
(91,84,3)
(181, 37, 65) (193,37,64) ey
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What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

e Images in machine learning: often Euclidean distance (the distance we're
familiar with on a day-to-day basis)

e What about sets?

e Songs listened to by a user
¢ Movies watched by a user
e Human-generated tags given to an image

e Words that appear in a document

e Need a way to measure set similarity
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Set Similarity (Example Created in 2020)

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

Not very similar!

e When are two sets similar?

e Let's look at our two sets. Similar if
they have a lot of overlap
e I.e. lots of artists in common,

compared to total artists in either
list



Set Similarity (Example Created in 2020)

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Ed Sheerhan

Khalid Drake
Drake Travis Scott
Travis Scott Taylor Swift

e When are two sets similar?

e Let’'s look at our two sets. Similar if
they have a lot of overlap
e Ie.: lots of artists in common,

compared to total artists in either
list



Set Similarity (Example Created in 2020)

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Ed Sheerhan

Khalid Drake
Drake Travis Scott
Travis Scott Taylor Swift

Moderatly similar!

e When are two sets similar?

e Let's look at our two sets. Similar if
they have a lot of overlap
e Ie.: lots of artists in common,

compared to total artists in either
list
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Jaccard Similarity

e Similarity measure for sets A and B

e Defined as:
|ANB|

AU B

e Intuitively: Jaccard similarity says what fraction of two sets overlaps.



Jaccard Similarity Intuition 1

loU: 04034 loU: 0,7330 loU: 0,9264

Poor Good Excellent



Jaccard Similarity Intuition 2

Area of Overlap
loU =

Area of Union




Image Search Example




Jaccard Example 1 (Example Created in 2020)
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Jaccard Example 1 (Example Created in 2020)

User 1 User 2
Post Malone | Ariana Grande
Ariana Grande Khalid
Khalid Drake
Drake Travis Scott

Travis Scott

Similarity: |ANB|/|AUB|.
lANB| =4
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Jaccard Similarity: 4/5 = .8
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Set Similarity (Example Created in 2020)
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Ariana Grande
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Set Similarity (Example Created in 2020)

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

Similarity: |ANB|/|AUB|.
lANB| =1

lAUB| =5

Jaccard Similarity: 1/5 = .2



Set Similarity (Example Created in 2020)

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Ed Sheerhan

Khalid

Drake

Drake

Travis Scott

Travis Scott

Taylor Swift

e Similarity: [ANB|/|AUB|.



Set Similarity (Example Created in 2020)

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Ed Sheerhan

Khalid

Drake

Drake

Travis Scott

Travis Scott

Taylor Swift

e Similarity: [ANB|/|AUB|.
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Set Similarity (Example Created in 2020)

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Ed Sheerhan

Khalid

Drake

Drake

Travis Scott

Travis Scott

Taylor Swift

e Similarity: [ANB|/|AUB|.
e |ANB|=3
e |AUB| =7



Set Similarity (Example Created in 2020)

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Ed Sheerhan

Khalid

Drake

Drake

Travis Scott

Travis Scott

Taylor Swift

Similarity: |ANB|/|AUB|.
lAnB| =3

IAUB| =7

Jaccard Similarity: 3/7 = 0.428
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Jaccard Similarity: Properties

e Works on sets (each dimension is binary—an item is in the set, or not in the
set)

e Always gives a number between O and 1
¢ 1 means identical, ® means no items in common

e Jaccard similarity ignores items not in either set. So we learn nothing if
neither of us like an artist. (Is this good?)

e Still works if one list is much longer than the other. (Generally, they’ll have
small similarity)
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Locality-Sensitive Hash for Jaccard Similarity

e \Want: items with high Jaccard Similarity are likely to hash together

e Items with low Jaccard Similarity are unlikely to hash together

¢ Classic method: MinHash



MinHash
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MinHash

e Developed by Andrei Broder in 1997 while working at AltaVista

e (AltaVista was probably the most popular search engine before Google, they
wanted to detect similar web pages to eliminate them from search results)

e Now used for similarity search, database joins, clustering—LOTS of things.



AltaVista in 2001
PN altavista

THE SEARCH COMPANY

Try your search in: Shopping * Images + Video + MP3/Audio « News * Autos + Technology

 ___Jlanylanguage - i Search

mm-semnmmmnmzm&mﬂmmm

Find Downloads - Text-Only Search - Weight Calculator - Find A Date + More...
News: As California Sweats It Out_2 Funds Profit « More News .

Web Site Hosting - Insurance Quotes « Radio Pet Fence « Rebates Center » Buy A Computer
Travel Planning + Online Casinos & Gambling « Electronics Store « NBA Tickets « Win Free Travel

Arts & Entertainment Music

Business Center
AltaVista Enterprise Software
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Bit Vectors

Can represent any set as a vector of bits

Each bit is an item. “1” means that that item is in the set, “0” means it's not

So if I'm keeping track of different people’s favorite colors, my universe may
be {red, yellow, blue, green, purple, orange}

If someone likes red and blue, we can store that information as 191008.

Effective if universe is fairly small; use a list for larger universe
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Bit Vectors: Jaccard Similarity

e How can we determine AN B?

e This is exactly A & B in C-style notation
e What about A U B?

e This is exactly A | B in C-style notation

e We want the size of these sets—need to count the number of 1sin A & B, or A |
B.
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MinHash

e The hash consists of a permutation of all possible items in the universe
e {0,...,127} in the assignment

e To hash a set A: find the first item in A in the order given by the permutation.
That item is the hash value!
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Let’s stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

To hash, we randomly permute them. Let’s say our current hash is given by the
permutation (blue, orange, green, purple, red, yellow). Some examples:

First set is 1901000 (same as {red, blue}). blue is in the set, so the hash value is
blue.

Second set is 110010 (we could also write {red, yellow, purple}).



MinHash example

e Let’s stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

e To hash, we randomly permute them. Let’s say our current hash is given by the
permutation (blue, orange, green, purple, red, yellow). Some examples:

e First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is
blue.

e Second set is 110010 (we could also write {red, yellow, purple}). blue is not in
the set; nor is orange; nor is green. purple is, so purple is the hash value
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MinHash for Bit Vectors

On the assignment, have bit vectors of length 128

To get a hash function, we need a random permutation of the indices of these
bits. That is to say, a random permutation of {0,1,2,...,127}

To hash an item x, go through the random permutation. Find the first index 7 in
the list such that the ith bit of x is 1.

Let's say x = 18100101, and the permutation is (1,5,2,0,7,6, 4, 3).
e On your own: what is the minhash of x for this permutation?

The minhash of x is 5.
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MinHash

A single MinHash: hashes each set to one of its elements (i.e. the position of
one of its one bits)

What happens when we store elements in buckets according to this hash
table?

Not useful yet—output is too small! Almost all items will have one of the first
few items in the permutation, so will hash to the first few buckets

Let's do some analysis to look at this issue in more detail
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Analysis

e What is the probability that h(A) = h(B)?

e Let’s look at the permutation that defines h. We can ignore any item that is not
in A or B (why?)

e Look at the first index in the permutation that is in A or B (i.e. itisin AU B)

o If this index is in both A and B, then h(A) = h(B)
o If this index is in only one of A or B, then h(A) # h(B)

e Any index in A U B is equally likely to be first. If the index is in A N B, they hash
together; otherwise they do not

e Therefore: probability of hashing together is |A N B|/|A UB|.
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MinHash as an LSH

e This means MinHash is an LSH!

o If two items have similarity at least r, they collide with probability at least
p1=r

o If two items have similarity at most cr, they collide with probability at most
p2 =c¢r



Analysis: Phrased as bit vectors

e What is the probability that h(A) = h(B)?

e Let’s look at the permutation that defines h. We can ignore any index that is ®
in both A and B.

e Look at the first index in the permutation that is 1in A or B

o If this index is in both A and B, then h(A) = h(B)
o If this index is in only one of A or B, then h(A) # h(B)

e Any index that is 1in A|B is equally likely to be first. If the index is in A&B, they
hash together; otherwise they do not

e Therefore: probability of hashing together is
(number of 1s in A&B)/(number of 1s in A|B).
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together
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Analysis Example

e Let's say we have A = {red, blue, green} and B = {red, orange, purple, green}.
e When do A and B hash together?

e If red or green appears before blue, orange, and purple then they hash
together

e If blue or orange or purple appear before red and green, then they don’t hash
together

e Probability that red or green is first out of {red, blue, green, orange, purple} is
2/5.

e Therefore, A and B hash together with probability 2/5.
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Making Sure We Find the Close Pair

¢ To find the close pair, compare all pairs of items that hash to the same value

e (We'll talk about how to do this in a moment)

e Let’s say our close pair has similarity .5. How many times do we need to
repeat?

e Each repetition has the close pair in the same bucket with probability .5. So
need 2 repetitions in expectation.
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An Aside on Expectation

Lemma

If a random process succeeds with probability p, then in expectation it takes 1/p
iterations of the process before success.

Examples:

o It takes two coin flips in expectation before we see a heads

e We need to roll a 6-sided die 6 times before we see (say) a three.

Proof: the expectation is

0o . o oo ' o 1 1
;1;)(1—@ 1—pglﬁ—p) = PETAPR
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Problems with this Approach

e Buckets are really big!! (After all, lots of items are pretty likely to have a given
bit set.)

e How can we decrease the probability that items hash together?

e Answer: concatenate multiple hashes together.
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Concatenating Hashes

e Rather than one hash h, concatenate k independent hashes hq, h,, ... hg, each
with its own permutation Py, Po, ... Py.

e To hash an item: repeat the process of searching through the permutation for
each hash. Then concatenate the results together (can just use string
concatenation)

e How does this affect the probability for sets A and B?

e For each of the k independent hashes, A and B collide with probability
|ANnBJ|/|AUBI.
e We only obtain the same concatenated hashes if all of the hashes are the same.

e They are independent, so we can multiply to obtain probability (]JA N B|/|A U B|)
of A and B colliding.



Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange}, and kK = 3.



Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange}, and kK = 3.

e Py = {red, green, blue, orange},P> = {orange, green, blue, red},P3; = {red, green,
blue, orange}



Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange}, and kK = 3.

e Py = {red, green, blue, orange},P> = {orange, green, blue, red},P3; = {red, green,
blue, orange}

e Let’s hash A.



Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange}, and kK = 3.

e Py = {red, green, blue, orange},P> = {orange, green, blue, red},P3; = {red, green,
blue, orange}

e Let’s hash A.

e First hash: red is in A.



Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange}, and kK = 3.

e Py = {red, green, blue, orange},P> = {orange, green, blue, red},P3; = {red, green,
blue, orange}

e Let’s hash A.

e First hash: red is in A.

e Second hash: orange not in A, nor is green. Blue is in A.



Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange}, and kK = 3.

e Py = {red, green, blue, orange},P> = {orange, green, blue, red},P3; = {red, green,
blue, orange}

e Let’s hash A.
e First hash: red is in A.

e Second hash: orange not in A, nor is green. Blue is in A.

e Third hash: red is in A.



Concatenation Example

Let's say we have A = {red, blue} and B = {red, orange}, and k = 3.
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e Py = {red, green, blue, orange},P> = {orange, green, blue, red},P3; = {red, green,
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Concatenation Example

Let's say we have A = {red, blue} and B = {red, orange}, and k = 3.

Py = {red, green, blue, orange},P, = {orange, green, blue, red},P3 = {red, green,
blue, orange}

Let’s hash B.

e First hash: red is in B.
e Second hash: orange is in B.

e Third hash: red is in B.

Concatenating, we have h(B) = redorangered
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Putting it all Together

e For each hash table, we concatenate k hashes to obtain a signature
e Hash the signature of each item to obtain a bucket to place the item in
e Check every pair of items in each bucket and see if it's the closest

¢ Quite often we'll get unlucky and the close pair won't be in the same bucket.
What can we do?

e Need to repeat all of that multiple times until we find the close pair (let’s say
we repeat R times)

e So: overall need kR permutations

e What kind of values work for kK and R?



Putting it Together: Analysis

e Let's say we have a set of n items x3,...,x,



Putting it Together: Analysis

e Let's say we have a set of n items x3,...,x,

e The close pair of items has Jaccard similarity 3/4



Putting it Together: Analysis

e Let's say we have a set of n items x3,...,x,

e The close pair of items has Jaccard similarity 3/4

e Every other pair of items has similarity 1/3



Putting it Together: Analysis

Let's say we have a set of n items x4, ..., X,

The close pair of items has Jaccard similarity 3/4

Every other pair of items has similarity 1/3

How should we set k? How many repetitions R is it likely to take?
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Putting it Together: Analysis (Finding k)

Non-similar pairs have similarity 1/3

We want buckets to be small (have O(1) size)

Look at an element x;. What is the expected size of its bucket?

Zj¢i(1/3)k (since x; and any x; with j # 7 share a hash value with probability
1/3)

We can then solve (n — 1)(1/3)K = 1to get k = logg(n — 1).
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° (.75)|0g3(”—1)
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o (.75)l8s(n=1)
q (_75)log3(n*1) — 9logy(n—1)log,(3/4)/ log(3)
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o A~ n'°8(3/4)/108(3) — 1/n-26
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log/exponent

expressions,
try putting

everything as

a power of 2.
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Putting it Together: Analysis (Predicting R)

The similar pair has Jaccard similarity .75

So they are in the same bucket with probability (.75)k

We have k = (logz n — 1). So...we need to do some algebra. (Let’s assume that
k is already an integer)

(_75)'0g3(n*1) — 9logy(n—1)log,(3/4)/ log(3) — (n — 1)|0g(3/4)/|0g(3) ~1/n26

So we expect about R = n2% repetitions. That's a lot!

But it's not far from the state of the art.

And way better than brute force!
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Finding R and k in general

Let’s say we have n points where the close pairs have similarity j;, and all other
pairs have similarity at most j,

o First, set k so that each bucket has size O(1): k = logy ;, n.

e Doable at home: show that this is the optimal value for k using the below analysis.

e Then, number of R we need in expectation is:

k logy/;i. n
(G) =(5) " =neom,
J J1
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Plan for Assignment 2

Until we find the close pair of items:

Hash all n items using MinHash

For each bucket, compare all pair of items in the bucket to see if they are
close. If a close pair is found, return return it

(Our analysis shows that we'll need to hash all n items n'°¢v2(/) times in
expectation)



Practical MinHash Considerations
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So many Permutations!

e OK, so kR repetitions is a LOT of preprocessing, and a lot of random number
generation

e And most of this won't ever be used! Most of the time, when we hash, we don't
make it more than a few indices into the permutation.

e Idea: Instead of taking just the first hash item that appears in the
permutation, take the first (say) 3. Concatenate them together. Then we just
need k/3 permutations per hash table to get similar bounds.

e So let’s say we have A = {black, red, green, blue, orange}, and we’re looking at
a permutation P = {purple, red, white, orange, yellow, blue, green, black}.

e Then A hashes to redorangeblue
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Reducing Permutations

o If you take the k first items when hashing, rather than just taking the first one,
we only need kR/IA< total permutations.

e Does this affect the analysis?
e Yes; the k we're concatenating for each hash table are no longer independent!

e But this works fine in practice (and is used all the time)

o We will do this on the Assignment; in fact I recommend using k = k. That
means that each repetition has only one permutation.

e I think it makes life very significantly easier. In the real world you want a
smaller value of k
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Assignment Parameters

128 bit integers (stored as a struct of two unsigned 64 bit ints; called an
Item)

Universe: {0,...,127}. (You can pretend that these are images, each of which
is labelled with a subset of 128 possible tags.)

Each bit is a ® or 1 at random

(Not realistic case, but hard case!)
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What About Hashing?

MinHash: go through each index in the permutation

See if the corresponding bit is a 1in the Item we're hashing.

e How can we do this?

Most efficient way I know is not clever. Just go through each index, and check
to see if that bit is set (say by calculating x & (1 « index) —but
remember that these are 128 bits)
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Concatenating Indices

e Each time you hash you’ll get k indices

e Each is a number from O to 127

e How can these get concatenated together?
e Option 1: convert to strings, call strcat

e Note: need to make sure to convert to three-digit strings! Otherwise hashing
to 12 and then 1 will look the same as hashing to 1 and then 21. (812 and 001
instead)

e Option 2: Treat as bits. ® to 127 can be stored in 7 bits. Store the hash as a
sequence of k 8-bit chunks.
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Getting a Good k

e In theory we want buckets of size 1.
e In practice, we want slightly bigger.

e Why? Having a large number of buckets and/or repetitions leads to bad
constants

e Smaller kK means fewer buckets, fewer repetitions (but bigger buckets and
more comparisons)

¢ Start with k =~ logs n, but experiment with slightly smaller values.
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Repetitions?

e You're guaranteed that there exists a close pair in the dataset

e My implementation just keeps repeating until the pair is found (no maximum
number of repetitions)

e The discussion of repetitions in the lecture is for two reasons: 1. analysis, 2.
give intuition for the tradeoff by varying k
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How to Deal with Buckets?

e Each time we hash, (i.e. build a new “hash table”) need to figure out what
hashes where so that we can compare elements with the same hash

e Unfortunately, we're not hashing to a number from (say) ® ton — 1. We're
instead concatenating indices

e How to keep track of buckets?

e Answer: take the concatenated indices and put them into MurmurHash, then
take modulo n.

e Then, we are hashing to a number from ® ton — 1!
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Assignment 4 plan

Get a list of 128-bit bit vectors

First, minhash each to put it in a bucket from Q@ ton — 1

For each bucket, compare all pairs of vectors in the bucket; if a similar one is
ever found return it

If a similar one is not found, repeat with new minhashes
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Assignment 4: Minhashing a vector

We begin by generating a random permutation of the numbers from ® to 127

We find the minhash of a 128-bit vector x as follows:

1. Find the first k ~ logz n numbers i in the permutation where x has a 1in
position i

2. Concatenate these numbers to form a string s
3. Use Murmurhash on s to get a large random integer back

4. Take mod n to get a number from ® ton — 1
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