Lecture 10: Cuckoo Filter Analysis and Streaming

Sam McCauley

October 10, 2025

Williams College

Admin

- I am 90% sure we'll skip "HyperLogLog counting." I'll remove it assignment writeup
- Assignment 3 due next Thursday. Goal: finish up Cuckoo filter; implement Count Min Sketch

• No TA hours during reading period. I think I'll be able to still have office hours; I'll send an email the day of.

Implementing Effective Hash

Functions

Hashes we need

- h₁ which maps an arbitrary element (a string in Assignment 3) to a slot in the hash table
- f which maps an arbitrary element (a string in Assignment 3) to a number from 1 to 255 (we'll be doing 8-bit fingerprints)
- h which maps a fingerprint from 1 to 255 to a slot in the hash table
- This section is about how we do this: specifically, it's about the function murmurhash in the code

Implementing h

• h is easy because it only needs 255 values

Implementing *h*

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code

Implementing h

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code

• To calculate h(i), for $i \in \{1, ..., 255\}$, just use hashFingerprint[i-1]

 murmurhash: a popular, fast, hash function that does a good job of "acting random"

 murmurhash: a popular, fast, hash function that does a good job of "acting random"

• Will be given to you as part of your starter code

- murmurhash: a popular, fast, hash function that does a good job of "acting random"
- Will be given to you as part of your starter code
- murmurhash outputs 128 bits. We'll use the first 32 bits as h_1 , and the second 32 bits as f

- murmurhash: a popular, fast, hash function that does a good job of "acting random"
- Will be given to you as part of your starter code
- murmurhash outputs 128 bits. We'll use the first 32 bits as h_1 , and the second 32 bits as f
- Use mod to get them down to size

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

word is the string you would like to hash

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

- word is the string you would like to hash
- length is the length of word (murmurhash does not check for null-termination!)

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

- word is the string you would like to hash
- length is the length of word (murmurhash does not check for null-termination!)
- seed is the hash function seed (pick a large random number; keep it consistent)

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

- word is the string you would like to hash
- length is the length of word (murmurhash does not check for null-termination!)
- seed is the hash function seed (pick a large random number; keep it consistent)
- hash is the 128 bits of output

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

- word is the string you would like to hash
- length is the length of word (murmurhash does not check for null-termination!)
- seed is the hash function seed (pick a large random number; keep it consistent)
- hash is the 128 bits of output
- Why is Murmurhash made this way? Why not just return the hash?

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

- word is the string you would like to hash
- length is the length of word (murmurhash does not check for null-termination!)
- seed is the hash function seed (pick a large random number; keep it consistent)
- hash is the 128 bits of output
- Why is Murmurhash made this way? Why not just return the hash?
 - MurmurHash returns 128 bits, which don't fit in a word. Hash is just a 128-bit length array where it can store the bits

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

- word is the string you would like to hash
- length is the length of word (murmurhash does not check for null-termination!)
- seed is the hash function seed (pick a large random number; keep it consistent)
- · hash is the 128 bits of output
- Why is Murmurhash made this way? Why not just return the hash?
 - MurmurHash returns 128 bits, which don't fit in a word. Hash is just a 128-bit length array where it can store the bits
- We use hash [0] for $h_1()$ and hash [1] for f()

```
uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;
```

Cuckoo Filter Analysis

Union Bound

Theorem

Let X and Y be random events. Then

$$Pr(X \text{ or } Y) \leq Pr(X) + Pr(Y).$$

More generally, if X_1, X_2, \dots, X_k are any random events, then

$$\Pr(X_1 \text{ or } X_2 \text{ or } \dots \text{ or } X_k) \leq \sum_{i=1}^k \Pr(X_k).$$

Simple but useful tool in randomized algorithms

Union Bound

Theorem

Let X and Y be random events. Then

$$\Pr(X \text{ or } Y) \leq \Pr(X) + \Pr(Y).$$

More generally, if X_1, X_2, \dots, X_k are any random events, then

$$\Pr(X_1 \text{ or } X_2 \text{ or } \dots \text{ or } X_k) \leq \sum_{i=1}^k \Pr(X_k).$$

- Simple but useful tool in randomized algorithms
- Always works, even for events that are not independent

Union Bound

Theorem

Let X and Y be random events. Then

$$\Pr(X \text{ or } Y) \leq \Pr(X) + \Pr(Y).$$

More generally, if X_1, X_2, \dots, X_k are any random events, then

$$\Pr(X_1 \text{ or } X_2 \text{ or } \dots \text{ or } X_k) \leq \sum_{i=1}^n \Pr(X_k).$$

- Simple but useful tool in randomized algorithms
- Always works, even for events that are not independent
- Sometimes called "Boole's inequality"

Union Bound Example

• Let's say I have 10 students in a course, and I randomly assign each student an ID between 1 and 100 (these IDs do not need to be unique).

Union Bound Example

• Let's say I have 10 students in a course, and I randomly assign each student an ID between 1 and 100 (these IDs do not need to be unique).

Can you upper bound the probability that some student has ID 1?

• The probability that at least one student has ID 1 is

1 - Pr(no student has ID 1).

• The probability that at least one student has ID 1 is

1 - Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• The probability that at least one student has ID 1 is

1 - Pr(no student has ID 1).

- The probability that a single student has an ID other than 1 is 99/100.
- Thus, the probability that all 10 students have an ID other than 1 is $(99/100)^{10}$.

The probability that at least one student has ID 1 is

$$1 - Pr(no student has ID 1).$$

- The probability that a single student has an ID other than 1 is 99/100.
- Thus, the probability that all 10 students have an ID other than 1 is $(99/100)^{10}$.

• Thus, the probability that at least one student has ID 1 is $1-(99/100)^{10}\approx 9.56\%$.

The probability that at least one student has ID 1 is

This is messy! And it would be even worse if the IDs were not independent!

The union bound lets us avoid this work.

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is $(99/100)^{10}$.

• Thus, the probability that at least one student has ID 1 is $1 - (99/100)^{10} \approx 9.56\%$.

Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that *any* student has ID 1 is at most the sum, over all 10 students, of 1/100.

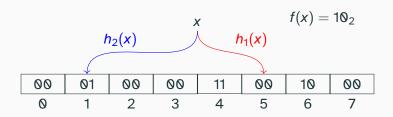
Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that *any* student has ID 1 is at most the sum, over all 10 students, of 1/100.

• This gives us an upper bound of 10/100 = 10%.

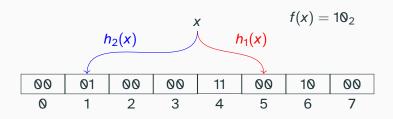
Analysis of Cuckoo Filters



Some assumptions going in (part 1):

• all hash functions h_i are uniformly random: any $x \in U$ is mapped to any hash slot $s \in \{0, ..., m-1\}$ with probability 1/m.

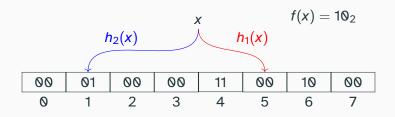
Analysis of Cuckoo Filters



Some assumptions going in (part 1):

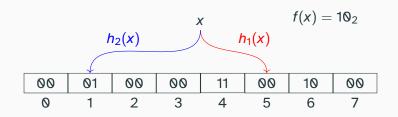
- all hash functions h_i are uniformly random: any $x \in U$ is mapped to any hash slot $s \in \{0, ..., m-1\}$ with probability 1/m.
- Same for the fingerprint hash f: any $x \in U$ is mapped to a given fingerprint $f_x \in \{1, \dots, 1/\varepsilon\}$ with probability ε .

Analysis of Cuckoo Filters



Some assumptions going in (part 1):

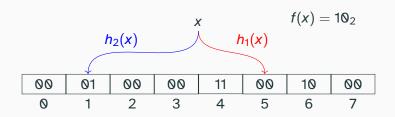
Analysis of Cuckoo Filters



Some assumptions going in (part 1):

• We will analyze *without* partial-key cuckoo hashing (we'll assume independent h_1 and h_2)

Analysis of Cuckoo Filters



Some assumptions going in (part 1):

- We will analyze *without* partial-key cuckoo hashing (we'll assume independent h_1 and h_2)
- We'll analyze with 1 slot per bin, 2n total slots. On Assignment 3, you'll do the same analysis for the actual cuckoo filter you use (with 4 slots per bin, and 1.05n total slots).

First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it returns that $q \notin S$. Equivalently, if we query an item $q \in S$, then a filter will always correctly answer $q \in S$.

Invariant

For every $x \in S$, there exists an $i \in \{1, ..., k\}$ such that f(x) is stored in $T[h_i(x)]$.

First Guarantee: No False Negatives

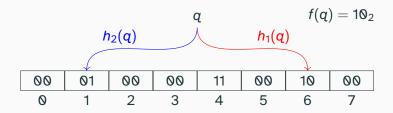
Guarantee (No False Negatives)

A filter is always correct when it returns that $q \notin S$. Equivalently, if we query an item $q \in S$, then a filter will always correctly answer $q \in S$.

Invariant

For every $x \in S$, there exists an $i \in \{1, ..., k\}$ such that f(x) is stored in $T[h_i(x)]$.

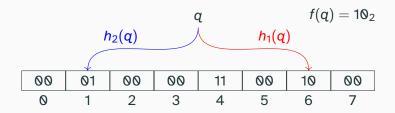
We can see that the invariant means that there are no false negatives.



Guarantee (False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

• A query $q \notin S$ is a false positive if, for some h_i , $T[h_i(q)] = f(q)$.



Guarantee (False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

- A query $q \notin S$ is a false positive if, for some h_i , $T[h_i(q)] = f(q)$.
- Let's examine each hash h_1 and h_2 individually.

• Let's start with h_1 . What is the probability $T[h_1(q)]$ contains a fingerprint?

- Let's start with h_1 . What is the probability $T[h_1(q)]$ contains a fingerprint?
- 1/2, because we are storing n elements in 2n slots.

- Let's start with h_1 . What is the probability $T[h_1(q)]$ contains a fingerprint?
- 1/2, because we are storing n elements in 2n slots.
- If $T[h_1(q)]$ contains a fingerprint, the probability that f(x) = f(q) is ε .

- Let's start with h_1 . What is the probability $T[h_1(q)]$ contains a fingerprint?
- 1/2, because we are storing n elements in 2n slots.
- If $T[h_1(q)]$ contains a fingerprint, the probability that f(x) = f(q) is ε .
- Therefore, the probability that $T[h_1(q)]$ contains a fingerprint f(x) = f(q) is $\varepsilon/2$.

• What about *h*₂?

• What about h₂?

• Same exact analysis: probability that $T[h_2(q)]$ contains a fingerprint f(x) = f(q) is $\varepsilon/2$.

Second: Guarantee: Putting it Together

• q is a false positive if either $T[h_1(q)]$ contains a fingerprint $f(x_1)$ such that $f(x_1) = f(q)$, or $T[h_2(q)]$ contains a fingerprint $f(x_2)$ such that $f(x_2) = f(q)$

Second: Guarantee: Putting it Together

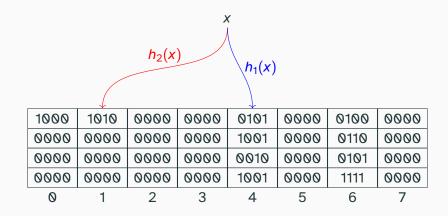
• q is a false positive if either $T[h_1(q)]$ contains a fingerprint $f(x_1)$ such that $f(x_1) = f(q)$, or $T[h_2(q)]$ contains a fingerprint $f(x_2)$ such that $f(x_2) = f(q)$

• Each happens with probability at most $\varepsilon/2$

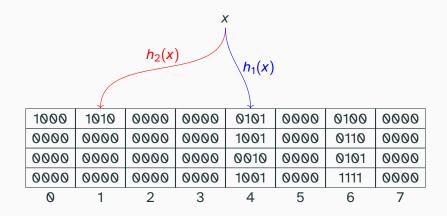
Second: Guarantee: Putting it Together

- q is a false positive if either $T[h_1(q)]$ contains a fingerprint $f(x_1)$ such that $f(x_1) = f(q)$, or $T[h_2(q)]$ contains a fingerprint $f(x_2)$ such that $f(x_2) = f(q)$
- Each happens with probability at most $\varepsilon/2$

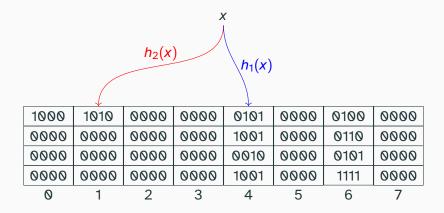
• By union bound, one or the other happens with probability at most $\varepsilon/2 + \varepsilon/2 = \varepsilon$.



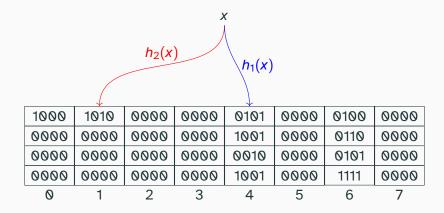
• Query time?



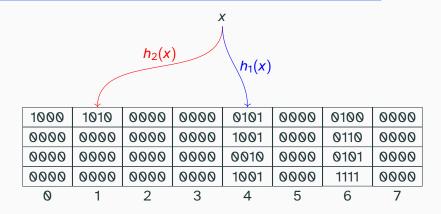
- Query time?
 - O(1): just check 8 slots for the fingerprint and you're done



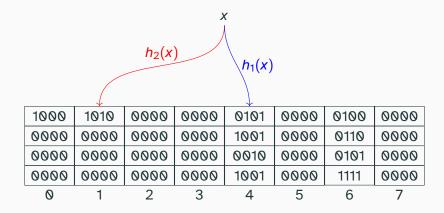
• Insert time? (Recall that Cuckoo Hashing was O(1) in expectation.)



- Insert time? (Recall that Cuckoo Hashing was O(1) in expectation.)
 - Also O(1) in expectation; similar analysis



- Insert time? (Recall that Cuckoo Hashing was O(1) in expectation.)
 - Also O(1) in expectation; similar analysis
 - We had a further guarantee: the vast majority of the time, should only need to cuckoo $O(\log n)$ times



- Insert time? (Recall that Cuckoo Hashing was O(1) in expectation.)
 - Also O(1) in expectation; similar analysis
 - We had a further guarantee: the vast majority of the time, should only need to cuckoo $O(\log n)$ times
 - Can we be more specific about this?

• Let's say I charge you \$1000 to play a game. With probability 1 in 1 million, I give you \$10 billion. Otherwise, I give you \$0.

- Let's say I charge you \$1000 to play a game. With probability 1 in 1 million, I give you \$10 billion. Otherwise, I give you \$0.
- Would you play this game? (Like in real life, right now.)

- Let's say I charge you \$1000 to play a game. With probability 1 in 1 million, I give you \$10 billion. Otherwise, I give you \$0.
- Would you play this game? (Like in real life, right now.)
- Answer: some of you might, but I'm guessing many of you would not. You're just going to lose \$1000.
- But expectation is good! You expect to win \$9000.

SATISFACTION
GUARANTEE

 Rather than giving the average performance, bound the probability of bad performance.

- Rather than giving the average performance, bound the probability of bad performance.
- Let's say I flip a coin k times. On average, I see k/2 heads. But what is the probability I *never* see a heads?

- Rather than giving the average performance, bound the probability of bad performance.
- Let's say I flip a coin k times. On average, I see k/2 heads. But what is the probability I *never* see a heads?
- Answer: 1/2^k

- Rather than giving the average performance, bound the probability of bad performance.
- Let's say I flip a coin k times. On average, I see k/2 heads. But what is the probability I *never* see a heads?
- Answer: 1/2^k
- Quicksort has expected runtime $O(n \log n)$. What is the probability that the running time is more than $O(n \log n)$?

- Rather than giving the average performance, bound the probability of bad performance.
- Let's say I flip a coin k times. On average, I see k/2 heads. But what is the probability I *never* see a heads?
- Answer: 1/2^k
- Quicksort has expected runtime $O(n \log n)$. What is the probability that the running time is more than $O(n \log n)$?
- Answer: O(1/n) (this is why quicksort is not worse than merge sort even though it can be $\Theta(n^2)$: you're very unlikely to see a bad case if n is at all large)

• An event happens with high probability (with respect to n) if it happens with probability 1 - O(1/n)

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- We've seen:

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- We've seen:
 - Quicksort is $O(n \log n)$ with high probability

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- We've seen:
 - Quicksort is $O(n \log n)$ with high probability
 - Cuckoo hashing inserts finish without looping with high probability

• An event happens with high probability (with respect to n) if it happens with probability 1 - O(1/n)

- SATISFACTION
 GUARANTEE
 '*
- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing and cuckoo filter inserts require $O(\log n)$ "cuckoos" with high probability

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing and cuckoo filter inserts require $O(\log n)$ "cuckoos" with high probability
 - Linear probing queries require $O(\log n)$ time with high probability.

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing and cuckoo filter inserts require $O(\log n)$ "cuckoos" with high probability
 - Linear probing queries require $O(\log n)$ time with high probability.
 - What do you think chaining requires?

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing and cuckoo filter inserts require $O(\log n)$ "cuckoos" with high probability
 - Linear probing queries require $O(\log n)$ time with high probability.
 - What do you think chaining requires?
 - Chaining queries require $O(\frac{\log n}{\log \log n})$ time with high probability. (Don't need to know the log log for the midterm.)

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing and cuckoo filter inserts require $O(\log n)$ "cuckoos" with high probability
 - Linear probing queries require $O(\log n)$ time with high probability.
 - What do you think chaining requires?
 - Chaining queries require $O(\frac{\log n}{\log \log n})$ time with high probability. (Don't need to know the log log for the midterm.)
- With high probability is always with respect to a variable. Assume that it's with respect to *n* unless stated otherwise.

How many coins do I need to flip before I see a heads with high probability?
 (With respect to some variable n)

- How many coins do I need to flip before I see a heads with high probability?
 (With respect to some variable n)
- If I flip k times, I see a heads with probability $1 1/2^k$.

- How many coins do I need to flip before I see a heads with high probability?
 (With respect to some variable n)
- If I flip k times, I see a heads with probability $1 1/2^k$.
- So I need $1/2^k = O(1/n)$. Solving, $k = \Theta(\log n)$.

- How many coins do I need to flip before I see a heads with high probability?
 (With respect to some variable n)
- If I flip k times, I see a heads with probability $1 1/2^k$.
- So I need $1/2^k = O(1/n)$. Solving, $k = \Theta(\log n)$.
- This is (a simplified version of) the analysis leading to the $O(\log n)$ worst case bounds on the last slide

• We'll usually use "with high probability" for concentration bounds

- We'll usually use "with high probability" for concentration bounds
- Expectation states how well the algorithm does on average. Could be much better or worse sometimes!

- We'll usually use "with high probability" for concentration bounds
- Expectation states how well the algorithm does on average. Could be much better or worse sometimes!
- "With high probability" gives a guarantee that will almost always be met: if *n* is large it becomes vanishingly unlikely that the bound will be violated.

- We'll usually use "with high probability" for concentration bounds
- Expectation states how well the algorithm does on average. Could be much better or worse sometimes!
- "With high probability" gives a guarantee that will almost always be met: if *n* is large it becomes vanishingly unlikely that the bound will be violated.
- Largely fulfills the promise of classic worst-case algorithm analysis, but applied to randomized algorithms

Streaming

- Netflix sends (so far as I can tell) about 300–500TB per minute on average to its customers
- Google's search index has been over 100,000,000 GB for most of a decade
- Brazil Internet Exchange processes
 35 trillion bits every second

 Modern companies deal with extremely large data

- Modern companies deal with extremely large data
- Can't even store all of it sometimes!

- Modern companies deal with extremely large data
- Can't even store all of it sometimes!
- If is possible to store, can be very difficult to access particular pieces

• Up until now: nice self-contained instances; might fit in L3 cache; might fit in RAM

- Up until now: nice self-contained instances; might fit in L3 cache; might fit in RAM
- In some situations: the data is *too big* and you can't hope to do that

- Up until now: nice self-contained instances; might fit in L3 cache; might fit in RAM
- In some situations: the data is *too big* and you can't hope to do that
- The data is like a stream that's constantly rushing past

- Up until now: nice self-contained instances; might fit in L3 cache; might fit in RAM
- In some situations: the data is *too big* and you can't hope to do that
- The data is like a stream that's constantly rushing past
- All you can do is sample pieces as they pass by

 You receive a stream of N items one by one

- You receive a stream of N items one by one
- Stream is incredibly long; you can't store all of the items

- You receive a stream of N items one by one
- Stream is incredibly long; you can't store all of the items
- Can't move forward or backward either; just come in one at a time

• Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.

- Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.
- Now, a worst-case adversary is feeding you tiny pieces of information one-by-one, in whatever order they want

- Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.
- Now, a worst-case adversary is feeding you tiny pieces of information one-by-one, in whatever order they want
- You can only store $O(\log N)$ bytes of space, or maybe even O(1)

- Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.
- Now, a worst-case adversary is feeding you tiny pieces of information one-by-one, in whatever order they want
- You can only store $O(\log N)$ bytes of space, or maybe even O(1)
- What can we do in this situation?

- Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.
- Now, a worst-case adversary is feeding you tiny pieces of information one-by-one, in whatever order they want
- You can only store $O(\log N)$ bytes of space, or maybe even O(1)
- What can we do in this situation?
- Note: very active area of research

- Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.
- Now, a worst-case adversary is feeding you tiny pieces of information one-by-one, in whatever order they want
- You can only store $O(\log N)$ bytes of space, or maybe even O(1)
- What can we do in this situation?
- Note: very active area of research
- Today we'll look at two classic results

• Much more extreme "compression" than a filter

- Much more extreme "compression" than a filter
- (Filter used a constant number of bits per item; we can't afford that)

- Much more extreme "compression" than a filter
- (Filter used a constant number of bits per item; we can't afford that)
- Today: two data structures

- Much more extreme "compression" than a filter
- (Filter used a constant number of bits per item; we can't afford that)
- Today: two data structures
 - Count-min sketch: More aggressive than a filter. Good guarantees for counting how many times a given element occurred in a stream.

- Much more extreme "compression" than a filter
- (Filter used a constant number of bits per item; we can't afford that)
- Today: two data structures
 - Count-min sketch: More aggressive than a filter. Good guarantees for counting how many times a given element occurred in a stream.
 - HyperLogLog: Only uses a few bytes. Estimates how many unique items appeared in the stream.

When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic, etc.

When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic, etc.

 Cache-efficiency! Streaming algorithms only require you to scan the data once.

When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic, etc.

 Cache-efficiency! Streaming algorithms only require you to scan the data once.

• *N/B* cache misses

Actual Applications

- DDOS attack: keep track of IP addresses that appear too often
- Keep track of popular passwords
- Google uses an improved HyperLogLog to speed up searches
- Reddit uses HyperLogLog to estimate views of a post
- Facebook uses HyperLogLog to estimate number of unique visitors to site.

HyperLogLog at Facebook



"Doing this with a traditional SQL query on a data set as massive as the ones we use at Facebook would take days and terabytes of memory... With HLL, we can perform the same calculation in 12 hours with less than 1 MB of memory."

Goal:

• Maintain a data structure on a stream of items

Goal:

• Maintain a data structure on a stream of items

• See the items one at a time; you have no control over how they are given to you

Goal:

Maintain a data structure on a stream of items

- See the items one at a time; you have no control over how they are given to you
- Want to be extremely space efficient

Goal:

Maintain a data structure on a stream of items

- See the items one at a time; you have no control over how they are given to you
- Want to be extremely space efficient

At any time, estimate how frequently a given item appeared

You see the following items one by one:

adhesive

You see the following items one by one:

flawless

You see the following items one by one:

closed

You see the following items one by one:

adhesive

You see the following items one by one:

describe

You see the following items one by one:

closed

You see the following items one by one:

sea

You see the following items one by one:

illustrious

You see the following items one by one:

describe

You see the following items one by one:

describe

You see the following items one by one:

flawless

You see the following items one by one:

street

You see the following items one by one:

closed

You see the following items one by one:

describe

• Now, answer questions of the form: how many times did some item x_i occur in the stream?

• Now, answer questions of the form: how many times did some item x_i occur in the stream?

Example: how many times did adhesive appear? How about closed?

• Now, answer questions of the form: how many times did some item x_i occur in the stream?

- Example: how many times did adhesive appear? How about closed?
 - (2 times and 3 times respectively)

• See a stream of elements $x_1, \dots x_N$, each from a universe U^1

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

- See a stream of elements $x_1, \dots x_N$, each from a universe U^1
- For some element $q \in U$, estimate how many i exist with $x_i = q$?

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

- See a stream of elements $x_1, \dots x_N$, each from a universe U^1
- For some element $q \in U$, estimate how many i exist with $x_i = q$?
- Today: pretty decent guess using $\lceil \frac{e}{\varepsilon} \rceil \lceil \ln(1/\delta) \rceil (1 + \lfloor \log_2 N \rfloor \text{ bits of space} \rceil$

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

- See a stream of elements $x_1, \dots x_N$, each from a universe U^1
- For some element $q \in U$, estimate how many i exist with $x_i = q$?
- Today: pretty decent guess using $\left\lceil \frac{e}{\varepsilon} \right\rceil \left\lceil \ln(1/\delta) \right\rceil (1 + \lfloor \log_2 N \rfloor$ bits of space
 - \bullet $\ \varepsilon$ and δ are parameters we can use to adjust the error

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

- See a stream of elements $x_1, \dots x_N$, each from a universe U^1
- For some element $q \in U$, estimate how many i exist with $x_i = q$?
- Today: pretty decent guess using $\left\lceil \frac{e}{\varepsilon} \right\rceil \left\lceil \ln(1/\delta) \right\rceil \left(1 + \left\lfloor \log_2 N \right\rfloor \right)$ bits of space
 - ε and δ are parameters we can use to adjust the error
 - Don't depend on N, or |U|: so you can upper bound this as $O(\log N)$ space

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

- See a stream of elements $x_1, \dots x_N$, each from a universe U^1
- For some element $q \in U$, estimate how many i exist with $x_i = q$?
- Today: pretty decent guess using $\left\lceil \frac{e}{\varepsilon} \right\rceil \left\lceil \ln(1/\delta) \right\rceil (1 + \lfloor \log_2 N \rfloor$ bits of space
 - ε and δ are parameters we can use to adjust the error
 - Don't depend on N, or |U|: so you can upper bound this as $O(\log N)$ space
 - This is asymptotically the same space it takes to store the answer itself: a number from 0 to N

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

How would you solve this problem with what you know right now?

 Let's come up with a space-inefficient solution

How would you solve this problem with what you know right now?

- Let's come up with a space-inefficient solution
- Keep a hash table with all elements

How would you solve this problem with what you know right now?

- Let's come up with a space-inefficient solution
- Keep a hash table with all elements
- Increment a counter each time you see an element

How would you solve this problem with what you know right now?

- Let's come up with a space-inefficient solution
- Keep a hash table with all elements
- Increment a counter each time you see an element
- O(N) space, O(1) time per query

How would you solve this problem with what you know right now?

- Let's come up with a space-inefficient solution
- Keep a hash table with all elements
- Increment a counter each time you see an element
- O(N) space, O(1) time per query
- Pretty efficient! But we want way way less space.

• Randomly sampling:

- Randomly sampling:
 - Keep N/100 slots
 - For each item, with probability 1/100, use the approach above

- Randomly sampling:
 - Keep N/100 slots
 - For each item, with probability 1/100, use the approach above
- If an item appears k times in the stream, we record it k/100 times in expectation.

- If an item appears k times in the stream, we see it k/100 times in expectation.
- So, if we wrote an item down w times, we can estimate that it probably occurred 100w times in the stream.

What are some downsides to this approach?

What are some downsides to this approach?

 It's pretty loose. If our counter is just one off, that changes our guess by +100

What are some downsides to this approach?

- It's pretty loose. If our counter is just one off, that changes our guess by +100
- Could have a fairly frequent item that we never write down.
- Can't guarantee much about our estimate

- Maintain a hash table A with $1/\varepsilon$ entries, each of at least $1 + \lfloor \log_2 N \rfloor$ bits
 - Has enough room to store a number in $\{0, ..., N\}$.

- Maintain a hash table A with $1/\varepsilon$ entries, each of at least $1 + |\log_2 N|$ bits
 - Has enough room to store a number in $\{0, ..., N\}$.
- Hash function h for A

- Maintain a hash table A with $1/\varepsilon$ entries, each of at least $1 + |\log_2 N|$ bits
 - Has enough room to store a number in $\{0, ..., N\}$.
- Hash function h for A
- When we see an item x_i :

- Maintain a hash table A with $1/\varepsilon$ entries, each of at least $1 + |\log_2 N|$ bits
 - Has enough room to store a number in $\{0, ..., N\}$.
- Hash function h for A
- When we see an item x_i:
 - Increment $A[h(x_i)]$

- Maintain a hash table A with $1/\varepsilon$ entries, each of at least $1 + \lfloor \log_2 N \rfloor$ bits
 - Has enough room to store a number in $\{0, ..., N\}$.
- Hash function h for A• When we see an item x_i :

 Increment $A[h(x_i)]$ Counters of length $1 + \lfloor \log N \rfloor$ so don't overflow

- Maintain a hash table A with $1/\varepsilon$ entries, each of at least $1 + |\log_2 N|$ bits
 - Has enough room to store a number in $\{0, ..., N\}$.
- Hash function h for A
- When we see an item x_i:
 - Increment $A[h(x_i)]$
- How can we query?

How can we query q?

How can we query q?

• Return A[h(q)]

How can we query q?

- Return A[h(q)]
- What guarantees does this give?

How can we query q?

- Return A[h(q)]
- What guarantees does this give?
 - Always overestimates the number of occurrences

How can we query q?

- Return A[h(q)]
- What guarantees does this give?
 - Always overestimates the number of occurrences

Since we always increase this counter when we see $x_i = q$

How can we query q?

- Return A[h(q)]
- What guarantees does this give?

• Always overestimates the number of occurrences

But, also increase it when $h(x_i) = h(q)$, but $x_i \neq q$

How can we query q?

- Return A[h(q)]
- What guarantees does this give?
 - Always overestimates the number of occurrences
 - How much does it overestimate by?

How can we query q?

- Return A[h(q)]
- What guarantees does this give?
 - Always *overestimates* the number of occurrences
 - How much does it overestimate by?
 - Each of N items hashes to same slot with probability ε , so $N\varepsilon$ in expectation

Expectation is not that great!

Expectation is not that great!

Let's say we have only two items;
 A appears 100 times and B
 appears 900

Expectation is not that great!

- Let's say we have only two items;
 A appears 100 times and B
 appears 900
- What are the possibilities for what happens when we query A?

Expectation is not that great!

- Let's say we have only two items;
 A appears 100 times and B
 appears 900
- What are the possibilities for what happens when we query A?
- With probability 1ε we get 100; with probability ε we get 1000

- To guarantee a high-quality answer, we want to say that the solution is *likely* to be close to correct.
 - We want concentration bounds!

- To guarantee a high-quality answer, we want to say that the solution is *likely* to be close to correct.
 - We want concentration bounds!
- How can you increase the reliability of a random process?

- To guarantee a high-quality answer, we want to say that the solution is *likely* to be close to correct.
 - We want concentration bounds!
- How can you increase the reliability of a random process?
- For example, let's say we're rolling a die. We want to be sure we see a 6 at least once. How can we do that?

- To guarantee a high-quality answer, we want to say that the solution is *likely* to be close to correct.
 - We want concentration bounds!
- How can you increase the reliability of a random process?
- For example, let's say we're rolling a die. We want to be sure we see a 6 at least once. How can we do that?
- Of course: roll the die many times!

• Rather than having one hash table A, let's have a two-dimensional hash table T

ullet Rather than having one hash table A, let's have a two-dimensional hash table T

• T has $\lceil \ln(1/\delta) \rceil$ rows

• Rather than having one hash table A, let's have a two-dimensional hash table T back to δ later.

• $T \text{ has } \lceil \ln(1/\delta) \rceil \text{ rows}$

Rather than having one hash table A, let's have a two-dimensional hash table

• T has $\lceil \ln(1/\delta) \rceil$ rows

• Each row consists of $\lceil e/\varepsilon \rceil$ slots

ullet Rather than having one hash table A, let's have a two-dimensional hash table T

• T has $\lceil \ln(1/\delta) \rceil$ rows

• Each row consists of $\lceil e/\varepsilon \rceil$ slots

The *e* is important for the analysis.

Repetitions

Rather than having one hash table A, let's have a two-dimensional hash table

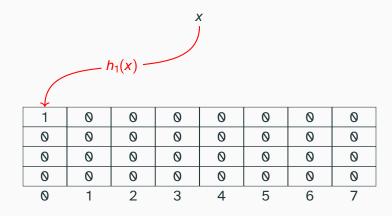
• T has $\lceil \ln(1/\delta) \rceil$ rows

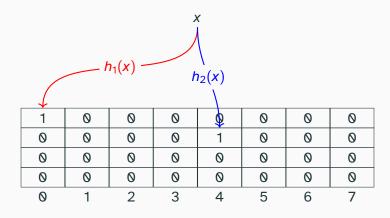
• Each row consists of $\lceil e/\varepsilon \rceil$ slots

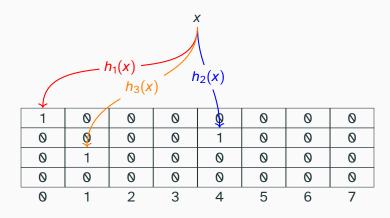
· Different hash function for each row

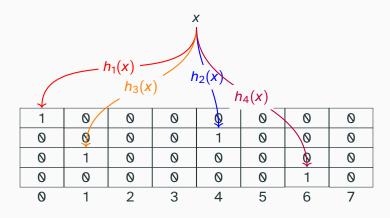
Χ

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	2	3	4	5	6	7



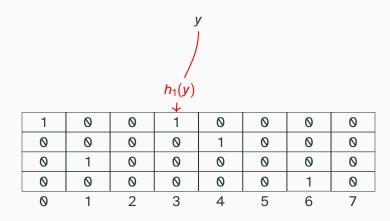


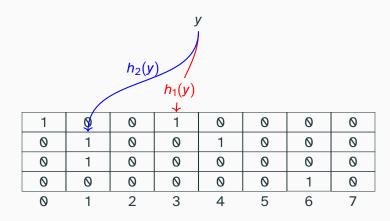


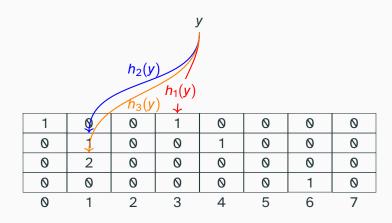


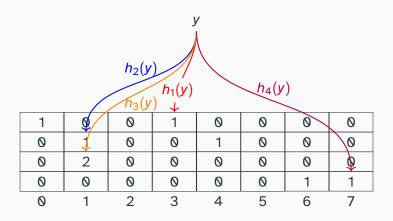
У

1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0
0	0	0	0	0	0	1	0
0	1	2	3	4	5	6	7









Inserts

To insert x_i :

• For
$$j = 0 \dots \lceil \ln(1/\delta) \rceil - 1$$
:

Inserts

To insert x_i :

- For $j = 0 \dots \lceil \ln(1/\delta) \rceil 1$:
 - Increment $T[j][h_j(x_i)]$

Inserts

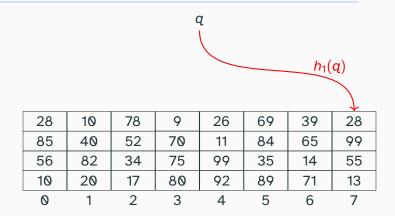
To insert x_i :

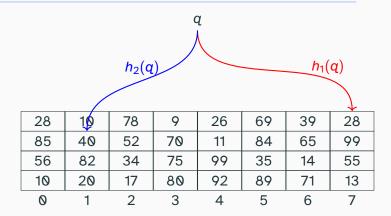
- For $j = 0 \dots \lceil \ln(1/\delta) \rceil 1$:
 - Increment $T[j][h_i(x_i)]$

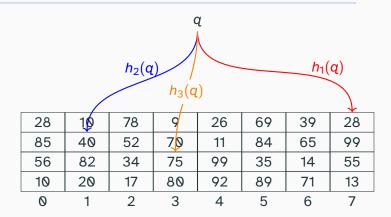
We now have $\lceil \ln(1/\delta) \rceil$ independent counters for each item. How can we query?

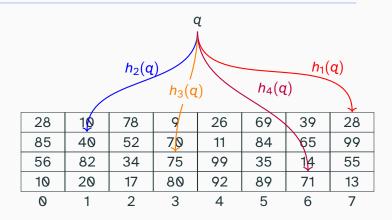
q

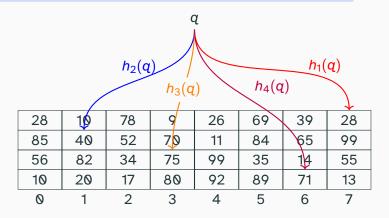
28	10	78	9	26	69	39	28
85	40	52	70	11	84	65	99
56	82	34	75	99	35	14	55
10	20	17	80	92	89	71	13
0	1	2	3	4	5	6	7



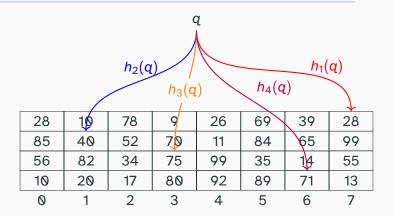








We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of these numbers? How can we combine them into a single answer to the query?



We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of these numbers? How can we combine them into a single answer to the query?

Answer: each is an overestimate; take the *min*. It must be the closest to the true answer!

Queries

Each entry is an overestimate.

Queries

Each entry is an overestimate.

• Find $\min_j T[j][h_j(x_i)]$.

• Table T with $\lceil \ln(1/\delta) \rceil$ rows, each with $\lceil e/\varepsilon \rceil$ columns. Cells of size $1 + \lfloor \log N \rfloor$

• Table T with $\lceil \ln(1/\delta) \rceil$ rows, each with $\lceil e/\varepsilon \rceil$ columns. Cells of size $1 + \lfloor \log N \rfloor$

• $\lceil \ln(1/\delta) \rceil$ hash functions; one for each row

- Table T with $\lceil \ln(1/\delta) \rceil$ rows, each with $\lceil e/\varepsilon \rceil$ columns. Cells of size $1 + \lfloor \log N \rfloor$
- $\lceil \ln(1/\delta) \rceil$ hash functions; one for each row
- To insert x: increment $T[j][h_j(x)]$ for all $j = 0, ... \lceil \ln(1/\delta) \rceil 1$

- Table T with $\lceil \ln(1/\delta) \rceil$ rows, each with $\lceil e/\varepsilon \rceil$ columns. Cells of size $1 + \lfloor \log N \rfloor$
- $\lceil \ln(1/\delta) \rceil$ hash functions; one for each row
- To insert x: increment $T[j][h_i(x)]$ for all $j = 0, ... \lceil \ln(1/\delta) \rceil 1$
- To query q: return $\min_{j \in \{0,...,\lceil \ln(1/\delta) \rceil 1\}} T[j][h_j(q)]$

- On query q, let's say the filter returns that there were o_q occurrences
 - So $o_q = \min_j T[j][h_j(q)]$

- On query q, let's say the filter returns that there were o_q occurrences
 - So $o_q = \min_j T[j][h_j(q)]$

ullet In reality, the correct answer is $\widehat{o_q}$ occurrences

- ullet On query q, let's say the filter returns that there were o_q occurrences
 - So $o_q = \min_j T[j][h_j(q)]$

• In reality, the correct answer is $\widehat{o_q}$ occurrences

• First: always have $\widehat{o_q} \leq o_q$.

• On query q, let's say the filter returns that there were o_q occurrences; correct answer is $\widehat{o_q}$.

- On query q, let's say the filter returns that there were o_q occurrences; correct answer is $\widehat{o_q}$.
- We know that for any j, $\mathrm{E}\left[T[j][h_j(q)]\right] \leq \widehat{o_q} + \frac{\varepsilon N}{\mathrm{e}}$

- On query q, let's say the filter returns that there were o_q occurrences; correct answer is $\widehat{o_q}$.
- We know that for any j, $\mathsf{E}\left[T[j][h_j(q)]\right] \leq \widehat{o_q} + \frac{\varepsilon N}{\mathsf{e}}$
- That is to say: guess is off by $\frac{\varepsilon N}{e}$ in expectation

- On query q, let's say the filter returns that there were o_q occurrences; correct answer is $\widehat{o_q}$.
- We know that for any j, $\operatorname{E}\left[T[j][h_j(q)]\right] \leq \widehat{o_q} + \frac{\varepsilon N}{\operatorname{e}}$
- That is to say: guess is off by $\frac{\varepsilon N}{e}$ in expectation
- Can we get concentration bounds?

Markov's Inequality

• (You do not need to remember this/apply it to other problems.)

Markov's Inequality

- (You do not need to remember this/apply it to other problems.)
- The probability that a positive random variable is C larger than its expectation is at most 1/C

Markov's Inequality

- (You do not need to remember this/apply it to other problems.)
- The probability that a positive random variable is C larger than its expectation is at most 1/C
- For any random variable X, $\Pr[X > C \cdot E[X]] \le 1/C$

Markov's Inequality

- (You do not need to remember this/apply it to other problems.)
- The probability that a positive random variable is C larger than its expectation is at most 1/C
- For any random variable X, $Pr[X > C \cdot E[X]] \le 1/C$
- Let's prove this with C = 2 on the board.

- On query q, let's say the filter returns that there were o_q occurrences; correct answer is $\widehat{o_q}$.
- We know that for any j, $\mathsf{E}\left[T[j][h_j(q)]\right] \leq \widehat{o_q} + \frac{\varepsilon N}{\mathsf{e}}$

- On query q, let's say the filter returns that there were o_q occurrences; correct answer is $\widehat{o_q}$.
- We know that for any j, $\mathrm{E}\left[T[j][h_j(q)]\right] \leq \widehat{o_q} + \frac{\varepsilon N}{\mathrm{e}}$
- By Markov's inequality, for any positive random variable X, $Pr[X \ge e \cdot E[X]] \le 1/e$

- On query q, let's say the filter returns that there were o_q occurrences; correct answer is $\widehat{o_q}$.
- We know that for any j, $\operatorname{E}\left[T[j][h_j(q)]\right] \leq \widehat{o_q} + \frac{\varepsilon N}{\operatorname{e}}$
- By Markov's inequality, for any positive random variable X,
 Pr[X ≥ e · E[X]] ≤ 1/e
- So the probability that $T[j][h_j(q)] \ge \widehat{o_q} + \varepsilon N$ is at most 1/e

- On query q, let's say the filter returns that there were o_q occurrences; correct answer is $\widehat{o_q}$.
- We know that for any j, $\mathrm{E}\left[T[j][h_j(q)]\right] \leq \widehat{o_q} + \frac{\varepsilon N}{\mathrm{e}}$
- By Markov's inequality, for any positive random variable X,
 Pr[X ≥ e · E[X]] ≤ 1/e
- So the probability that $T[j][h_j(q)] \ge \widehat{o_q} + \varepsilon N$ is at most 1/e
- In a *given row*, we are at most εN over with probability 1/e

• For each row j, the probability that $T[j][h_j(q)] \ge \widehat{o_q} + \varepsilon N$ is at most 1/e

- For each row j, the probability that $T[j][h_j(q)] \ge \widehat{o_q} + \varepsilon N$ is at most 1/e
- Are the rows independent?

- For each row j, the probability that $T[j][h_j(q)] \ge \widehat{o_q} + \varepsilon N$ is at most 1/e
- Are the rows independent?
 - Yes. (For each row, we select a new hash and start over)

- For each row j, the probability that $T[j][h_j(q)] \ge \widehat{o_q} + \varepsilon N$ is at most 1/e
- Are the rows independent?
 - Yes. (For each row, we select a new hash and start over)
- What is $Pr[\min_j T[j][h_j(q)]] \ge \widehat{o_q} + \varepsilon N$?

- For each row j, the probability that $T[j][h_j(q)] \ge \widehat{o_q} + \varepsilon N$ is at most 1/e
- Are the rows independent?
 - Yes. (For each row, we select a new hash and start over)
- What is $\Pr[\min_j T[j][h_j(q)]] \ge \widehat{o_q} + \varepsilon N$?
- Only fails if cell is too big in every row! Occurs with probability

- For each row j, the probability that $T[j][h_j(q)] \ge \widehat{o_q} + \varepsilon N$ is at most 1/e
- Are the rows independent?
 - Yes. (For each row, we select a new hash and start over)
- What is $\Pr[\min_j T[j][h_j(q)]] \ge \widehat{o_q} + \varepsilon N$?
- Only fails if cell is too big in every row! Occurs with probability

$$\left(\frac{1}{e}\right)^{\text{\# rows}} = \left(\frac{1}{e}\right)^{\lceil \ln 1/\delta \rceil} \le \delta$$

Count-Min Sketch Bounds

- $\left\lceil \frac{e}{\varepsilon} \right\rceil \left\lceil \ln \frac{1}{\delta} \right\rceil (1 + \lfloor \log_2 N \rfloor)$ bits of space
- For any query q, if the filter returns o_q and the actual number of occurrences is $\widehat{o_q}$, then with probability 1δ :

$$\widehat{o_q} \le o_q \le \widehat{o_q} + \varepsilon N.$$

Count-Min Sketch

Small sketch (size based on error rate)

Count-Min Sketch

- Small sketch (size based on error rate)
- Always overestimates count

Count-Min Sketch

- Small sketch (size based on error rate)
- · Always overestimates count
- Bound on overestimation is based on stream length

• 300 entries in each row, 4 rows

- 300 entries in each row, 4 rows
- 32-bit counters (a little wasteful!)

- 300 entries in each row, 4 rows
- 32-bit counters (a little wasteful!)
- 7.3MB of data summarized in 4.8KB

- 300 entries in each row, 4 rows
- 32-bit counters (a little wasteful!)
- 7.3MB of data summarized in 4.8KB
- \bullet Really accurate still: in 1.2 million word stream, can estimate num occurrences of each word within ± 1500

- 300 entries in each row, 4 rows
- 32-bit counters (a little wasteful!)
- 7.3MB of data summarized in 4.8KB
- ullet Really accurate still: in 1.2 million word stream, can estimate num occurrences of each word within ± 1500
- Often more accurate! Also: feel free to try 1000 or 10000 entries per row; it gets quite accurate

Hyper Log Log Counting

Setting up

• Count-min sketch takes up a lot of space!

Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the stream

Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the stream

• Common question: how many unique elements are there in the stream?

• Stream of N elements

- Stream of N elements
- Approximate number of unique elements

- Stream of N elements
- Approximate number of unique elements
- (Compare to CMS: stores approximately how many there are of each element)

- Stream of N elements
- Approximate number of unique elements
- To do this exactly: need dictionary of all elements we've already seen.

- Stream of N elements
- Approximate number of unique elements
- To do this exactly: need dictionary of all elements we've already seen.
- How can you count unique elements approximately? Challenge: don't want to double-count when we see an element twice.

· Let's hash each item as it comes in

- Let's hash each item as it comes in
- Then instead of a list of items, we get a list of random hashes

- Let's hash each item as it comes in
- Then instead of a list of items, we get a list of random hashes
- Idea: let's look at a rare event in these hashes. The more often it happens, the more distinct hashes (and thus distinct items) we must be seeing!

- · Let's hash each item as it comes in
- Then instead of a list of items, we get a list of random hashes
- Idea: let's look at a rare event in these hashes. The more often it happens, the more distinct hashes (and thus distinct items) we must be seeing!
- In particular: how many 0s does each hash end with?

Hashes ending in 0s

• What is the probability that a hash ends in ten 0's?

Hashes ending in 0s

• What is the probability that a hash ends in ten 0's? Answer: 1/1024

Hashes ending in 0s

- What is the probability that a hash ends in ten 0's? Answer: 1/1024
- So if we have two distinct elements, it's very unlikely that the hash of either will end in 10 0's.

Hashes ending in 0s

- What is the probability that a hash ends in ten 0's? Answer: 1/1024
- So if we have two distinct elements, it's very unlikely that the hash of either will end in 10 0's.
- If we have $2^{10} = 1024$ distinct elements, it's pretty likely that the hash of one will end with 10 0's!

Hashes ending in 0s

- What is the probability that a hash ends in ten 0's? Answer: 1/1024
- So if we have two distinct elements, it's very unlikely that the hash of either will end in 10 0's.
- If we have $2^{10} = 1024$ distinct elements, it's pretty likely that the hash of one will end with 10 0's!
- Note "distinct!" All of this comes back to estimating how many unique
 elements there are. Unique elements give a new hash, and a new opportunity
 for many zeroes. Non-unique elements don't give a new hash.

You see the following hashes one by one:

1101110101001100

How many unique items were there?

You see the following hashes one by one:

0010110010111101

How many unique items were there? Was it more or less than the last one?

• Answer: 1st had 14 items, 2nd had 3

- Answer: 1st had 14 items, 2nd had 3
- Notice that only one hash in the second example ended with 0

- Answer: 1st had 14 items, 2nd had 3
- Notice that only one hash in the second example ended with 0
 - Extremely unlikely if there were 14 different elements!

Which example had more unique items?

- Answer: 1st had 14 items, 2nd had 3
- Notice that only one hash in the second example ended with 0
 - Extremely unlikely if there were 14 different elements!
- One of the items in the first example ended with 4 0's

Which example had more unique items?

- Answer: 1st had 14 items, 2nd had 3
- Notice that only one hash in the second example ended with 0
 - Extremely unlikely if there were 14 different elements!
- One of the items in the first example ended with 4 0's
 - Unlikely if there were 3 elements!

• Let's say that the hash ending with the most 0s has k 0s at the end

• Let's say that the hash ending with the most 0s has k 0s at the end

• Any given hash has k 0s with probability $1/2^k$

- Let's say that the hash ending with the most 0s has k 0s at the end
- Any given hash has k 0s with probability $1/2^k$
- ullet So it seems that, there are probably something like 2^k items

- Let's say that the hash ending with the most 0s has k 0s at the end
- Any given hash has $k \otimes s$ with probability $1/2^k$
- So it seems that, there are probably something like 2^k items
- But: if we're just off by 1 or 2 zeroes, that affects our answer by a lot! (We don't get good concentration bounds)

• How do we improve the consistency of a random process?

 How do we improve the consistency of a random process? Repeat!* (*in a particular way)

- How do we improve the consistency of a random process? Repeat!* (*in a particular way)
- Hash each item *first* to one of several counters

- How do we improve the consistency of a random process? Repeat!* (*in a particular way)
- Hash each item first to one of several counters
- For each counter, keep track of 1 + the maximum number of 0s at end of any item hashed to that counter

- How do we improve the consistency of a random process? Repeat!* (*in a particular way)
- Hash each item *first* to one of several counters
- For each counter, keep track of 1 + the maximum number of 0s at end of any item hashed to that counter
- For CMS, we took the min. What do we do here to combine the estimates?

- How do we improve the consistency of a random process? Repeat!* (*in a particular way)
- Hash each item first to one of several counters
- For each counter, keep track of 1 + the maximum number of 0s at end of any item hashed to that counter
- For CMS, we took the min. What do we do here to combine the estimates?
- Answer: It's complicated. (And the rationale is outside the scope of the course.)

• Keep an array of m counters (m is a power of 2); let's call it M

- Keep an array of m counters (m is a power of 2); let's call it M
- Hash each item as it comes in. Then:

- Keep an array of m counters (m is a power of 2); let's call it M
- Hash each item as it comes in. Then:
 - Get an index i, consisting of the lowest $\log_2 m$ bits of h(x). Then i will index into M. Shift off these bits.

- Keep an array of m counters (m is a power of 2); let's call it M
- Hash each item as it comes in. Then:
 - Get an index i, consisting of the lowest $\log_2 m$ bits of h(x). Then i will index into M. Shift off these bits.
 - Look at the remaining bits. Let z be the number of zeroes. If z+1>M[i], set M[i]=z+1

- Keep an array of m counters (m is a power of 2); let's call it M
- Hash each item as it comes in. Then:
 - Get an index i, consisting of the lowest $\log_2 m$ bits of h(x). Then i will index into M. Shift off these bits.
 - Look at the remaining bits. Let z be the number of zeroes. If z+1>M[i], set M[i]=z+1
- Make sure to add 1 to your count of the number of zeroes

• At the end, we have an array M, each containing a count

²You have to look this constant up.

• At the end, we have an array M, each containing a count

Let

$$Z = \sum_{i=0}^{m-1} \left(\frac{1}{2}\right)^{M[i]}.$$

²You have to look this constant up.

• At the end, we have an array M, each containing a count

Let

$$Z = \sum_{i=0}^{m-1} \left(\frac{1}{2}\right)^{M[i]}.$$

• Let b be a bias constant.² For m = 32, b = .697.

²You have to look this constant up.

- At the end, we have an array M, each containing a count
- Let

$$Z = \sum_{i=0}^{m-1} \left(\frac{1}{2}\right)^{M[i]}.$$

- Let b be a bias constant.² For m = 32, b = .697.
- Return bm^2/Z .

²You have to look this constant up.

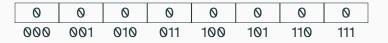
*X*₁

$$h(x_1) = 010001000111110111111101010110$$

*X*₁

$$h(x_1) = 010001000111110111111101010110$$

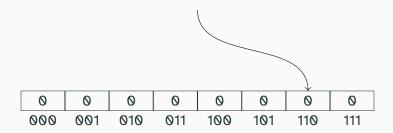
index = 110 Remaining: 0100010001111101111111101010



*X*₁

$$h(x_1) = 010001000111110111111101010110$$

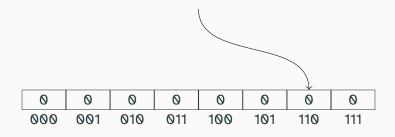
index = 110 Remaining: 010001000111110111111101010



*X*₁

$$h(x_1) = 010001000111110111111101010110$$

index = 110 Remaining: 0100010001111101111111101010

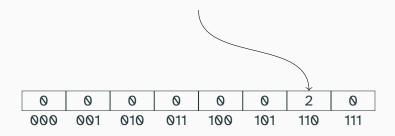


The remaining hash ends with 1 zero, so we want to store 2. The counter stores less than 2, so we store it.

*X*₁

$$h(x_1) = 010001000111110111111101010110$$

index = 110 Remaining: 010001000111110111111101010



The remaining hash ends with 1 zero, so we want to store 2. The counter stores less than 2, so we store it.

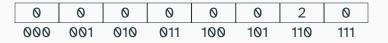
*X*₂

 $h(x_2) = 011110001100100001111010010110$

*X*₂

$$h(x_2) = 011110001100100001111010010110$$

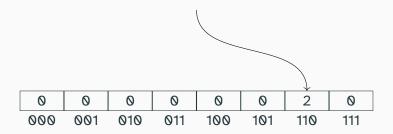
index = 110 Remaining: 011110001100100001111010010



*X*₂

 $h(x_2) = 011110001100100001111010010110$

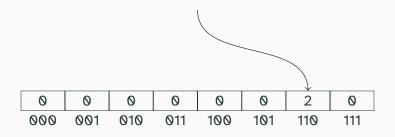
index = 110 Remaining: 011110001100100001111010010



 X_2

$$h(x_2) = 011110001100100001111010010110$$

index = 110 Remaining: 011110001100100001111010010



The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2, so we keep it as-is.

X3

 $h(x_3) = 110011011101100000011010000001$

X3

$$h(x_3) = 110011011101100000011010000001$$

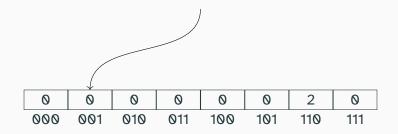
index = 001 Remaining: 110011011101100000011010000

0	0	0	0	0	0	2	0
000	001	010	011	100	101	110	111

X3

$$h(x_3) = 110011011101100000011010000001$$

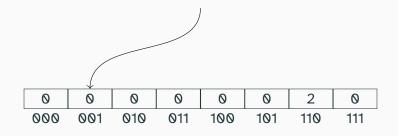
index = 001 Remaining: 110011011101100000011010000



X3

$$h(x_3) = 110011011101100000011010000001$$

index = 001 Remaining: 110011011101100000011010000

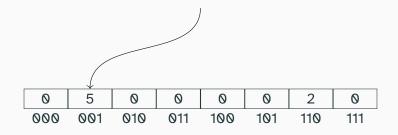


The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores 0, so we store 5 in the slot.

X3

$$h(x_3) = 110011011101100000011010000001$$

index = 001 Remaining: 110011011101100000011010000



The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores 0, so we store 5 in the slot.

*X*₄

 $h(x_4) = 1000100111011011011011011001$

*X*₄

$$h(x_4) = 1000100111011011011011011001$$

index = 001 Remaining: 100010011101101110110110111

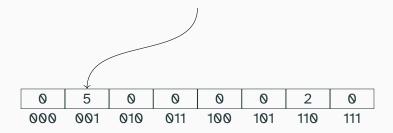
0	5	0	0	0	0	2	0
000	001	010	011	100	101	110	111

The remaining hash ends with 0 zeroes, so we want to store 1. The counter stores 5, so we keep the slot as-is.

*X*₄

$$h(x_4) = 1000100111011011011011011001$$

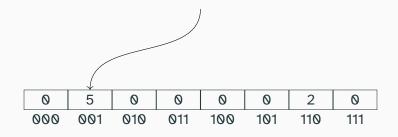
index = 001 Remaining: 10001001110110110110110111



 X_4

$$h(x_4) = 1000100111011011011011011001$$

index = 001 Remaining: 100010011101101110110110111



The remaining hash ends with 0 zeroes, so we want to store 1. The counter stores 5, so we keep the slot as-is.

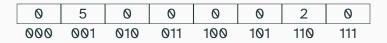
*X*₂

 $h(x_2) = 011110001100100001111010010110$

*X*₂

$$h(x_2) = 011110001100100001111010010110$$

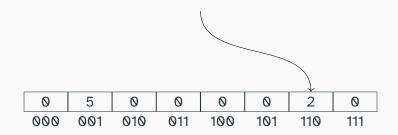
index = 110 Remaining: 011110001100100001111010010110



*X*₂

$$h(x_2) = 011110001100100001111010010110$$

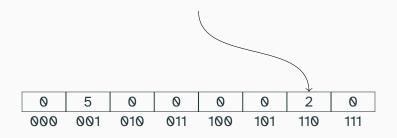
index = 110 Remaining: 011110001100100001111010010110



 X_2

$$h(x_2) = 011110001100100001111010010110$$

index = 110 Remaining: 011110001100100001111010010110



The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2, so we keep it as-is.

At the end of the day

Have an array of counters:

0	5	0	0	0	0	2	0
000	001	010	011	100	101	110	111

At the end of the day

Have an array of counters:

• Sum up $(1/2)^{M[j]}$ across all j = 0 to m - 1; store in Z

At the end of the day

Have an array of counters:

- Sum up $(1/2)^{M[j]}$ across all j = 0 to m 1; store in Z
- Return bm^2/Z . Here m=8. We would have to look up the value of b for 8. (No one does HyperLogLog with 8)

• How big do our counters need to be?

- How big do our counters need to be?
- Need to be long enough to count the longest string of 0s in any hash

- How big do our counters need to be?
- Need to be long enough to count the longest string of 0s in any hash
- Size > log log(number of distinct elements) (hence the *loglog* in the name)

- How big do our counters need to be?
- Need to be long enough to count the longest string of 0s in any hash
- Size > log log(number of distinct elements) (hence the *loglog* in the name)
- 8-bit counters are good enough, so long as the number of elements in your stream is less than the number of particles in the universe

- How big do our counters need to be?
- Need to be long enough to count the longest string of 0s in any hash
- Size > log log(number of distinct elements) (hence the *loglog* in the name)
- 8-bit counters are good enough, so long as the number of elements in your stream is less than the number of particles in the universe
- Note: one thing to be careful of is hash length. But 64 bit hashes should be good enough for any reasonable application (and 32 bits is usually fine)

HLL in the Assignment

• We'll use m = 32 counters

• Bias constant is .697

• HLL does poorly when the number of distinct items is not much more than m

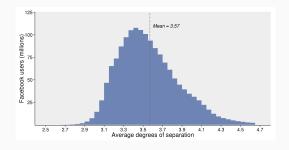
• HLL does poorly when the number of distinct items is not much more than *m*

• Or is very very high

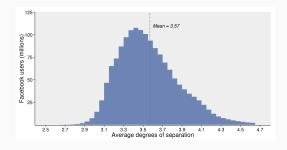
- HLL does poorly when the number of distinct items is not much more than *m*
- Or is very very high

Google developed HyperLogLog++ to help deal with these problems

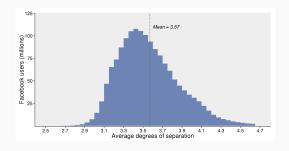
- HLL does poorly when the number of distinct items is not much more than m
- Or is very very high
- Google developed HyperLogLog++ to help deal with these problems
- Other known improvements as well



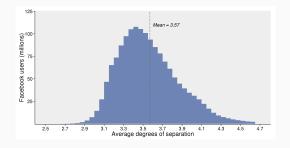
 Facebook developed an HLL-based algorithm to calculate the diameter of a graph



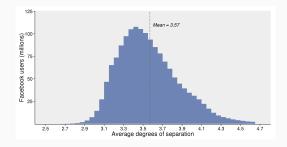
- Facebook developed an HLL-based algorithm to calculate the diameter of a graph
 - In terms of "friend jumps", how far away are the furthest people in the Facebook graph?



- Facebook developed an HLL-based algorithm to calculate the diameter of a graph
 - In terms of "friend jumps", how far away are the furthest people in the Facebook graph?
 - How far away are two people on average?



- Facebook developed an HLL-based algorithm to calculate the diameter of a graph
 - In terms of "friend jumps", how far away are the furthest people in the Facebook graph?
 - How far away are two people on average?
- Usually takes $O(n^2)$ time!



- Facebook developed an HLL-based algorithm to calculate the diameter of a graph
 - In terms of "friend jumps", how far away are the furthest people in the Facebook graph?
 - How far away are two people on average?
- Usually takes $O(n^2)$ time!
- Theirs is essentially linear time, gives extremely accurate results

Hash Functions in Practice

What do we want out of a hash function?

Of course, we want consistency (each time we hash an item we get the same result back). What else might we want?

- Fast
- Low space requirements (i.e. may need to store a seed; don't want that to be too big)
- · Good collision avoidance
- Bear in mind: different hashes work on different types of elements. We'll focus on integers and strings (especially strings)

• Best possible collision avoidance

- Best possible collision avoidance
- But: require extremely large space usage unless universe of possible elements is extremely small

- Best possible collision avoidance
- But: require extremely large space usage unless universe of possible elements is extremely small
- · You did use one of these...

- Best possible collision avoidance
- But: require extremely large space usage unless universe of possible elements is extremely small
- · You did use one of these...
 - For h on Assignment 3! Those values were all chosen independently, completely at random

Hashing in Java

 Anyone know how Java hashes a 64 bit Long?

• return x $^{\wedge}$ (x >> 32);

Advantages of this?

Is this good for:

- In cuckoo filter: h₁, h, f?
 - h₁ and f: might work if elements are fairly well-spread (we take mod); usually won't
 - h: probably won't work (output too small)
- CMS? HLL?
 - CMS might be OK; prob not (same as above)
 - HLL likely useless unless elements very uniformly spread

Multiply-Shift Hashing

- Seed is a large prime number to multiply by; can also add a large random prime
- Advantages?
 - Fast! (And easy.)

Multiply-Shift Hashing

- How good is it?
 - Pretty good! For any x, y, Pr[h(x) = h(y)] = 1/n.
 - But unfortunately behavior doesn't extend to larger numbers of elements.
- Let's say we use this for a hash table with chaining (n items, n chains). What is the expected number of elements we find during a query q?
- $X_i = 1$ if $h(x_i) = h(q)$. Then $E[X_i] = 1/n$. By linearity of expectation, total number of items is $\sum_{i=1}^{n} 1/n = 1$.
- How big do you think the largest bucket is?
 - Best known bound: $O(n^{1/3})$ [Knudsen 2017] (very bad!!)

• Is this going to work well for a filter?

- Is this going to work well for a filter?
 - Probably not. Would have to try it.

- Is this going to work well for a filter?
 - · Probably not. Would have to try it.
- Count-min sketch?

- Is this going to work well for a filter?
 - Probably not. Would have to try it.
- Count-min sketch?
 - On paper should work pretty well! After all, our analysis only used the expectation

- Is this going to work well for a filter?
 - · Probably not. Would have to try it.
- Count-min sketch?
 - On paper should work pretty well! After all, our analysis only used the expectation
 - I'd guess it won't work as well as with a better hash function

- Is this going to work well for a filter?
 - · Probably not. Would have to try it.
- Count-min sketch?
 - On paper should work pretty well! After all, our analysis only used the expectation
 - I'd guess it won't work as well as with a better hash function
- Hyperloglog?

- Is this going to work well for a filter?
 - Probably not. Would have to try it.
- Count-min sketch?
 - On paper should work pretty well! After all, our analysis only used the expectation
 - I'd guess it won't work as well as with a better hash function
- Hyperloglog?
 - Would have to try but I would very much suspect it would not work well at all

Murmurhash

• Popular practical hash function

Murmurhash

- Popular practical hash function
- Uses repeated MUltiply and Rotate operations
 - Rotate is like shift, but bits that "fall off" are replaced on other side
 - Can be implemented with two shifts and an OR

Murmurhash

- Popular practical hash function
- Uses repeated MUltiply and Rotate operations
 - Rotate is like shift, but bits that "fall off" are replaced on other side
 - Can be implemented with two shifts and an OR

• Code isn't exactly short; 50 operations to hash a number

Murmurhash Code

```
for(i = -nblocks; i; i++)
  uint32 t k1 = getblock(blocks,i*4+0);
  uint32_t k2 = getblock(blocks,i*4+1);
  uint32 t k3 = getblock(blocks,i*4+2);
  uint32 t k4 = aetblock(blocks.i*4+3);
  k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
  h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
  k2 = c2; k2 = ROTL32(k2,16); k2 = c3; h2 = k2;
  h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
  k3 = c3; k3 = R0TL32(k3,17); k3 = c4; h3 = k3;
  h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0×96cd1c35;
  k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
  h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
```

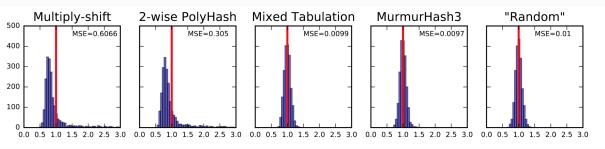
```
switch(len & 15)
case 15: k4 ^= tail[14] << 16;
case 14: k4 ^= tail[13] << 8:
case 13: k4 ^= tail[12] << 0;
         k4 = c4; k4 = ROTL32(k4,18); k4 = c1; k4 ^= k4;
case 12: k3 ^= tail[11] << 24;
case 11: k3 ^= tail[10] << 16;
case 10: k3 ^= tail[ 9] << 8;
case 9: k3 ^= tail[ 8] << 0;
         k3 = c3; k3 = ROTL32(k3,17); k3 = c4; h3 = k3;
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
h1 = fmix32(h1);
h2 = fmix32(h2);
h3 = fmix32(h3);
h4 = fmix32(h4);
h1 += h2; h1 += h3; h1 += h4;
h2 += h1: h3 += h1: h4 += h1:
```

(The light grey lines skip pieces of code.)

• No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))

- No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))
- Someday may discover: might not work well in some circumstances

- No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))
- Someday may discover: might not work well in some circumstances
- This is what happened to Murmurhash2:
 - "Will this flaw cause your program to fail? Probably not what this means in real-world terms is that if your keys contain repeated 4-byte values AND they differ only in those repeated values AND the repetitions fall on a 4-byte boundary, then your keys will collide with a probability of about 1 in 2^{27.4} instead of 2³². Due to the birthday paradox, you should have a better than 50% chance of finding a collision in a group of 13115 bad keys instead of 65536."
 - https://sites.google.com/site/murmurhash/murmurhash2flaw



Average of square of bucket sizes. Data is an intentionally bad (albeit reasonable) case

From "Practical Hash Functions for Similarity Estimation and Dimensionality Reduction" by Dahlgaard, Knudsen, Thorup NeurIPS 2017

 Much more resilient than multiply-shift to more-difficult statistical tests (beyond average case)

- Much more resilient than multiply-shift to more-difficult statistical tests (beyond average case)
- Visual example: let's say we hash "number strings": "1", "2", ... "216553"

- Much more resilient than multiply-shift to more-difficult statistical tests (beyond average case)
- Visual example: let's say we hash "number strings": "1", "2", ... "216553"
- Cool experiment from https://softwareengineering.stackexchange.com/questions/49550/ which-hashing-algorithm-is-best-for-uniqueness-and-speed

- Much more resilient than multiply-shift to more-difficult statistical tests (beyond average case)
- Visual example: let's say we hash "number strings": "1", "2", ... "216553"
- Cool experiment from https://softwareengineering.stackexchange.com/questions/49550/ which-hashing-algorithm-is-best-for-uniqueness-and-speed
- I wouldn't normally cite stackexchange but this is really cool

- Much more resilient than multiply-shift to more-difficult statistical tests (beyond average case)
- Visual example: let's say we hash "number strings": "1", "2", ... "216553"
- Cool experiment from https://softwareengineering.stackexchange.com/questions/49550/ which-hashing-algorithm-is-best-for-uniqueness-and-speed
- I wouldn't normally cite stackexchange but this is really cool
- Compare SDBM (another popular hash) with Murmurhash2; fill in pixel if corresponding table entry is hashed to

SDBM (lots of chunks of full cells!)

Murmurhash2 (visually: random)

One last murmurhash question

Murmurhash really just does a bunch of arbitrary multiplies and rotates

One last murmurhash question

Murmurhash really just does a bunch of arbitrary multiplies and rotates

 Is there anything special about this specific sequence, or will any such set work pretty well?

One last murmurhash question

Murmurhash really just does a bunch of arbitrary multiplies and rotates

 Is there anything special about this specific sequence, or will any such set work pretty well?

 Answer: others might not work. Example: "SuperFastHash" also uses multiplies and rotates

Hash comparison

Hash	Lowercase	Random UUID	Numbers
=========	========	= ========	=========
Murmur	145 ns	259 ns	92 ns
	6 colli	s 5 collis	0 collis
SDBM	148 ns	484 ns	90 ns
	4 colli	s 6 collis	0 collis
SuperFastHash	164 ns	344 ns	118 ns
	85 colli	s 4 collis	18742 collis

SuperFastHash has bad performance on lowercase English words, and horrendous performance on numbers-as-strings.

(Also from https:

```
//softwareengineering.stackexchange.com/questions/49550/
which-hashing-algorithm-is-best-for-uniqueness-and-speed)
```

• Murmurhash seems to do well (and is fast), but has few guarantees.

- Murmurhash seems to do well (and is fast), but has few guarantees.
- What do we do if we're OK with a slightly slower hash, but we REALLY want to be sure it does well?

- Murmurhash seems to do well (and is fast), but has few guarantees.
- What do we do if we're OK with a slightly slower hash, but we REALLY want to be sure it does well?
- Answer: cryptographic hashes! Secure even for cryptographic applications; no known statistical weaknesses

- Murmurhash seems to do well (and is fast), but has few guarantees.
- What do we do if we're OK with a slightly slower hash, but we REALLY want to be sure it does well?
- Answer: cryptographic hashes! Secure even for cryptographic applications; no known statistical weaknesses
- Examples: SHA-3, BLAKE2, many others

- Murmurhash seems to do well (and is fast), but has few guarantees.
- What do we do if we're OK with a slightly slower hash, but we REALLY want to be sure it does well?
- Answer: cryptographic hashes! Secure even for cryptographic applications; no known statistical weaknesses
- Examples: SHA-3, BLAKE2, many others
- Broken: MD5, SHA-1, many others

SHAttered

Marc Stevens Pierre Karpman

Elie Bursztein Ange Albertini Yarik Markov

SHAttered

The first concrete collision attack against SHA-1

Marc Stevens Pierre Karpman

Elie Bursztein Ange Albertini Yarik Markov

0.64G 🙉

8-11h

```
└─ sha1sum *.pdf
```

38762cf7f55934b34d179ae6a4c80cadccbb7f0a 1.pdf 38762cf7f55934b34d179ae6a4c80cadccbb7f0a 2.pdf

▷/tmp/sha1

2bb787a73e37352f92383abe7e2902936d1059ad9f1ba6daaa9c1e58ee6970d0 1.pdf <u>d4488775d29bdef7</u>993367d541064dbdda50d383f89f0aa13a6ff2e0894ba5ff 2.pdf

(Source: https://shattered.io)