
Lecture 12: Locality-Sensitive
Hashing and MinHash

Sam McCauley

October 17, 2025

Williams College

Admin

• Midterm a week from today in class

• Practice midterm out in the next 24 hours; solutions early next week

• I created both the midterm and the practice midterm at the same time; they

should be extremely similar in terms of structure and very similar in terms of

topics

• No writing code on the midterm

• Review session Tuesday; bring questions

• Assignment 4 out tonight (I’m adding some extra starter code because I know

you’re also studying)

• I will grade everything before the midterm

Finding Similar Items

Back to Normal Inputs

• Today: no more streaming! Have all data available to us.

• But data is still big!

• In particular: high-dimensional

• Table with many columns

• For each Netflix user, what movies have they seen

• Goal: solve a computationally difficult, but important, problem. If you’ve taken

an ML course it’s reasonably likely that you’ve seen some variant of this

problem.

Back to Normal Inputs

• Today: no more streaming! Have all data available to us.

• But data is still big!

• In particular: high-dimensional

• Table with many columns

• For each Netflix user, what movies have they seen

• Goal: solve a computationally difficult, but important, problem. If you’ve taken

an ML course it’s reasonably likely that you’ve seen some variant of this

problem.

Back to Normal Inputs

• Today: no more streaming! Have all data available to us.

• But data is still big!

• In particular: high-dimensional

• Table with many columns

• For each Netflix user, what movies have they seen

• Goal: solve a computationally difficult, but important, problem. If you’ve taken

an ML course it’s reasonably likely that you’ve seen some variant of this

problem.

Back to Normal Inputs

• Today: no more streaming! Have all data available to us.

• But data is still big!

• In particular: high-dimensional

• Table with many columns

• For each Netflix user, what movies have they seen

• Goal: solve a computationally difficult, but important, problem. If you’ve taken

an ML course it’s reasonably likely that you’ve seen some variant of this

problem.

Back to Normal Inputs

• Today: no more streaming! Have all data available to us.

• But data is still big!

• In particular: high-dimensional

• Table with many columns

• For each Netflix user, what movies have they seen

• Goal: solve a computationally difficult, but important, problem. If you’ve taken

an ML course it’s reasonably likely that you’ve seen some variant of this

problem.

Back to Normal Inputs

• Today: no more streaming! Have all data available to us.

• But data is still big!

• In particular: high-dimensional

• Table with many columns

• For each Netflix user, what movies have they seen

• Goal: solve a computationally difficult, but important, problem. If you’ve taken

an ML course it’s reasonably likely that you’ve seen some variant of this

problem.

Finding Similar Pair

• Given a set of objects

• Find the most similar pair of

objects in the set

Finding Similar Pair

• Given a set of objects

• Find the most similar pair of

objects in the set

Why Find Similar Objects?

• Find similar news articles for user

suggestions.

• Similar music: Spotify suggests music by

finding similar users, and selecting what

they listen to

• Machine learning in general (training,

evaluation, actual algorithms, etc.)

• Data deduplication, etc.

• “Give me a similar pair in this dataset” is a

common query!

Why Find Similar Objects?

• Find similar news articles for user

suggestions.

• Similar music: Spotify suggests music by

finding similar users, and selecting what

they listen to

• Machine learning in general (training,

evaluation, actual algorithms, etc.)

• Data deduplication, etc.

• “Give me a similar pair in this dataset” is a

common query!

Why Find Similar Objects?

• Find similar news articles for user

suggestions.

• Similar music: Spotify suggests music by

finding similar users, and selecting what

they listen to

• Machine learning in general (training,

evaluation, actual algorithms, etc.)

• Data deduplication, etc.

• “Give me a similar pair in this dataset” is a

common query!

Why Find Similar Objects?

• Find similar news articles for user

suggestions.

• Similar music: Spotify suggests music by

finding similar users, and selecting what

they listen to

• Machine learning in general (training,

evaluation, actual algorithms, etc.)

• Data deduplication, etc.

• “Give me a similar pair in this dataset” is a

common query!

Why Find Similar Objects?

• Find similar news articles for user

suggestions.

• Similar music: Spotify suggests music by

finding similar users, and selecting what

they listen to

• Machine learning in general (training,

evaluation, actual algorithms, etc.)

• Data deduplication, etc.

• “Give me a similar pair in this dataset” is a

common query!

Similarity Search Example

Strategies for Similarity Search

First attempt: 1-dimensional data

92

44

7

65

60

23

80

67

• Given a list of numbers

• “Similarity" is the absolute value of

the difference between them

• How can we find the closest

numbers (i.e. ones with smallest

difference)?

First attempt: 1-dimensional data

92

44

7

65

60

23

80

67

• Given a list of numbers

• “Similarity" is the absolute value of

the difference between them

• How can we find the closest

numbers (i.e. ones with smallest

difference)?

First attempt: 1-dimensional data

92

44

7

65

60

23

80

67

• Given a list of numbers

• “Similarity" is the absolute value of

the difference between them

• How can we find the closest

numbers (i.e. ones with smallest

difference)?

First attempt: 1-dimensional data

7

23

44

60

65

67

80

92

• How efficiently can we do this?

• Step 1: Sort!

• Step 2: Scan through list, find most

similar adjacent elements.

• O(n log n) time

First attempt: 1-dimensional data

7

23

44

60

65

67

80

92

• How efficiently can we do this?

• Step 1: Sort!

• Step 2: Scan through list, find most

similar adjacent elements.

• O(n log n) time

First attempt: 1-dimensional data

7

23

44

60

65

67

80

92

• How efficiently can we do this?

• Step 1: Sort!

• Step 2: Scan through list, find most

similar adjacent elements.

• O(n log n) time

First attempt: 1-dimensional data

7

23

44

60

65

67

80

92

• How efficiently can we do this?

• Step 1: Sort!

• Step 2: Scan through list, find most

similar adjacent elements.

• O(n log n) time

First attempt: 1-dimensional data

7

23

44

60

65

67

80

92

• How efficiently can we do this?

• Step 1: Sort!

• Step 2: Scan through list, find most

similar adjacent elements.

• O(n log n) time

Aside: can we do better? Yes, there’s a clever

O(n) algorithm based on sampling.

Two-dimensional Data?

• You might have seen this in CS 256.

(Not with me)

• Divide and conquer, O(n log n) time.

• (Again, possible in O(n) with

sampling.)

Two-dimensional Data?

• You might have seen this in CS 256.

(Not with me)

• Divide and conquer, O(n log n) time.

• (Again, possible in O(n) with

sampling.)

Two-dimensional Data?

• You might have seen this in CS 256.

(Not with me)

• Divide and conquer, O(n log n) time.

• (Again, possible in O(n) with

sampling.)

What About Higher Dimensions?

• We want VERY high dimensions (tens, hundreds, or even millions)

• Songs listened to, movies watched, image tags, etc.

• Words that appear in a book, k-grams that appear in a DNA sequence

• In ML applications, often want to search in the embedded space

What About Higher Dimensions?

• We want VERY high dimensions (tens, hundreds, or even millions)

• Songs listened to, movies watched, image tags, etc.

• Words that appear in a book, k-grams that appear in a DNA sequence

• In ML applications, often want to search in the embedded space

What About Higher Dimensions?

• We want VERY high dimensions (tens, hundreds, or even millions)

• Songs listened to, movies watched, image tags, etc.

• Words that appear in a book, k-grams that appear in a DNA sequence

• In ML applications, often want to search in the embedded space

What About Higher Dimensions?

• We want VERY high dimensions (tens, hundreds, or even millions)

• Songs listened to, movies watched, image tags, etc.

• Words that appear in a book, k-grams that appear in a DNA sequence

• In ML applications, often want to search in the embedded space

What I mean by “dimension”

• I mean that each datapoint is a

long vector.

• “The songs this user has listened to

are: [. . .]”

• “The movies this user has watched

are: [. . .]”

• “The tags generated for this image

are: [. . .]”

What I mean by “dimension”

• I mean that each datapoint is a

long vector.

• “The songs this user has listened to

are: [. . .]”

• “The movies this user has watched

are: [. . .]”

• “The tags generated for this image

are: [. . .]”

What I mean by “dimension”

• I mean that each datapoint is a

long vector.

• “The songs this user has listened to

are: [. . .]”

• “The movies this user has watched

are: [. . .]”

• “The tags generated for this image

are: [. . .]”

What I mean by “dimension”

• I mean that each datapoint is a

long vector.

• “The songs this user has listened to

are: [. . .]”

• “The movies this user has watched

are: [. . .]”

• “The tags generated for this image

are: [. . .]”

How Efficient are High-dimensional Algorithms?

• I mentioned: O(n log n) for 1 or 2

dimensions

• In fact, can get O(n log n) for

constant dimensions

• But: exponential time in the

dimension!

• Something like O(2d · n log n)
• Worse than trying all pairs if > log n

dimensions

How Efficient are High-dimensional Algorithms?

• I mentioned: O(n log n) for 1 or 2

dimensions

• In fact, can get O(n log n) for

constant dimensions

• But: exponential time in the

dimension!

• Something like O(2d · n log n)
• Worse than trying all pairs if > log n

dimensions

How Efficient are High-dimensional Algorithms?

• I mentioned: O(n log n) for 1 or 2

dimensions

• In fact, can get O(n log n) for

constant dimensions

• But: exponential time in the

dimension!

• Something like O(2d · n log n)

• Worse than trying all pairs if > log n

dimensions

How Efficient are High-dimensional Algorithms?

• I mentioned: O(n log n) for 1 or 2

dimensions

• In fact, can get O(n log n) for

constant dimensions

• But: exponential time in the

dimension!

• Something like O(2d · n log n)
• Worse than trying all pairs if > log n

dimensions

Curse of Dimensionality

• Curse of dimensionality: Many problems have running time exponential in the

dimension of the objects.

• Well-known phenomenon

• Applies to similarity search, machine learning, combinatorics

• Approximation techniques, like those we learn about today, are underused to a
slightly shocking extent—even in ML people sometimes keep dimensionality low
to avoid this issue, affecting the quality of results

Curse of Dimensionality

• Curse of dimensionality: Many problems have running time exponential in the

dimension of the objects.

• Well-known phenomenon

• Applies to similarity search, machine learning, combinatorics

• Approximation techniques, like those we learn about today, are underused to a
slightly shocking extent—even in ML people sometimes keep dimensionality low
to avoid this issue, affecting the quality of results

Curse of Dimensionality

• Curse of dimensionality: Many problems have running time exponential in the

dimension of the objects.

• Well-known phenomenon

• Applies to similarity search, machine learning, combinatorics

• Approximation techniques, like those we learn about today, are underused to a
slightly shocking extent—even in ML people sometimes keep dimensionality low
to avoid this issue, affecting the quality of results

Avoiding the Curse of Dimensionality

• Today we’re talking about how to get efficient algorithms for arbitrarily large

dimensions.

• Linear cost in terms of dimension (but expensive in terms of the problem

size).

• Two tools to get us there:

• Assume that the close pair is much closer than any other (approximate closest
pair)

We’ll come back
to this later

• Use hashing! ...A special kind of hashing

• For many of these problems, random inputs are worst-case inputs

• Worst case behavior actually occurs for many common use cases; guarantees
(even approximate) can be very valuable

Avoiding the Curse of Dimensionality

• Today we’re talking about how to get efficient algorithms for arbitrarily large

dimensions.

• Linear cost in terms of dimension (but expensive in terms of the problem

size).

• Two tools to get us there:

• Assume that the close pair is much closer than any other (approximate closest
pair)

We’ll come back
to this later

• Use hashing! ...A special kind of hashing

• For many of these problems, random inputs are worst-case inputs

• Worst case behavior actually occurs for many common use cases; guarantees
(even approximate) can be very valuable

Avoiding the Curse of Dimensionality

• Today we’re talking about how to get efficient algorithms for arbitrarily large

dimensions.

• Linear cost in terms of dimension (but expensive in terms of the problem

size).

• Two tools to get us there:

• Assume that the close pair is much closer than any other (approximate closest
pair)

We’ll come back
to this later

• Use hashing! ...A special kind of hashing

• For many of these problems, random inputs are worst-case inputs

• Worst case behavior actually occurs for many common use cases; guarantees
(even approximate) can be very valuable

Avoiding the Curse of Dimensionality

• Today we’re talking about how to get efficient algorithms for arbitrarily large

dimensions.

• Linear cost in terms of dimension (but expensive in terms of the problem

size).

• Two tools to get us there:

• Assume that the close pair is much closer than any other (approximate closest
pair)

We’ll come back
to this later

• Use hashing! ...A special kind of hashing

• For many of these problems, random inputs are worst-case inputs

• Worst case behavior actually occurs for many common use cases; guarantees
(even approximate) can be very valuable

Avoiding the Curse of Dimensionality

• Today we’re talking about how to get efficient algorithms for arbitrarily large

dimensions.

• Linear cost in terms of dimension (but expensive in terms of the problem

size).

• Two tools to get us there:

• Assume that the close pair is much closer than any other (approximate closest
pair)

We’ll come back
to this later

• Use hashing! ...A special kind of hashing

• For many of these problems, random inputs are worst-case inputs

• Worst case behavior actually occurs for many common use cases; guarantees
(even approximate) can be very valuable

Avoiding the Curse of Dimensionality

• Today we’re talking about how to get efficient algorithms for arbitrarily large

dimensions.

• Linear cost in terms of dimension (but expensive in terms of the problem

size).

• Two tools to get us there:

• Assume that the close pair is much closer than any other (approximate closest
pair)

We’ll come back
to this later

• Use hashing! ...A special kind of hashing

• For many of these problems, random inputs are worst-case inputs

• Worst case behavior actually occurs for many common use cases; guarantees
(even approximate) can be very valuable

Avoiding the Curse of Dimensionality

• Today we’re talking about how to get efficient algorithms for arbitrarily large

dimensions.

• Linear cost in terms of dimension (but expensive in terms of the problem

size).

• Two tools to get us there:

• Assume that the close pair is much closer than any other (approximate closest
pair)

We’ll come back
to this later

• Use hashing! ...A special kind of hashing

• For many of these problems, random inputs are worst-case inputs

• Worst case behavior actually occurs for many common use cases; guarantees
(even approximate) can be very valuable

Locality-Sensitive Hashing

Locality-Sensitive Hashing

• Normally, hashing spreads out elements.

• This is key to hashing: no matter how clustered my data begins, I wind up with

a nicely-distributed hash table

• Locality-sensitive hashing tries to act like a normal hash for items that are

dissimilar, but wants collisions for similar elements

• Similar items are likely to wind up in the same bucket. But dissimilar items are

not

Locality-Sensitive Hashing

• Normally, hashing spreads out elements.

• This is key to hashing: no matter how clustered my data begins, I wind up with

a nicely-distributed hash table

• Locality-sensitive hashing tries to act like a normal hash for items that are

dissimilar, but wants collisions for similar elements

• Similar items are likely to wind up in the same bucket. But dissimilar items are

not

Locality-Sensitive Hashing

• Normally, hashing spreads out elements.

• This is key to hashing: no matter how clustered my data begins, I wind up with

a nicely-distributed hash table

• Locality-sensitive hashing tries to act like a normal hash for items that are

dissimilar, but wants collisions for similar elements

• Similar items are likely to wind up in the same bucket. But dissimilar items are

not

Locality-Sensitive Hashing

• Normally, hashing spreads out elements.

• This is key to hashing: no matter how clustered my data begins, I wind up with

a nicely-distributed hash table

• Locality-sensitive hashing tries to act like a normal hash for items that are

dissimilar, but wants collisions for similar elements

• Similar items are likely to wind up in the same bucket. But dissimilar items are

not

Locality-Sensitive Hashing: Formal Definition

• Needs a similarity threshold r, an approximation factor c < 1

• Two guarantees:

• If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p1.

• If two items x and y have similarity ≤ cr, h(x) = h(y) with probability at most p2.

• High level idea: close items are likely to collide. Far items are unlikely to

collide.

• Generally want p2 to be about 1/n; then we get a normal hash table for far (i.e.

similarity ≤ cr) elements.

Locality-Sensitive Hashing: Formal Definition

• Needs a similarity threshold r, an approximation factor c < 1

• Two guarantees:

• If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p1.

• If two items x and y have similarity ≤ cr, h(x) = h(y) with probability at most p2.

• High level idea: close items are likely to collide. Far items are unlikely to

collide.

• Generally want p2 to be about 1/n; then we get a normal hash table for far (i.e.

similarity ≤ cr) elements.

Locality-Sensitive Hashing: Formal Definition

• Needs a similarity threshold r, an approximation factor c < 1

• Two guarantees:

• If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p1.

• If two items x and y have similarity ≤ cr, h(x) = h(y) with probability at most p2.

• High level idea: close items are likely to collide. Far items are unlikely to

collide.

• Generally want p2 to be about 1/n; then we get a normal hash table for far (i.e.

similarity ≤ cr) elements.

Locality-Sensitive Hashing: Formal Definition

• Needs a similarity threshold r, an approximation factor c < 1

• Two guarantees:

• If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p1.

• If two items x and y have similarity ≤ cr, h(x) = h(y) with probability at most p2.

• High level idea: close items are likely to collide. Far items are unlikely to

collide.

• Generally want p2 to be about 1/n; then we get a normal hash table for far (i.e.

similarity ≤ cr) elements.

Locality-Sensitive Hashing: Formal Definition

• Needs a similarity threshold r, an approximation factor c < 1

• Two guarantees:

• If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p1.

• If two items x and y have similarity ≤ cr, h(x) = h(y) with probability at most p2.

• High level idea: close items are likely to collide. Far items are unlikely to

collide.

• Generally want p2 to be about 1/n; then we get a normal hash table for far (i.e.

similarity ≤ cr) elements.

Locality-Sensitive Hashing: Formal Definition

• Needs a similarity threshold r, an approximation factor c < 1

• Two guarantees:

• If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p1.

• If two items x and y have similarity ≤ cr, h(x) = h(y) with probability at most p2.

• High level idea: close items are likely to collide. Far items are unlikely to

collide.

• Generally want p2 to be about 1/n; then we get a normal hash table for far (i.e.

similarity ≤ cr) elements.

Why Locality-Sensitive Hashing Helps

(101, 37, 65)

(103, 37, 64)

(91, 84, 3) (100, 18, 79)

0 1 2 3 4

Ideally, close items hash to the same bucket.

Issue: Low probability of success!

• If we have p2 = 1/n, then p1

We’ll put

numbers on

this later

is usually very small.

• Think something like 1/
√
n: a lot bigger than 1/n, but nowhere near 1.

• How can we increase this probability?

• Repetitions! Maintain many hash tables, each with a different locality-sensitive

hash function, and try all of them.

Issue: Low probability of success!

• If we have p2 = 1/n, then p1

We’ll put

numbers on

this later

is usually very small.

• Think something like 1/
√
n: a lot bigger than 1/n, but nowhere near 1.

• How can we increase this probability?

• Repetitions! Maintain many hash tables, each with a different locality-sensitive

hash function, and try all of them.

Issue: Low probability of success!

• If we have p2 = 1/n, then p1

We’ll put

numbers on

this later

is usually very small.

• Think something like 1/
√
n: a lot bigger than 1/n, but nowhere near 1.

• How can we increase this probability?

• Repetitions! Maintain many hash tables, each with a different locality-sensitive

hash function, and try all of them.

Issue: Low probability of success!

• If we have p2 = 1/n, then p1

We’ll put

numbers on

this later

is usually very small.

• Think something like 1/
√
n: a lot bigger than 1/n, but nowhere near 1.

• How can we increase this probability?

• Repetitions! Maintain many hash tables, each with a different locality-sensitive

hash function, and try all of them.

LSH with Repetitions

(101, 37, 65) (103,37,64) (91,84,3) (100,18,79)

0 1 2 3 4

(101,37,65)
(103,37,64)

(91,84,3) (100,18,79)

0 1 2 3 4

(101, 37, 65) (103,37,64)
(91,84,3)

(100,18,79)

0 1 2 3 4

Similarity

What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the distance we’re

familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the distance we’re

familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the distance we’re

familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the distance we’re

familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the distance we’re

familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the distance we’re

familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the distance we’re

familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the distance we’re

familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

Very similar!

• When are two sets similar?

• Let’s look at our two sets. Similar if

they have a lot of overlap

• I.e. lots of artists in common,

compared to total artists in either

list

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

Very similar!

• When are two sets similar?

• Let’s look at our two sets. Similar if

they have a lot of overlap

• I.e. lots of artists in common,

compared to total artists in either

list

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

Very similar!

• When are two sets similar?

• Let’s look at our two sets. Similar if

they have a lot of overlap

• I.e. lots of artists in common,

compared to total artists in either

list

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

Very similar!

• When are two sets similar?

• Let’s look at our two sets. Similar if

they have a lot of overlap

• I.e. lots of artists in common,

compared to total artists in either

list

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

Not very similar!

• When are two sets similar?

• Let’s look at our two sets. Similar if

they have a lot of overlap

• I.e. lots of artists in common,

compared to total artists in either

list

Not very similar!

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

Not very similar!

• When are two sets similar?

• Let’s look at our two sets. Similar if

they have a lot of overlap

• I.e. lots of artists in common,

compared to total artists in either

list

Not very similar!

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Ed Sheerhan

Khalid Drake

Drake Travis Scott

Travis Scott Taylor Swift

Moderatly similar!

• When are two sets similar?

• Let’s look at our two sets. Similar if

they have a lot of overlap

• I.e. : lots of artists in common,

compared to total artists in either

list

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Ed Sheerhan

Khalid Drake

Drake Travis Scott

Travis Scott Taylor Swift

Moderatly similar!

• When are two sets similar?

• Let’s look at our two sets. Similar if

they have a lot of overlap

• I.e. : lots of artists in common,

compared to total artists in either

list

Jaccard Similarity

Jaccard Similarity

• Similarity measure for sets A and B

• Defined as:
|A ∩ B|
|A ∪ B|

• Intuitively: Jaccard similarity says what fraction of two sets overlaps.

Jaccard Similarity

• Similarity measure for sets A and B

• Defined as:
|A ∩ B|
|A ∪ B|

• Intuitively: Jaccard similarity says what fraction of two sets overlaps.

Jaccard Similarity

• Similarity measure for sets A and B

• Defined as:
|A ∩ B|
|A ∪ B|

• Intuitively: Jaccard similarity says what fraction of two sets overlaps.

Jaccard Similarity Intuition 1

Jaccard Similarity Intuition 2

Image Search Example

Jaccard Example 1 (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

• Similarity: |A ∩ B|/|A ∪ B|.

• |A ∩ B| = 4

• |A ∪ B| = 5

• Jaccard Similarity: 4/5 = .8

Very similar!

Jaccard Example 1 (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

• Similarity: |A ∩ B|/|A ∪ B|.
• |A ∩ B| = 4

• |A ∪ B| = 5

• Jaccard Similarity: 4/5 = .8

Very similar!

Jaccard Example 1 (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

• Similarity: |A ∩ B|/|A ∪ B|.
• |A ∩ B| = 4

• |A ∪ B| = 5

• Jaccard Similarity: 4/5 = .8

Very similar!

Jaccard Example 1 (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

• Similarity: |A ∩ B|/|A ∪ B|.
• |A ∩ B| = 4

• |A ∪ B| = 5

• Jaccard Similarity: 4/5 = .8

Very similar!

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

• Similarity: |A ∩ B|/|A ∪ B|.

• |A ∩ B| = 1

• |A ∪ B| = 5

• Jaccard Similarity: 1/5 = .2

Not very similar!

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

• Similarity: |A ∩ B|/|A ∪ B|.
• |A ∩ B| = 1

• |A ∪ B| = 5

• Jaccard Similarity: 1/5 = .2

Not very similar!

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

• Similarity: |A ∩ B|/|A ∪ B|.
• |A ∩ B| = 1

• |A ∪ B| = 5

• Jaccard Similarity: 1/5 = .2

Not very similar!

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

• Similarity: |A ∩ B|/|A ∪ B|.
• |A ∩ B| = 1

• |A ∪ B| = 5

• Jaccard Similarity: 1/5 = .2

Not very similar!

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Ed Sheerhan

Khalid Drake

Drake Travis Scott

Travis Scott Taylor Swift

• Similarity: |A ∩ B|/|A ∪ B|.

• |A ∩ B| = 3

• |A ∪ B| = 7

• Jaccard Similarity: 3/7 = 0.428

Moderately

similar

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Ed Sheerhan

Khalid Drake

Drake Travis Scott

Travis Scott Taylor Swift

• Similarity: |A ∩ B|/|A ∪ B|.
• |A ∩ B| = 3

• |A ∪ B| = 7

• Jaccard Similarity: 3/7 = 0.428

Moderately

similar

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Ed Sheerhan

Khalid Drake

Drake Travis Scott

Travis Scott Taylor Swift

• Similarity: |A ∩ B|/|A ∪ B|.
• |A ∩ B| = 3

• |A ∪ B| = 7

• Jaccard Similarity: 3/7 = 0.428

Moderately

similar

Set Similarity (Example Created in 2020)

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Ed Sheerhan

Khalid Drake

Drake Travis Scott

Travis Scott Taylor Swift

• Similarity: |A ∩ B|/|A ∪ B|.
• |A ∩ B| = 3

• |A ∪ B| = 7

• Jaccard Similarity: 3/7 = 0.428

Moderately

similar

Jaccard Similarity: Properties

• Works on sets (each dimension is binary—an item is in the set, or not in the

set)

• Always gives a number between 0 and 1

• 1 means identical, 0 means no items in common

• Jaccard similarity ignores items not in either set. So we learn nothing if

neither of us like an artist. (Is this good?)

• Still works if one list is much longer than the other. (Generally, they’ll have

small similarity)

Jaccard Similarity: Properties

• Works on sets (each dimension is binary—an item is in the set, or not in the

set)

• Always gives a number between 0 and 1

• 1 means identical, 0 means no items in common

• Jaccard similarity ignores items not in either set. So we learn nothing if

neither of us like an artist. (Is this good?)

• Still works if one list is much longer than the other. (Generally, they’ll have

small similarity)

Jaccard Similarity: Properties

• Works on sets (each dimension is binary—an item is in the set, or not in the

set)

• Always gives a number between 0 and 1

• 1 means identical, 0 means no items in common

• Jaccard similarity ignores items not in either set. So we learn nothing if

neither of us like an artist. (Is this good?)

• Still works if one list is much longer than the other. (Generally, they’ll have

small similarity)

Jaccard Similarity: Properties

• Works on sets (each dimension is binary—an item is in the set, or not in the

set)

• Always gives a number between 0 and 1

• 1 means identical, 0 means no items in common

• Jaccard similarity ignores items not in either set. So we learn nothing if

neither of us like an artist. (Is this good?)

• Still works if one list is much longer than the other. (Generally, they’ll have

small similarity)

Jaccard Similarity: Properties

• Works on sets (each dimension is binary—an item is in the set, or not in the

set)

• Always gives a number between 0 and 1

• 1 means identical, 0 means no items in common

• Jaccard similarity ignores items not in either set. So we learn nothing if

neither of us like an artist. (Is this good?)

• Still works if one list is much longer than the other. (Generally, they’ll have

small similarity)

Locality-Sensitive Hash for Jaccard Similarity

• Want: items with high Jaccard Similarity are likely to hash together

• Items with low Jaccard Similarity are unlikely to hash together

• Classic method: MinHash

Locality-Sensitive Hash for Jaccard Similarity

• Want: items with high Jaccard Similarity are likely to hash together

• Items with low Jaccard Similarity are unlikely to hash together

• Classic method: MinHash

Locality-Sensitive Hash for Jaccard Similarity

• Want: items with high Jaccard Similarity are likely to hash together

• Items with low Jaccard Similarity are unlikely to hash together

• Classic method: MinHash

MinHash

MinHash

• Developed by Andrei Broder in 1997 while working at AltaVista

• (AltaVista was probably the most popular search engine before Google, they

wanted to detect similar web pages to eliminate them from search results)

• Now used for similarity search, database joins, clustering—LOTS of things.

MinHash

• Developed by Andrei Broder in 1997 while working at AltaVista

• (AltaVista was probably the most popular search engine before Google, they

wanted to detect similar web pages to eliminate them from search results)

• Now used for similarity search, database joins, clustering—LOTS of things.

MinHash

• Developed by Andrei Broder in 1997 while working at AltaVista

• (AltaVista was probably the most popular search engine before Google, they

wanted to detect similar web pages to eliminate them from search results)

• Now used for similarity search, database joins, clustering—LOTS of things.

AltaVista in 2001

Bit Vectors

• Can represent any set as a vector of bits

• Each bit is an item. “1” means that that item is in the set, “0” means it’s not

• So if I’m keeping track of different people’s favorite colors, my universe may

be {red, yellow, blue, green, purple, orange}

• If someone likes red and blue, we can store that information as 101000.

• Effective if universe is fairly small; use a list for larger universe

Bit Vectors

• Can represent any set as a vector of bits

• Each bit is an item. “1” means that that item is in the set, “0” means it’s not

• So if I’m keeping track of different people’s favorite colors, my universe may

be {red, yellow, blue, green, purple, orange}

• If someone likes red and blue, we can store that information as 101000.

• Effective if universe is fairly small; use a list for larger universe

Bit Vectors

• Can represent any set as a vector of bits

• Each bit is an item. “1” means that that item is in the set, “0” means it’s not

• So if I’m keeping track of different people’s favorite colors, my universe may

be {red, yellow, blue, green, purple, orange}

• If someone likes red and blue, we can store that information as 101000.

• Effective if universe is fairly small; use a list for larger universe

Bit Vectors

• Can represent any set as a vector of bits

• Each bit is an item. “1” means that that item is in the set, “0” means it’s not

• So if I’m keeping track of different people’s favorite colors, my universe may

be {red, yellow, blue, green, purple, orange}

• If someone likes red and blue, we can store that information as 101000.

• Effective if universe is fairly small; use a list for larger universe

Bit Vectors

• Can represent any set as a vector of bits

• Each bit is an item. “1” means that that item is in the set, “0” means it’s not

• So if I’m keeping track of different people’s favorite colors, my universe may

be {red, yellow, blue, green, purple, orange}

• If someone likes red and blue, we can store that information as 101000.

• Effective if universe is fairly small; use a list for larger universe

Bit Vectors: Jaccard Similarity

• How can we determine A ∩ B?

• This is exactly A & B in C-style notation

• What about A ∪ B?

• This is exactly A | B in C-style notation

• We want the size of these sets—need to count the number of 1s in A & B, or A |
B.

Bit Vectors: Jaccard Similarity

• How can we determine A ∩ B?

• This is exactly A & B in C-style notation

• What about A ∪ B?

• This is exactly A | B in C-style notation

• We want the size of these sets—need to count the number of 1s in A & B, or A |
B.

Bit Vectors: Jaccard Similarity

• How can we determine A ∩ B?

• This is exactly A & B in C-style notation

• What about A ∪ B?

• This is exactly A | B in C-style notation

• We want the size of these sets—need to count the number of 1s in A & B, or A |
B.

Bit Vectors: Jaccard Similarity

• How can we determine A ∩ B?

• This is exactly A & B in C-style notation

• What about A ∪ B?

• This is exactly A | B in C-style notation

• We want the size of these sets—need to count the number of 1s in A & B, or A |
B.

Bit Vectors: Jaccard Similarity

• How can we determine A ∩ B?

• This is exactly A & B in C-style notation

• What about A ∪ B?

• This is exactly A | B in C-style notation

• We want the size of these sets—need to count the number of 1s in A & B, or A |
B.

MinHash

• The hash consists of a permutation of all possible items in the universe

• {0, . . . , 127} in the assignment

• To hash a set A: find the first item in A in the order given by the permutation.

That item is the hash value!

MinHash

• The hash consists of a permutation of all possible items in the universe

• {0, . . . , 127} in the assignment

• To hash a set A: find the first item in A in the order given by the permutation.

That item is the hash value!

MinHash example

• Let’s stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

• To hash, we randomly permute them. Let’s say our current hash is given by the

permutation (blue, orange, green, purple, red, yellow). Some examples:

• First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is

blue.

• Second set is 110010 (we could also write {red, yellow, purple}). blue is not in

the set; nor is orange; nor is green. purple is, so purple is the hash value

MinHash example

• Let’s stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

• To hash, we randomly permute them. Let’s say our current hash is given by the

permutation (blue, orange, green, purple, red, yellow). Some examples:

• First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is

blue.

• Second set is 110010 (we could also write {red, yellow, purple}). blue is not in

the set; nor is orange; nor is green. purple is, so purple is the hash value

MinHash example

• Let’s stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

• To hash, we randomly permute them. Let’s say our current hash is given by the

permutation (blue, orange, green, purple, red, yellow). Some examples:

• First set is 101000 (same as {red, blue}).

blue is in the set, so the hash value is

blue.

• Second set is 110010 (we could also write {red, yellow, purple}). blue is not in

the set; nor is orange; nor is green. purple is, so purple is the hash value

MinHash example

• Let’s stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

• To hash, we randomly permute them. Let’s say our current hash is given by the

permutation (blue, orange, green, purple, red, yellow). Some examples:

• First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is

blue.

• Second set is 110010 (we could also write {red, yellow, purple}). blue is not in

the set; nor is orange; nor is green. purple is, so purple is the hash value

MinHash example

• Let’s stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

• To hash, we randomly permute them. Let’s say our current hash is given by the

permutation (blue, orange, green, purple, red, yellow). Some examples:

• First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is

blue.

• Second set is 110010 (we could also write {red, yellow, purple}).

blue is not in

the set; nor is orange; nor is green. purple is, so purple is the hash value

MinHash example

• Let’s stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

• To hash, we randomly permute them. Let’s say our current hash is given by the

permutation (blue, orange, green, purple, red, yellow). Some examples:

• First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is

blue.

• Second set is 110010 (we could also write {red, yellow, purple}). blue is not in

the set; nor is orange; nor is green. purple is, so purple is the hash value

MinHash for Bit Vectors

• On the assignment, have bit vectors of length 128

• To get a hash function, we need a random permutation of the indices of these

bits. That is to say, a random permutation of {0, 1, 2, . . . , 127}

• To hash an item x, go through the random permutation. Find the first index i in

the list such that the ith bit of x is 1.

• Let’s say x = 10100101,

For the sake

of space let’s

do 8 bits

and the permutation is (1,5, 2,0, 7,6,4,3).

• On your own: what is the minhash of x for this permutation?

• The minhash of x is 5.

MinHash for Bit Vectors

• On the assignment, have bit vectors of length 128

• To get a hash function, we need a random permutation of the indices of these

bits. That is to say, a random permutation of {0, 1, 2, . . . , 127}

• To hash an item x, go through the random permutation. Find the first index i in

the list such that the ith bit of x is 1.

• Let’s say x = 10100101,

For the sake

of space let’s

do 8 bits

and the permutation is (1,5, 2,0, 7,6,4,3).

• On your own: what is the minhash of x for this permutation?

• The minhash of x is 5.

MinHash for Bit Vectors

• On the assignment, have bit vectors of length 128

• To get a hash function, we need a random permutation of the indices of these

bits. That is to say, a random permutation of {0, 1, 2, . . . , 127}

• To hash an item x, go through the random permutation. Find the first index i in

the list such that the ith bit of x is 1.

• Let’s say x = 10100101,

For the sake

of space let’s

do 8 bits

and the permutation is (1,5, 2,0, 7,6,4,3).

• On your own: what is the minhash of x for this permutation?

• The minhash of x is 5.

MinHash for Bit Vectors

• On the assignment, have bit vectors of length 128

• To get a hash function, we need a random permutation of the indices of these

bits. That is to say, a random permutation of {0, 1, 2, . . . , 127}

• To hash an item x, go through the random permutation. Find the first index i in

the list such that the ith bit of x is 1.

• Let’s say x = 10100101,

For the sake

of space let’s

do 8 bits

and the permutation is (1,5, 2,0, 7,6,4,3).

• On your own: what is the minhash of x for this permutation?

• The minhash of x is 5.

MinHash for Bit Vectors

• On the assignment, have bit vectors of length 128

• To get a hash function, we need a random permutation of the indices of these

bits. That is to say, a random permutation of {0, 1, 2, . . . , 127}

• To hash an item x, go through the random permutation. Find the first index i in

the list such that the ith bit of x is 1.

• Let’s say x = 10100101,

For the sake

of space let’s

do 8 bits

and the permutation is (1,5, 2,0, 7,6,4,3).

• On your own: what is the minhash of x for this permutation?

• The minhash of x is 5.

MinHash for Bit Vectors

• On the assignment, have bit vectors of length 128

• To get a hash function, we need a random permutation of the indices of these

bits. That is to say, a random permutation of {0, 1, 2, . . . , 127}

• To hash an item x, go through the random permutation. Find the first index i in

the list such that the ith bit of x is 1.

• Let’s say x = 10100101,

For the sake

of space let’s

do 8 bits

and the permutation is (1,5, 2,0, 7,6,4,3).

• On your own: what is the minhash of x for this permutation?

• The minhash of x is 5.

MinHash for Bit Vectors

• On the assignment, have bit vectors of length 128

• To get a hash function, we need a random permutation of the indices of these

bits. That is to say, a random permutation of {0, 1, 2, . . . , 127}

• To hash an item x, go through the random permutation. Find the first index i in

the list such that the ith bit of x is 1.

• Let’s say x = 10100101,

For the sake

of space let’s

do 8 bits

and the permutation is (1,5, 2,0, 7,6,4,3).

• On your own: what is the minhash of x for this permutation?

• The minhash of x is 5.

MinHash

• A single MinHash: hashes each set to one of its elements (i.e. the position of

one of its one bits)

• What happens when we store elements in buckets according to this hash

table?

• Not useful yet—output is too small! Almost all items will have one of the first

few items in the permutation, so will hash to the first few buckets

• Let’s do some analysis to look at this issue in more detail

MinHash

• A single MinHash: hashes each set to one of its elements (i.e. the position of

one of its one bits)

• What happens when we store elements in buckets according to this hash

table?

• Not useful yet—output is too small! Almost all items will have one of the first

few items in the permutation, so will hash to the first few buckets

• Let’s do some analysis to look at this issue in more detail

MinHash

• A single MinHash: hashes each set to one of its elements (i.e. the position of

one of its one bits)

• What happens when we store elements in buckets according to this hash

table?

• Not useful yet—output is too small! Almost all items will have one of the first

few items in the permutation, so will hash to the first few buckets

• Let’s do some analysis to look at this issue in more detail

MinHash

• A single MinHash: hashes each set to one of its elements (i.e. the position of

one of its one bits)

• What happens when we store elements in buckets according to this hash

table?

• Not useful yet—output is too small! Almost all items will have one of the first

few items in the permutation, so will hash to the first few buckets

• Let’s do some analysis to look at this issue in more detail

Analysis of Basic MinHash

Analysis

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore any item that is not

in A or B (why?)

• Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) ̸= h(B)

• Any index in A ∪ B is equally likely to be first. If the index is in A ∩ B, they hash

together; otherwise they do not

• Therefore: probability of hashing together is |A ∩ B|/|A ∪ B|.

Analysis

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore any item that is not

in A or B (why?)

• Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) ̸= h(B)

• Any index in A ∪ B is equally likely to be first. If the index is in A ∩ B, they hash

together; otherwise they do not

• Therefore: probability of hashing together is |A ∩ B|/|A ∪ B|.

Analysis

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore any item that is not

in A or B (why?)

• Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) ̸= h(B)

• Any index in A ∪ B is equally likely to be first. If the index is in A ∩ B, they hash

together; otherwise they do not

• Therefore: probability of hashing together is |A ∩ B|/|A ∪ B|.

Analysis

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore any item that is not

in A or B (why?)

• Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) ̸= h(B)

• Any index in A ∪ B is equally likely to be first. If the index is in A ∩ B, they hash

together; otherwise they do not

• Therefore: probability of hashing together is |A ∩ B|/|A ∪ B|.

Analysis

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore any item that is not

in A or B (why?)

• Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) ̸= h(B)

• Any index in A ∪ B is equally likely to be first. If the index is in A ∩ B, they hash

together; otherwise they do not

• Therefore: probability of hashing together is |A ∩ B|/|A ∪ B|.

Analysis

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore any item that is not

in A or B (why?)

• Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) ̸= h(B)

• Any index in A ∪ B is equally likely to be first. If the index is in A ∩ B, they hash

together; otherwise they do not

• Therefore: probability of hashing together is |A ∩ B|/|A ∪ B|.

Analysis

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore any item that is not

in A or B (why?)

• Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) ̸= h(B)

• Any index in A ∪ B is equally likely to be first. If the index is in A ∩ B, they hash

together; otherwise they do not

• Therefore: probability of hashing together is |A ∩ B|/|A ∪ B|.

MinHash as an LSH

• This means MinHash is an LSH!

• If two items have similarity at least r, they collide with probability at least

p1 = r

• If two items have similarity at most cr, they collide with probability at most

p2 = cr

MinHash as an LSH

• This means MinHash is an LSH!

• If two items have similarity at least r, they collide with probability at least

p1 = r

• If two items have similarity at most cr, they collide with probability at most

p2 = cr

MinHash as an LSH

• This means MinHash is an LSH!

• If two items have similarity at least r, they collide with probability at least

p1 = r

• If two items have similarity at most cr, they collide with probability at most

p2 = cr

Analysis: Phrased as bit vectors

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore any index that is 0

in both A and B.

• Look at the first index in the permutation that is 1 in A or B

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) ̸= h(B)

• Any index that is 1 in A|B is equally likely to be first. If the index is in A&B, they

hash together; otherwise they do not

• Therefore: probability of hashing together is

(number of 1s in A&B)/(number of 1s in A|B).

Analysis Example

• Let’s say we have A = {red, blue, green} and B = {red, orange, purple, green}.

• When do A and B hash together?

• If red or green appears before blue, orange, and purple then they hash

together

• If blue or orange or purple appear before red and green, then they don’t hash

together

• Probability that red or green is first out of {red, blue, green, orange, purple} is

2/5.

• Therefore, A and B hash together with probability 2/5.

Analysis Example

• Let’s say we have A = {red, blue, green} and B = {red, orange, purple, green}.

• When do A and B hash together?

• If red or green appears before blue, orange, and purple then they hash

together

• If blue or orange or purple appear before red and green, then they don’t hash

together

• Probability that red or green is first out of {red, blue, green, orange, purple} is

2/5.

• Therefore, A and B hash together with probability 2/5.

Analysis Example

• Let’s say we have A = {red, blue, green} and B = {red, orange, purple, green}.

• When do A and B hash together?

• If red or green appears before blue, orange, and purple then they hash

together

• If blue or orange or purple appear before red and green, then they don’t hash

together

• Probability that red or green is first out of {red, blue, green, orange, purple} is

2/5.

• Therefore, A and B hash together with probability 2/5.

Analysis Example

• Let’s say we have A = {red, blue, green} and B = {red, orange, purple, green}.

• When do A and B hash together?

• If red or green appears before blue, orange, and purple then they hash

together

• If blue or orange or purple appear before red and green, then they don’t hash

together

• Probability that red or green is first out of {red, blue, green, orange, purple} is

2/5.

• Therefore, A and B hash together with probability 2/5.

Analysis Example

• Let’s say we have A = {red, blue, green} and B = {red, orange, purple, green}.

• When do A and B hash together?

• If red or green appears before blue, orange, and purple then they hash

together

• If blue or orange or purple appear before red and green, then they don’t hash

together

• Probability that red or green is first out of {red, blue, green, orange, purple} is

2/5.

• Therefore, A and B hash together with probability 2/5.

Analysis Example

• Let’s say we have A = {red, blue, green} and B = {red, orange, purple, green}.

• When do A and B hash together?

• If red or green appears before blue, orange, and purple then they hash

together

• If blue or orange or purple appear before red and green, then they don’t hash

together

• Probability that red or green is first out of {red, blue, green, orange, purple} is

2/5.

• Therefore, A and B hash together with probability 2/5.

Making Sure We Find the Close Pair

• To find the close pair, compare all pairs of items that hash to the same value

• (We’ll talk about how to do this in a moment)

• Let’s say our close pair has similarity .5. How many times do we need to

repeat?

• Each repetition has the close pair in the same bucket with probability .5. So

need 2 repetitions in expectation.

Making Sure We Find the Close Pair

• To find the close pair, compare all pairs of items that hash to the same value

• (We’ll talk about how to do this in a moment)

• Let’s say our close pair has similarity .5. How many times do we need to

repeat?

• Each repetition has the close pair in the same bucket with probability .5. So

need 2 repetitions in expectation.

Making Sure We Find the Close Pair

• To find the close pair, compare all pairs of items that hash to the same value

• (We’ll talk about how to do this in a moment)

• Let’s say our close pair has similarity .5. How many times do we need to

repeat?

• Each repetition has the close pair in the same bucket with probability .5. So

need 2 repetitions in expectation.

Making Sure We Find the Close Pair

• To find the close pair, compare all pairs of items that hash to the same value

• (We’ll talk about how to do this in a moment)

• Let’s say our close pair has similarity .5. How many times do we need to

repeat?

• Each repetition has the close pair in the same bucket with probability .5. So

need 2 repetitions in expectation.

An Aside on Expectation

Lemma

If a random process succeeds with probability p, then in expectation it takes 1/p

iterations of the process before success.

Examples:

• It takes two coin flips in expectation before we see a heads

• We need to roll a 6-sided die 6 times before we see (say) a three.

Proof: the expectation is

∞∑
i=1

ip(1 − p)i−1 = p
∞∑
i=1

i(1 − p)i−1 = p
1

(1 − (1 − p))2 =
1
p
.

An Aside on Expectation

Lemma

If a random process succeeds with probability p, then in expectation it takes 1/p

iterations of the process before success.

Examples:

• It takes two coin flips in expectation before we see a heads

• We need to roll a 6-sided die 6 times before we see (say) a three.

Proof: the expectation is

∞∑
i=1

ip(1 − p)i−1 = p
∞∑
i=1

i(1 − p)i−1 = p
1

(1 − (1 − p))2 =
1
p
.

An Aside on Expectation

Lemma

If a random process succeeds with probability p, then in expectation it takes 1/p

iterations of the process before success.

Examples:

• It takes two coin flips in expectation before we see a heads

• We need to roll a 6-sided die 6 times before we see (say) a three.

Proof: the expectation is

∞∑
i=1

ip(1 − p)i−1 = p
∞∑
i=1

i(1 − p)i−1 = p
1

(1 − (1 − p))2 =
1
p
.

An Aside on Expectation

Lemma

If a random process succeeds with probability p, then in expectation it takes 1/p

iterations of the process before success.

Examples:

• It takes two coin flips in expectation before we see a heads

• We need to roll a 6-sided die 6 times before we see (say) a three.

Proof: the expectation is

∞∑
i=1

ip(1 − p)i−1 = p
∞∑
i=1

i(1 − p)i−1 = p
1

(1 − (1 − p))2 =
1
p
.

Concatenations and Repetitions

Problems with this Approach

• Buckets are really big!! (After all, lots of items are pretty likely to have a given

bit set.)

• How can we decrease the probability that items hash together?

• Answer: concatenate multiple hashes together.

Problems with this Approach

• Buckets are really big!! (After all, lots of items are pretty likely to have a given

bit set.)

• How can we decrease the probability that items hash together?

• Answer: concatenate multiple hashes together.

Problems with this Approach

• Buckets are really big!! (After all, lots of items are pretty likely to have a given

bit set.)

• How can we decrease the probability that items hash together?

• Answer: concatenate multiple hashes together.

Concatenating Hashes

• Rather than one hash h, concatenate k independent hashes h1, h2, . . . hk, each

with its own permutation P1,P2, . . .Pk.

• To hash an item: repeat the process of searching through the permutation for

each hash. Then concatenate the results together (can just use string

concatenation)

• How does this affect the probability for sets A and B?

• For each of the k independent hashes, A and B collide with probability
|A ∩ B|/|A ∪ B|.

• We only obtain the same concatenated hashes if all of the hashes are the same.

• They are independent, so we can multiply to obtain probability (|A ∩ B|/|A ∪ B|)k

of A and B colliding.

Concatenating Hashes

• Rather than one hash h, concatenate k independent hashes h1, h2, . . . hk, each

with its own permutation P1,P2, . . .Pk.

• To hash an item: repeat the process of searching through the permutation for

each hash. Then concatenate the results together (can just use string

concatenation)

• How does this affect the probability for sets A and B?

• For each of the k independent hashes, A and B collide with probability
|A ∩ B|/|A ∪ B|.

• We only obtain the same concatenated hashes if all of the hashes are the same.

• They are independent, so we can multiply to obtain probability (|A ∩ B|/|A ∪ B|)k

of A and B colliding.

Concatenating Hashes

• Rather than one hash h, concatenate k independent hashes h1, h2, . . . hk, each

with its own permutation P1,P2, . . .Pk.

• To hash an item: repeat the process of searching through the permutation for

each hash. Then concatenate the results together (can just use string

concatenation)

• How does this affect the probability for sets A and B?

• For each of the k independent hashes, A and B collide with probability
|A ∩ B|/|A ∪ B|.

• We only obtain the same concatenated hashes if all of the hashes are the same.

• They are independent, so we can multiply to obtain probability (|A ∩ B|/|A ∪ B|)k

of A and B colliding.

Concatenating Hashes

• Rather than one hash h, concatenate k independent hashes h1, h2, . . . hk, each

with its own permutation P1,P2, . . .Pk.

• To hash an item: repeat the process of searching through the permutation for

each hash. Then concatenate the results together (can just use string

concatenation)

• How does this affect the probability for sets A and B?

• For each of the k independent hashes, A and B collide with probability
|A ∩ B|/|A ∪ B|.

• We only obtain the same concatenated hashes if all of the hashes are the same.

• They are independent, so we can multiply to obtain probability (|A ∩ B|/|A ∪ B|)k

of A and B colliding.

Concatenating Hashes

• Rather than one hash h, concatenate k independent hashes h1, h2, . . . hk, each

with its own permutation P1,P2, . . .Pk.

• To hash an item: repeat the process of searching through the permutation for

each hash. Then concatenate the results together (can just use string

concatenation)

• How does this affect the probability for sets A and B?

• For each of the k independent hashes, A and B collide with probability
|A ∩ B|/|A ∪ B|.

• We only obtain the same concatenated hashes if all of the hashes are the same.

• They are independent, so we can multiply to obtain probability (|A ∩ B|/|A ∪ B|)k

of A and B colliding.

Concatenating Hashes

• Rather than one hash h, concatenate k independent hashes h1, h2, . . . hk, each

with its own permutation P1,P2, . . .Pk.

• To hash an item: repeat the process of searching through the permutation for

each hash. Then concatenate the results together (can just use string

concatenation)

• How does this affect the probability for sets A and B?

• For each of the k independent hashes, A and B collide with probability
|A ∩ B|/|A ∪ B|.

• We only obtain the same concatenated hashes if all of the hashes are the same.

• They are independent, so we can multiply to obtain probability (|A ∩ B|/|A ∪ B|)k

of A and B colliding.

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash A.

• First hash: red is in A.

• Second hash: orange not in A, nor is green. Blue is in A.

• Third hash: red is in A.

• Concatenating, we have h(A) = redbluered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash A.

• First hash: red is in A.

• Second hash: orange not in A, nor is green. Blue is in A.

• Third hash: red is in A.

• Concatenating, we have h(A) = redbluered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash A.

• First hash: red is in A.

• Second hash: orange not in A, nor is green. Blue is in A.

• Third hash: red is in A.

• Concatenating, we have h(A) = redbluered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash A.

• First hash: red is in A.

• Second hash: orange not in A, nor is green. Blue is in A.

• Third hash: red is in A.

• Concatenating, we have h(A) = redbluered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash A.

• First hash: red is in A.

• Second hash: orange not in A, nor is green. Blue is in A.

• Third hash: red is in A.

• Concatenating, we have h(A) = redbluered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash A.

• First hash: red is in A.

• Second hash: orange not in A, nor is green. Blue is in A.

• Third hash: red is in A.

• Concatenating, we have h(A) = redbluered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash A.

• First hash: red is in A.

• Second hash: orange not in A, nor is green. Blue is in A.

• Third hash: red is in A.

• Concatenating, we have h(A) = redbluered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash B.

• First hash: red is in B.

• Second hash: orange is in B.

• Third hash: red is in B.

• Concatenating, we have h(B) = redorangered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash B.

• First hash: red is in B.

• Second hash: orange is in B.

• Third hash: red is in B.

• Concatenating, we have h(B) = redorangered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash B.

• First hash: red is in B.

• Second hash: orange is in B.

• Third hash: red is in B.

• Concatenating, we have h(B) = redorangered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash B.

• First hash: red is in B.

• Second hash: orange is in B.

• Third hash: red is in B.

• Concatenating, we have h(B) = redorangered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash B.

• First hash: red is in B.

• Second hash: orange is in B.

• Third hash: red is in B.

• Concatenating, we have h(B) = redorangered

Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange}, and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue, red},P3 = {red, green,

blue, orange}

• Let’s hash B.

• First hash: red is in B.

• Second hash: orange is in B.

• Third hash: red is in B.

• Concatenating, we have h(B) = redorangered

Putting it all Together

• For each hash table, we concatenate k hashes to obtain a signature

• Hash the signature of each item to obtain a bucket to place the item in

• Check every pair of items in each bucket and see if it’s the closest

• Quite often we’ll get unlucky and the close pair won’t be in the same bucket.

What can we do?

• Need to repeat all of that multiple times until we find the close pair (let’s say

we repeat R times)

• So: overall need kR permutations

• What kind of values work for k and R?

Putting it all Together

• For each hash table, we concatenate k hashes to obtain a signature

• Hash the signature of each item to obtain a bucket to place the item in

• Check every pair of items in each bucket and see if it’s the closest

• Quite often we’ll get unlucky and the close pair won’t be in the same bucket.

What can we do?

• Need to repeat all of that multiple times until we find the close pair (let’s say

we repeat R times)

• So: overall need kR permutations

• What kind of values work for k and R?

Putting it all Together

• For each hash table, we concatenate k hashes to obtain a signature

• Hash the signature of each item to obtain a bucket to place the item in

• Check every pair of items in each bucket and see if it’s the closest

• Quite often we’ll get unlucky and the close pair won’t be in the same bucket.

What can we do?

• Need to repeat all of that multiple times until we find the close pair (let’s say

we repeat R times)

• So: overall need kR permutations

• What kind of values work for k and R?

Putting it all Together

• For each hash table, we concatenate k hashes to obtain a signature

• Hash the signature of each item to obtain a bucket to place the item in

• Check every pair of items in each bucket and see if it’s the closest

• Quite often we’ll get unlucky and the close pair won’t be in the same bucket.

What can we do?

• Need to repeat all of that multiple times until we find the close pair (let’s say

we repeat R times)

• So: overall need kR permutations

• What kind of values work for k and R?

Putting it all Together

• For each hash table, we concatenate k hashes to obtain a signature

• Hash the signature of each item to obtain a bucket to place the item in

• Check every pair of items in each bucket and see if it’s the closest

• Quite often we’ll get unlucky and the close pair won’t be in the same bucket.

What can we do?

• Need to repeat all of that multiple times until we find the close pair (let’s say

we repeat R times)

• So: overall need kR permutations

• What kind of values work for k and R?

Putting it all Together

• For each hash table, we concatenate k hashes to obtain a signature

• Hash the signature of each item to obtain a bucket to place the item in

• Check every pair of items in each bucket and see if it’s the closest

• Quite often we’ll get unlucky and the close pair won’t be in the same bucket.

What can we do?

• Need to repeat all of that multiple times until we find the close pair (let’s say

we repeat R times)

• So: overall need kR permutations

• What kind of values work for k and R?

Putting it all Together

• For each hash table, we concatenate k hashes to obtain a signature

• Hash the signature of each item to obtain a bucket to place the item in

• Check every pair of items in each bucket and see if it’s the closest

• Quite often we’ll get unlucky and the close pair won’t be in the same bucket.

What can we do?

• Need to repeat all of that multiple times until we find the close pair (let’s say

we repeat R times)

• So: overall need kR permutations

• What kind of values work for k and R?

Putting it Together: Analysis

• Let’s say we have a set of n items x1, . . . , xn

• The close pair of items has Jaccard similarity 3/4

• Every other pair of items has similarity 1/3

• How should we set k? How many repetitions R is it likely to take?

Putting it Together: Analysis

• Let’s say we have a set of n items x1, . . . , xn

• The close pair of items has Jaccard similarity 3/4

• Every other pair of items has similarity 1/3

• How should we set k? How many repetitions R is it likely to take?

Putting it Together: Analysis

• Let’s say we have a set of n items x1, . . . , xn

• The close pair of items has Jaccard similarity 3/4

• Every other pair of items has similarity 1/3

• How should we set k? How many repetitions R is it likely to take?

Putting it Together: Analysis

• Let’s say we have a set of n items x1, . . . , xn

• The close pair of items has Jaccard similarity 3/4

• Every other pair of items has similarity 1/3

• How should we set k? How many repetitions R is it likely to take?

Putting it Together: Analysis (Finding k)

• Non-similar pairs have similarity 1/3

• We want buckets to be small (have O(1) size)

• Look at an element xi . What is the expected size of its bucket?

•
∑

j ̸=i(1/3)k (since xi and any xj with j ̸= i share a hash value with probability

1/3k)

• We can then solve (n− 1)(1/3)k = 1 to get k = log3(n− 1).

Putting it Together: Analysis (Finding k)

• Non-similar pairs have similarity 1/3

• We want buckets to be small (have O(1) size)

• Look at an element xi . What is the expected size of its bucket?

•
∑

j ̸=i(1/3)k (since xi and any xj with j ̸= i share a hash value with probability

1/3k)

• We can then solve (n− 1)(1/3)k = 1 to get k = log3(n− 1).

Putting it Together: Analysis (Finding k)

• Non-similar pairs have similarity 1/3

• We want buckets to be small (have O(1) size)

• Look at an element xi . What is the expected size of its bucket?

•
∑

j ̸=i(1/3)k (since xi and any xj with j ̸= i share a hash value with probability

1/3k)

• We can then solve (n− 1)(1/3)k = 1 to get k = log3(n− 1).

Putting it Together: Analysis (Finding k)

• Non-similar pairs have similarity 1/3

• We want buckets to be small (have O(1) size)

• Look at an element xi . What is the expected size of its bucket?

•
∑

j ̸=i(1/3)k (since xi and any xj with j ̸= i share a hash value with probability

1/3k)

• We can then solve (n− 1)(1/3)k = 1 to get k = log3(n− 1).

Putting it Together: Analysis (Finding k)

• Non-similar pairs have similarity 1/3

• We want buckets to be small (have O(1) size)

• Look at an element xi . What is the expected size of its bucket?

•
∑

j ̸=i(1/3)k (since xi and any xj with j ̸= i share a hash value with probability

1/3k)

• We can then solve (n− 1)(1/3)k = 1 to get k = log3(n− 1).

Putting it Together: Analysis (Predicting R)

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability (.75)k

• We have k = (log3 n− 1). So....we need to do some algebra. (Let’s assume that

k is already an integer)

Putting it Together: Analysis (Predicting R)

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability (.75)k

• We have k = (log3 n− 1). So....we need to do some algebra. (Let’s assume that

k is already an integer)

Putting it Together: Analysis (Predicting R)

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability (.75)k

• We have k = (log3 n− 1). So....we need to do some algebra. (Let’s assume that

k is already an integer)

Putting it Together: Analysis (Predicting R)

• (.75)log3(n−1)

• (.75)log3(n−1) = 2log2(n−1) log2(3/4)/ log(3)

• 2log2(n−1) log2(3/4)/ log(3) = (n− 1)log(3/4)/ log(3)

• ≈ nlog(3/4)/ log(3) = 1/n.26

When dealing

with tricky

log/exponent

expressions,

try putting

everything as

a power of 2.

Putting it Together: Analysis (Predicting R)

• (.75)log3(n−1)

• (.75)log3(n−1) = 2log2(n−1) log2(3/4)/ log(3)

• 2log2(n−1) log2(3/4)/ log(3) = (n− 1)log(3/4)/ log(3)

• ≈ nlog(3/4)/ log(3) = 1/n.26

When dealing

with tricky

log/exponent

expressions,

try putting

everything as

a power of 2.

Putting it Together: Analysis (Predicting R)

• (.75)log3(n−1)

• (.75)log3(n−1) = 2log2(n−1) log2(3/4)/ log(3)

• 2log2(n−1) log2(3/4)/ log(3) = (n− 1)log(3/4)/ log(3)

• ≈ nlog(3/4)/ log(3) = 1/n.26

When dealing

with tricky

log/exponent

expressions,

try putting

everything as

a power of 2.

Putting it Together: Analysis (Predicting R)

• (.75)log3(n−1)

• (.75)log3(n−1) = 2log2(n−1) log2(3/4)/ log(3)

• 2log2(n−1) log2(3/4)/ log(3) = (n− 1)log(3/4)/ log(3)

• ≈ nlog(3/4)/ log(3) = 1/n.26

When dealing

with tricky

log/exponent

expressions,

try putting

everything as

a power of 2.

Putting it Together: Analysis (Predicting R)

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability (.75)k

• We have k = (log3 n− 1). So....we need to do some algebra. (Let’s assume that

k is already an integer)

• (.75)log3(n−1) = 2log2(n−1) log2(3/4)/ log(3) = (n− 1)log(3/4)/ log(3) ≈ 1/n.26

• So we expect about R = n.26 repetitions. That’s a lot!

• But it’s not far from the state of the art.

• And way better than brute force!

Putting it Together: Analysis (Predicting R)

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability (.75)k

• We have k = (log3 n− 1). So....we need to do some algebra. (Let’s assume that

k is already an integer)

• (.75)log3(n−1) = 2log2(n−1) log2(3/4)/ log(3) = (n− 1)log(3/4)/ log(3) ≈ 1/n.26

• So we expect about R = n.26 repetitions. That’s a lot!

• But it’s not far from the state of the art.

• And way better than brute force!

Putting it Together: Analysis (Predicting R)

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability (.75)k

• We have k = (log3 n− 1). So....we need to do some algebra. (Let’s assume that

k is already an integer)

• (.75)log3(n−1) = 2log2(n−1) log2(3/4)/ log(3) = (n− 1)log(3/4)/ log(3) ≈ 1/n.26

• So we expect about R = n.26 repetitions. That’s a lot!

• But it’s not far from the state of the art.

• And way better than brute force!

Putting it Together: Analysis (Predicting R)

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability (.75)k

• We have k = (log3 n− 1). So....we need to do some algebra. (Let’s assume that

k is already an integer)

• (.75)log3(n−1) = 2log2(n−1) log2(3/4)/ log(3) = (n− 1)log(3/4)/ log(3) ≈ 1/n.26

• So we expect about R = n.26 repetitions. That’s a lot!

• But it’s not far from the state of the art.

• And way better than brute force!

Finding R and k in general

Let’s say we have n points where the close pairs have similarity j1, and all other

pairs have similarity at most j2

• First, set k so that each bucket has size O(1): k = log1/j2 n.

• Doable at home: show that this is the optimal value for k using the below analysis.

• Then, number of R we need in expectation is:(
1
j1

)k

=

(
1
j1

)log1/j2
n

= nlog(1/j2)(1/j1).

Finding R and k in general

Let’s say we have n points where the close pairs have similarity j1, and all other

pairs have similarity at most j2

• First, set k so that each bucket has size O(1): k = log1/j2 n.

• Doable at home: show that this is the optimal value for k using the below analysis.

• Then, number of R we need in expectation is:(
1
j1

)k

=

(
1
j1

)log1/j2
n

= nlog(1/j2)(1/j1).

Finding R and k in general

Let’s say we have n points where the close pairs have similarity j1, and all other

pairs have similarity at most j2

• First, set k so that each bucket has size O(1): k = log1/j2 n.

• Doable at home: show that this is the optimal value for k using the below analysis.

• Then, number of R we need in expectation is:(
1
j1

)k

=

(
1
j1

)log1/j2
n

= nlog(1/j2)(1/j1).

Plan for Assignment 2

• Until we find the close pair of items:

• Hash all n items using MinHash

• For each bucket, compare all pair of items in the bucket to see if they are

close. If a close pair is found, return return it

• (Our analysis shows that we’ll need to hash all n items nlog1/j2
(1/j1) times in

expectation)

Plan for Assignment 2

• Until we find the close pair of items:

• Hash all n items using MinHash

• For each bucket, compare all pair of items in the bucket to see if they are

close. If a close pair is found, return return it

• (Our analysis shows that we’ll need to hash all n items nlog1/j2
(1/j1) times in

expectation)

Plan for Assignment 2

• Until we find the close pair of items:

• Hash all n items using MinHash

• For each bucket, compare all pair of items in the bucket to see if they are

close. If a close pair is found, return return it

• (Our analysis shows that we’ll need to hash all n items nlog1/j2
(1/j1) times in

expectation)

Plan for Assignment 2

• Until we find the close pair of items:

• Hash all n items using MinHash

• For each bucket, compare all pair of items in the bucket to see if they are

close. If a close pair is found, return return it

• (Our analysis shows that we’ll need to hash all n items nlog1/j2
(1/j1) times in

expectation)

Practical MinHash Considerations

So many Permutations!

• OK, so kR repetitions is a LOT of preprocessing, and a lot of random number

generation

• And most of this won’t ever be used! Most of the time, when we hash, we don’t

make it more than a few indices into the permutation.

• Idea: Instead of taking just the first hash item that appears in the

permutation, take the first (say) 3. Concatenate them together. Then we just

need k/3 permutations per hash table to get similar bounds.

• So let’s say we have A = {black, red, green, blue, orange}, and we’re looking at

a permutation P = {purple, red, white, orange, yellow, blue, green, black}.

• Then A hashes to redorangeblue

So many Permutations!

• OK, so kR repetitions is a LOT of preprocessing, and a lot of random number

generation

• And most of this won’t ever be used! Most of the time, when we hash, we don’t

make it more than a few indices into the permutation.

• Idea: Instead of taking just the first hash item that appears in the

permutation, take the first (say) 3. Concatenate them together. Then we just

need k/3 permutations per hash table to get similar bounds.

• So let’s say we have A = {black, red, green, blue, orange}, and we’re looking at

a permutation P = {purple, red, white, orange, yellow, blue, green, black}.

• Then A hashes to redorangeblue

So many Permutations!

• OK, so kR repetitions is a LOT of preprocessing, and a lot of random number

generation

• And most of this won’t ever be used! Most of the time, when we hash, we don’t

make it more than a few indices into the permutation.

• Idea: Instead of taking just the first hash item that appears in the

permutation, take the first (say) 3. Concatenate them together. Then we just

need k/3 permutations per hash table to get similar bounds.

• So let’s say we have A = {black, red, green, blue, orange}, and we’re looking at

a permutation P = {purple, red, white, orange, yellow, blue, green, black}.

• Then A hashes to redorangeblue

So many Permutations!

• OK, so kR repetitions is a LOT of preprocessing, and a lot of random number

generation

• And most of this won’t ever be used! Most of the time, when we hash, we don’t

make it more than a few indices into the permutation.

• Idea: Instead of taking just the first hash item that appears in the

permutation, take the first (say) 3. Concatenate them together. Then we just

need k/3 permutations per hash table to get similar bounds.

• So let’s say we have A = {black, red, green, blue, orange}, and we’re looking at

a permutation P = {purple, red, white, orange, yellow, blue, green, black}.

• Then A hashes to redorangeblue

So many Permutations!

• OK, so kR repetitions is a LOT of preprocessing, and a lot of random number

generation

• And most of this won’t ever be used! Most of the time, when we hash, we don’t

make it more than a few indices into the permutation.

• Idea: Instead of taking just the first hash item that appears in the

permutation, take the first (say) 3. Concatenate them together. Then we just

need k/3 permutations per hash table to get similar bounds.

• So let’s say we have A = {black, red, green, blue, orange}, and we’re looking at

a permutation P = {purple, red, white, orange, yellow, blue, green, black}.

• Then A hashes to redorangeblue

Reducing Permutations

• If you take the k̂ first items when hashing, rather than just taking the first one,

we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no longer independent!

• But this works fine in practice (and is used all the time)

• We will do this on the Assignment; in fact I recommend using k̂ = k. That

means that each repetition has only one permutation.

• I think it makes life very significantly easier. In the real world you want a

smaller value of k̂

Reducing Permutations

• If you take the k̂ first items when hashing, rather than just taking the first one,

we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no longer independent!

• But this works fine in practice (and is used all the time)

• We will do this on the Assignment; in fact I recommend using k̂ = k. That

means that each repetition has only one permutation.

• I think it makes life very significantly easier. In the real world you want a

smaller value of k̂

Reducing Permutations

• If you take the k̂ first items when hashing, rather than just taking the first one,

we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no longer independent!

• But this works fine in practice (and is used all the time)

• We will do this on the Assignment; in fact I recommend using k̂ = k. That

means that each repetition has only one permutation.

• I think it makes life very significantly easier. In the real world you want a

smaller value of k̂

Reducing Permutations

• If you take the k̂ first items when hashing, rather than just taking the first one,

we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no longer independent!

• But this works fine in practice (and is used all the time)

• We will do this on the Assignment; in fact I recommend using k̂ = k. That

means that each repetition has only one permutation.

• I think it makes life very significantly easier. In the real world you want a

smaller value of k̂

Reducing Permutations

• If you take the k̂ first items when hashing, rather than just taking the first one,

we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no longer independent!

• But this works fine in practice (and is used all the time)

• We will do this on the Assignment; in fact I recommend using k̂ = k. That

means that each repetition has only one permutation.

• I think it makes life very significantly easier. In the real world you want a

smaller value of k̂

Reducing Permutations

• If you take the k̂ first items when hashing, rather than just taking the first one,

we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no longer independent!

• But this works fine in practice (and is used all the time)

• We will do this on the Assignment; in fact I recommend using k̂ = k. That

means that each repetition has only one permutation.

• I think it makes life very significantly easier. In the real world you want a

smaller value of k̂

Assignment Parameters

• 128 bit integers (stored as a struct of two unsigned 64 bit ints; called an

Item)

• Universe: {0, . . . , 127}. (You can pretend that these are images, each of which

is labelled with a subset of 128 possible tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

Assignment Parameters

• 128 bit integers (stored as a struct of two unsigned 64 bit ints; called an

Item)

• Universe: {0, . . . , 127}. (You can pretend that these are images, each of which

is labelled with a subset of 128 possible tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

Assignment Parameters

• 128 bit integers (stored as a struct of two unsigned 64 bit ints; called an

Item)

• Universe: {0, . . . , 127}. (You can pretend that these are images, each of which

is labelled with a subset of 128 possible tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

Assignment Parameters

• 128 bit integers (stored as a struct of two unsigned 64 bit ints; called an

Item)

• Universe: {0, . . . , 127}. (You can pretend that these are images, each of which

is labelled with a subset of 128 possible tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the Item we’re hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each index, and check

to see if that bit is set (say by calculating x & (1 « index) —but

remember that these are 128 bits)

What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the Item we’re hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each index, and check

to see if that bit is set (say by calculating x & (1 « index) —but

remember that these are 128 bits)

What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the Item we’re hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each index, and check

to see if that bit is set (say by calculating x & (1 « index) —but

remember that these are 128 bits)

What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the Item we’re hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each index, and check

to see if that bit is set (say by calculating x & (1 « index) —but

remember that these are 128 bits)

Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings! Otherwise hashing

to 12 and then 1 will look the same as hashing to 1 and then 21. (012 and 001

instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits. Store the hash as a

sequence of k 8-bit chunks.

Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings! Otherwise hashing

to 12 and then 1 will look the same as hashing to 1 and then 21. (012 and 001

instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits. Store the hash as a

sequence of k 8-bit chunks.

Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings! Otherwise hashing

to 12 and then 1 will look the same as hashing to 1 and then 21. (012 and 001

instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits. Store the hash as a

sequence of k 8-bit chunks.

Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings! Otherwise hashing

to 12 and then 1 will look the same as hashing to 1 and then 21. (012 and 001

instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits. Store the hash as a

sequence of k 8-bit chunks.

Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings! Otherwise hashing

to 12 and then 1 will look the same as hashing to 1 and then 21. (012 and 001

instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits. Store the hash as a

sequence of k 8-bit chunks.

Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings! Otherwise hashing

to 12 and then 1 will look the same as hashing to 1 and then 21. (012 and 001

instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits. Store the hash as a

sequence of k 8-bit chunks.

Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Having a large number of buckets and/or repetitions leads to bad

constants

• Smaller k means fewer buckets, fewer repetitions (but bigger buckets and

more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller values.

Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Having a large number of buckets and/or repetitions leads to bad

constants

• Smaller k means fewer buckets, fewer repetitions (but bigger buckets and

more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller values.

Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Having a large number of buckets and/or repetitions leads to bad

constants

• Smaller k means fewer buckets, fewer repetitions (but bigger buckets and

more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller values.

Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Having a large number of buckets and/or repetitions leads to bad

constants

• Smaller k means fewer buckets, fewer repetitions (but bigger buckets and

more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller values.

Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Having a large number of buckets and/or repetitions leads to bad

constants

• Smaller k means fewer buckets, fewer repetitions (but bigger buckets and

more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller values.

Repetitions?

• You’re guaranteed that there exists a close pair in the dataset

• My implementation just keeps repeating until the pair is found (no maximum

number of repetitions)

• The discussion of repetitions in the lecture is for two reasons: 1. analysis, 2.

give intuition for the tradeoff by varying k

Repetitions?

• You’re guaranteed that there exists a close pair in the dataset

• My implementation just keeps repeating until the pair is found (no maximum

number of repetitions)

• The discussion of repetitions in the lecture is for two reasons: 1. analysis, 2.

give intuition for the tradeoff by varying k

Repetitions?

• You’re guaranteed that there exists a close pair in the dataset

• My implementation just keeps repeating until the pair is found (no maximum

number of repetitions)

• The discussion of repetitions in the lecture is for two reasons: 1. analysis, 2.

give intuition for the tradeoff by varying k

How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to figure out what

hashes where so that we can compare elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to n− 1. We’re

instead concatenating indices

• How to keep track of buckets?

• Answer: take the concatenated indices and put them into MurmurHash, then

take modulo n.

• Then, we are hashing to a number from 0 to n− 1!

How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to figure out what

hashes where so that we can compare elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to n− 1. We’re

instead concatenating indices

• How to keep track of buckets?

• Answer: take the concatenated indices and put them into MurmurHash, then

take modulo n.

• Then, we are hashing to a number from 0 to n− 1!

How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to figure out what

hashes where so that we can compare elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to n− 1. We’re

instead concatenating indices

• How to keep track of buckets?

• Answer: take the concatenated indices and put them into MurmurHash, then

take modulo n.

• Then, we are hashing to a number from 0 to n− 1!

How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to figure out what

hashes where so that we can compare elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to n− 1. We’re

instead concatenating indices

• How to keep track of buckets?

• Answer: take the concatenated indices and put them into MurmurHash, then

take modulo n.

• Then, we are hashing to a number from 0 to n− 1!

How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to figure out what

hashes where so that we can compare elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to n− 1. We’re

instead concatenating indices

• How to keep track of buckets?

• Answer: take the concatenated indices and put them into MurmurHash, then

take modulo n.

• Then, we are hashing to a number from 0 to n− 1!

Assignment 4 plan

• Get a list of 128-bit bit vectors

• First, minhash each to put it in a bucket from 0 to n− 1

• For each bucket, compare all pairs of vectors in the bucket; if a similar one is

ever found return it

• If a similar one is not found, repeat with new minhashes

Assignment 4 plan

• Get a list of 128-bit bit vectors

• First, minhash each to put it in a bucket from 0 to n− 1

• For each bucket, compare all pairs of vectors in the bucket; if a similar one is

ever found return it

• If a similar one is not found, repeat with new minhashes

Assignment 4 plan

• Get a list of 128-bit bit vectors

• First, minhash each to put it in a bucket from 0 to n− 1

• For each bucket, compare all pairs of vectors in the bucket; if a similar one is

ever found return it

• If a similar one is not found, repeat with new minhashes

Assignment 4 plan

• Get a list of 128-bit bit vectors

• First, minhash each to put it in a bucket from 0 to n− 1

• For each bucket, compare all pairs of vectors in the bucket; if a similar one is

ever found return it

• If a similar one is not found, repeat with new minhashes

Assignment 4: Minhashing a vector

We begin by generating a random permutation of the numbers from 0 to 127

We find the minhash of a 128-bit vector x as follows:

1. Find the first k ≈ log3 n numbers i in the permutation where x has a 1 in

position i

2. Concatenate these numbers to form a string s

3. Use Murmurhash on s to get a large random integer back

4. Take mod n to get a number from 0 to n− 1

Assignment 4: Minhashing a vector

We begin by generating a random permutation of the numbers from 0 to 127

We find the minhash of a 128-bit vector x as follows:

1. Find the first k ≈ log3 n numbers i in the permutation where x has a 1 in

position i

2. Concatenate these numbers to form a string s

3. Use Murmurhash on s to get a large random integer back

4. Take mod n to get a number from 0 to n− 1

Assignment 4: Minhashing a vector

We begin by generating a random permutation of the numbers from 0 to 127

We find the minhash of a 128-bit vector x as follows:

1. Find the first k ≈ log3 n numbers i in the permutation where x has a 1 in

position i

2. Concatenate these numbers to form a string s

3. Use Murmurhash on s to get a large random integer back

4. Take mod n to get a number from 0 to n− 1

Assignment 4: Minhashing a vector

We begin by generating a random permutation of the numbers from 0 to 127

We find the minhash of a 128-bit vector x as follows:

1. Find the first k ≈ log3 n numbers i in the permutation where x has a 1 in

position i

2. Concatenate these numbers to form a string s

3. Use Murmurhash on s to get a large random integer back

4. Take mod n to get a number from 0 to n− 1

	Finding Similar Items
	Strategies for Similarity Search
	Locality-Sensitive Hashing
	Similarity
	Jaccard Similarity
	MinHash
	Analysis of Basic MinHash
	Concatenations and Repetitions
	Practical MinHash Considerations

