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Admin

• I am 90% sure we’ll skip “HyperLogLog counting.” I’ll remove it from the

assignment writeup

• Assignment 3 due next Thursday. Goal: finish up Cuckoo filter; implement

Count Min Sketch

• No TA hours during reading period. I think I’ll be able to still have office hours;

I’ll send an email the day of.



Implementing Effective Hash
Functions



Hashes we need

• h1 which maps an arbitrary element (a string in Assignment 3) to a slot in the

hash table

• f which maps an arbitrary element (a string in Assignment 3) to a number from

1 to 255 (we’ll be doing 8-bit fingerprints)

• h which maps a fingerprint from 1 to 255 to a slot in the hash table

• This section is about how we do this: specifically, it’s about the function

murmurhash in the code



Implementing h

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code

• To calculate h(i), for i ∈ {1, . . . , 255}, just use hashFingerprint[i − 1]
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Implementing h1 and f

• murmurhash: a popular, fast, hash function that does a good job of “acting

random”

• Will be given to you as part of your starter code

• murmurhash outputs 128 bits. We’ll use the first 32 bits as h1, and the second

32 bits as f

• Use mod to get them down to size
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Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output
• Why is Murmurhash made this way? Why not just return the hash?

• MurmurHash returns 128 bits, which don’t fit in a word. Hash is just a 128-bit
length array where it can store the bits

• We use hash[0] for h1() and hash[1] for f()

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;
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Cuckoo Filter Analysis



Union Bound

Theorem

Let X and Y be random events. Then

Pr(X or Y) ≤ Pr(X) + Pr(Y).

More generally, if X1,X2, . . . ,Xk are any random events, then

Pr(X1 or X2 or . . . or Xk) ≤
k∑

i=1

Pr(Xk).

• Simple but useful tool in randomized algorithms

• Always works, even for events that are not independent

• Sometimes called “Boole’s inequality”
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Union Bound Example

• Let’s say I have 10 students in a course, and I randomly assign each student

an ID between 1 and 100 (these IDs do not need to be unique).

• Can you upper bound the probability that some student has ID 1?
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Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1− Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1− (99/100)10 ≈ 9.56%.
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Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1− Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1− (99/100)10 ≈ 9.56%.

This is messy! And it would be even worse if the

IDs were not independent!

The union bound lets us avoid this work.



Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that any student has ID 1 is at most the

sum, over all 10 students, of 1/100.

• This gives us an upper bound of 10/100 = 10%.
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Analysis of Cuckoo Filters

00 01 00 00 11 00 10 00
0 1 2 3 4 5 6 7

x
h1(x)h2(x)

f(x) = 102

Some assumptions going in (part 1):

• all hash functions hi are uniformly random: any x ∈ U is mapped to any hash

slot s ∈ {0, . . . ,m− 1} with probability 1/m.

• Same for the fingerprint hash f: any x ∈ U is mapped to a given fingerprint

fx ∈ {1, . . . , 1/ε} with probability ε.
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Analysis of Cuckoo Filters

00 01 00 00 11 00 10 00
0 1 2 3 4 5 6 7

x
h1(x)h2(x)

f(x) = 102

Some assumptions going in (part 1):

• We will analyze without partial-key cuckoo hashing (we’ll assume independent

h1 and h2)

• We’ll analyze with 1 slot per bin, 2n total slots. On Assignment 3, you’ll do the

same analysis for the actual cuckoo filter you use (with 4 slots per bin, and

1.05n total slots).
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First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it

returns that q /∈ S.

Equivalently, if we query an item

q ∈ S, then a filter will always

correctly answer q ∈ S.

Invariant
For every x ∈ S, there exists an

i ∈ {1, . . . , k} such that f(x) is stored

in T[hi(x)].

• We can see that the invariant means that there are no false negatives.
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Second Guarantee: False Positive Rate

00 01 00 00 11 00 10 00
0 1 2 3 4 5 6 7

q
h1(q)h2(q)

f(q) = 102

Guarantee (False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

• A query q /∈ S is a false positive if, for some hi , T[hi(q)] = f(q).

• Let’s examine each hash h1 and h2 individually.
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Second Guarantee: False Positive Rate

• Let’s start with h1. What is the probability T[h1(q)] contains a fingerprint?

• 1/2, because we are storing n elements in 2n slots.

• If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is ε.

• Therefore, the probability that T[h1(q)] contains a fingerprint f(x) = f(q) is ε/2.
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Second Guarantee: False Positive Rate

• What about h2?

• Same exact analysis: probability that T[h2(q)] contains a fingerprint

f(x) = f(q) is ε/2.
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• What about h2?

• Same exact analysis: probability that T[h2(q)] contains a fingerprint

f(x) = f(q) is ε/2.



Second: Guarantee: Putting it Together

• q is a false positive if either T[h1(q)] contains a fingerprint f(x1) such that

f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

• Each happens with probability at most ε/2

• By union bound, one or the other happens with probability at most

ε/2 + ε/2 = ε.
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h2(x)
h1(x)

• Query time?

• O(1): just check 8 slots for the fingerprint and you’re done
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• Insert time? (Recall that Cuckoo Hashing was O(1) in expectation.)

• Also O(1) in expectation; similar analysis
• We had a further guarantee: the vast majority of the time, should only need to

cuckoo O(log n) times
• Can we be more specific about this?
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Limits of Expectation

• Let’s say I charge you $1000 to play a game. With probability 1 in 1 million, I

give you $10 billion. Otherwise, I give you $0.

• Would you play this game? (Like in real life, right now.)

• Answer: some of you might, but I’m guessing many of you would not. You’re

just going to lose $1000.

• But expectation is good! You expect to win $9000.
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Concentration bounds

• Rather than giving the average performance, bound the

probability of bad performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads. But what is the

probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the probability that the

running time is more than O(n log n)?

• Answer: O(1/n) (this is why quicksort is not worse than merge sort even though

it can be Θ(n2): you’re very unlikely to see a bad case if n is at all large)
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it can be Θ(n2): you’re very unlikely to see a bad case if n is at all large)
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WHP example

• How many coins do I need to flip before I see a heads with high probability?

(With respect to some variable n)

• If I flip k times, I see a heads with probability 1− 1/2k.

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).

• This is (a simplified version of) the analysis leading to the O(log n) worst case

bounds on the last slide
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Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration bounds

• Expectation states how well the algorithm does on average. Could be much

better or worse sometimes!

• “With high probability” gives a guarantee that will almost always be met: if n is

large it becomes vanishingly unlikely that the bound will be violated.

• Largely fulfills the promise of classic worst-case algorithm analysis, but

applied to randomized algorithms
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Really Large Data

• Netflix sends (so far as I can tell)

about 300–500TB per minute on

average to its customers

• Google’s search index has been

over 100,000,000 GB for most of a

decade

• Brazil Internet Exchange processes

35 trillion bits every second
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• Modern companies deal with

extremely large data

• Can’t even store all of it sometimes!

• If is possible to store, can be very

difficult to access particular pieces
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A Shift in Focus (Streaming)

• Up until now: nice self-contained instances; might fit in L3 cache; might fit in

RAM

• In some situations: the data is too big and you can’t hope to do that

• The data is like a stream that’s constantly rushing past

• All you can do is sample pieces as they pass by
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Streaming Model

• Normally you’re used to getting your data all at once, with the ability to store

all of it, and access random pieces whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of information

one-by-one, in whatever order they want

• You can only store O(log N) bytes of space, or maybe even O(1)

• What can we do in this situation?

• Note: very active area of research

• Today we’ll look at two classic results
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What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good guarantees for counting
how many times a given element occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many unique items
appeared in the stream.
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• Data streams: network traffic, user inputs, telephone traffic, etc.

• Cache-efficiency! Streaming algorithms only require you to scan the data
once.

• N/B cache misses
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Actual Applications

• DDOS attack: keep track of IP addresses that appear too often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

• Facebook uses HyperLogLog to estimate number of unique visitors to site.



HyperLogLog at Facebook

“Doing this with a traditional SQL query on a data set as massive as the ones we

use at Facebook would take days and terabytes of memory... With HLL, we can

perform the same calculation in 12 hours with less than 1 MB of memory.”



Count-Min Sketch
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Goal:

• Maintain a data structure on a stream of items

• See the items one at a time; you have no control over how they are given to you

• Want to be extremely space efficient

• At any time, estimate how frequently a given item appeared
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• Now, answer questions of the form: how many times did some item xi occur in

the stream?

• Example: how many times did adhesive appear? How about closed?

• (2 times and 3 times respectively)
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Formally

• See a stream of elements x1, . . . xN, each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈

e
ε

⌉
dln(1/δ)e (1 + blog2 Nb bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|: so you can upper bound this as O(log N) space

• This is asymptotically the same space it takes to store the answer itself: a
number from 0 to N

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



Formally

• See a stream of elements x1, . . . xN, each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈

e
ε

⌉
dln(1/δ)e (1 + blog2 Nb bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|: so you can upper bound this as O(log N) space

• This is asymptotically the same space it takes to store the answer itself: a
number from 0 to N

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



Formally

• See a stream of elements x1, . . . xN, each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈

e
ε

⌉
dln(1/δ)e (1 + blog2 Nb bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|: so you can upper bound this as O(log N) space

• This is asymptotically the same space it takes to store the answer itself: a
number from 0 to N

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



Formally

• See a stream of elements x1, . . . xN, each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈

e
ε

⌉
dln(1/δ)e (1 + blog2 Nb bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|: so you can upper bound this as O(log N) space

• This is asymptotically the same space it takes to store the answer itself: a
number from 0 to N

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



Formally

• See a stream of elements x1, . . . xN, each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈

e
ε

⌉
dln(1/δ)e (1 + blog2 Nb bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|: so you can upper bound this as O(log N) space

• This is asymptotically the same space it takes to store the answer itself: a
number from 0 to N

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



Formally

• See a stream of elements x1, . . . xN, each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈

e
ε

⌉
dln(1/δ)e (1 + blog2 Nb bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|: so you can upper bound this as O(log N) space

• This is asymptotically the same space it takes to store the answer itself: a
number from 0 to N

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



How would you solve this problem with what you know right
now?

• Let’s come up with a

space-inefficient solution

• Keep a hash table with all elements

• Increment a counter each time you

see an element

• O(N) space, O(1) time per query

• Pretty efficient! But we want way

way less space.
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• Randomly sampling:

• Keep N/100 slots
• For each item, with probability

1/100, use the approach above

• If an item appears k times in the

stream, we record it k/100 times in

expectation.
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Sketching: A first attempt

• If an item appears k times in the

stream, we see it k/100 times in

expectation.

• So, if we wrote an item down w

times, we can estimate that it

probably occurred 100w times in

the stream.



Sketching: A first attempt

What are some downsides to this ap-

proach?

• It’s pretty loose. If our counter is

just one off, that changes our

guess by +100

• Could have a fairly frequent item

that we never write down.

• Can’t guarantee much about our

estimate



Sketching: A first attempt

What are some downsides to this ap-

proach?

• It’s pretty loose. If our counter is

just one off, that changes our

guess by +100

• Could have a fairly frequent item

that we never write down.

• Can’t guarantee much about our

estimate



Sketching: A first attempt

What are some downsides to this ap-

proach?

• It’s pretty loose. If our counter is

just one off, that changes our

guess by +100

• Could have a fairly frequent item

that we never write down.

• Can’t guarantee much about our

estimate



Second attempt: hash counts

• Maintain a hash table A with 1/ε entries, each of at least 1 + blog2 Nc bits

• Has enough room to store a number in {0, . . . ,N}.

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of length
1 + blog Nc so
don’t overflow

• How can we query?
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happens when we query A?

• With probability 1− ε we get 100;
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What do we really want?

• To guarantee a high-quality answer, we want to say that the solution is likely to
be close to correct.

• We want concentration bounds!

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure we see a 6 at

least once. How can we do that?

• Of course: roll the die many times!
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back to δ later.

• Each row consists of de/εe slots

The e is im-
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• Different hash function for each row
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We now have dln(1/δ)e independent counters for each item. How can we query?
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these numbers? How can we combine them into a single answer to the query?

Answer: each is an overestimate; take the min. It must be the closest to the true

answer!



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)

h2(q)

h3(q) h4(q)

We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of

these numbers? How can we combine them into a single answer to the query?

Answer: each is an overestimate; take the min. It must be the closest to the true

answer!



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q) h4(q)

We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of

these numbers? How can we combine them into a single answer to the query?

Answer: each is an overestimate; take the min. It must be the closest to the true

answer!



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q)

h4(q)

We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of

these numbers? How can we combine them into a single answer to the query?

Answer: each is an overestimate; take the min. It must be the closest to the true

answer!



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q) h4(q)

We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of

these numbers? How can we combine them into a single answer to the query?

Answer: each is an overestimate; take the min. It must be the closest to the true

answer!



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q) h4(q)

We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of

these numbers? How can we combine them into a single answer to the query?

Answer: each is an overestimate; take the min. It must be the closest to the true

answer!



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q) h4(q)

We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of

these numbers? How can we combine them into a single answer to the query?

Answer: each is an overestimate; take the min. It must be the closest to the true

answer!



Queries

Each entry is an overestimate.

• Find minj T[j][hj(xi)].



Queries

Each entry is an overestimate.

• Find minj T[j][hj(xi)].



Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells of size 1 + blog Nc

• dln(1/δ)e hash functions; one for each row

• To insert x: increment T[j][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T[j][hj(q)]
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Count-Min Sketch Guarantee: Lower bound

• On query q, let’s say the filter returns that there were oq occurrences

• So oq = minj T[j][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.
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• We know that for any j, E [T[j][hj(q)]] ≤ ôq + εN
e

• That is to say: guess is off by εN
e in expectation

• Can we get concentration bounds?
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• We know that for any j, E [T[j][hj(q)]] ≤ ôq + εN
e

• That is to say: guess is off by εN
e in expectation

• Can we get concentration bounds?



Count-Min Sketch Guarantee: Upper bound

• On query q, let’s say the filter returns that there were oq occurrences; correct

answer is ôq.
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Markov’s Inequality

• (You do not need to remember this/apply it to other problems.)

• The probability that a positive random variable is C larger than its expectation

is at most 1/C

• For any random variable X , Pr[X > C · E[X]] ≤ 1/C

• Let’s prove this with C = 2 on the board.
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• For each row j, the probability that T[j][hj(q)] ≥ ôq + εN is at most 1/e

• Are the rows independent?

• Yes. (For each row, we select a new hash and start over)

• What is Pr [minj T[j][hj(q)]] ≥ ôq + εN?

• Only fails if cell is too big in every row! Occurs with probability(
1
e

)# rows

=

(
1
e

)dln 1/δe
≤ δ
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Count-Min Sketch Bounds

•
⌈

e
ε

⌉ ⌈
ln 1

δ

⌉
(1 + blog2 Nc) bits of space

• For any query q, if the filter returns oq and the actual number of occurrences is

ôq, then with probability 1− δ:

ôq ≤ oq ≤ ôq + εN.
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• Small sketch (size based on error

rate)

• Always overestimates count

• Bound on overestimation is based

on stream length
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• 300 entries in each row, 4 rows

• 32-bit counters (a little wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate num occurrences

of each word within ±1500

• Often more accurate! Also: feel free to try 1000 or 10000 entries per row; it

gets quite accurate
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Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more often it happens, the

more distinct hashes (and thus distinct items) we must be seeing!

• In particular: how many 0s does each hash end with?
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Hashes ending in 0s

• What is the probability that a hash ends in ten 0’s?

Answer: 1/1024

• So if we have two distinct elements, it’s very unlikely that the hash of either will

end in 10 0’s.

• If we have 210 = 1024 distinct elements, it’s pretty likely that the hash of one

will end with 10 0’s!

• Note “distinct!” All of this comes back to estimating how many unique

elements there are. Unique elements give a new hash, and a new opportunity

for many zeroes. Non-unique elements don’t give a new hash.
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How many unique items were there?
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Example 2

You see the following hashes one by one:

How many unique items were there? Was it more or less than the last one?

0010110010111101



Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 3 elements!
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• Let’s say that the hash ending with the most 0s has k 0s at the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But: if we’re just off by 1 or 2 zeroes, that affects our answer by a lot! (We don’t

get good concentration bounds)
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particular way)

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of 0s at end of any

item hashed to that counter

• For CMS, we took the min. What do we do here to combine the estimates?

• Answer: It’s complicated. (And the rationale is outside the scope of the
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HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it M

• Hash each item as it comes in. Then:

• Get an index i, consisting of the lowest log2 m bits of h(x). Then i will index into
M. Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M[i], set
M[i] = z + 1

• Make sure to add 1 to your count of the number of zeroes
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Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1
2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z.

2You have to look this constant up.
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Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores less

than 2, so we store it.
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so we keep it as-is.
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At the end of the day

Have an array of counters:

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

• Sum up (1/2)M[j] across all j = 0 to m− 1; store in Z

• Return bm2/Z. Here m = 8. We would have to look up the value of b for 8. (No

one does HyperLogLog with 8)
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Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in any hash

• Size > log log(number of distinct elements) (hence the loglog in the name)

• 8-bit counters are good enough, so long as the number of elements in your

stream is less than the number of particles in the universe

• Note: one thing to be careful of is hash length. But 64 bit hashes should be

good enough for any reasonable application (and 32 bits is usually fine)
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HLL in the Assignment

• We’ll use m = 32 counters

• Bias constant is .697



HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these problems

• Other known improvements as well
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One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,

gives extremely accurate results



One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,

gives extremely accurate results



One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,

gives extremely accurate results



One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,

gives extremely accurate results



One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,

gives extremely accurate results



Hash Functions in Practice



What do we want out of a hash function?

Of course, we want consistency (each time we hash an item we get the same result

back). What else might we want?

• Fast

• Low space requirements (i.e. may need to store a seed; don’t want that to be

too big)

• Good collision avoidance

• Bear in mind: different hashes work on different types of elements. We’ll focus

on integers and strings (especially strings)



Ideal Hash Functions (Independent, Uniform Hashing)

• Best possible collision avoidance

• But: require extremely large space usage unless universe of possible elements

is extremely small

• You did use one of these...

• For h on Assignment 3! Those values were all chosen independently, completely
at random
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Hashing in Java

• Anyone know how Java hashes a

64 bit Long?

• return x ∧ (x >> 32);

• Advantages of this?

Is this good for:

• In cuckoo filter: h1, h, f?

• h1 and f: might work if elements
are fairly well-spread (we take
mod); usually won’t

• h: probably won’t work (output
too small)

• CMS? HLL?

• CMS might be OK; prob not
(same as above)

• HLL likely useless unless
elements very uniformly spread



Multiply-Shift Hashing

1 uint64_t hash3(uint64_t value){
2 return (uint64_t)(value * 0x765a3cc864bd9779) >> (64 -

SHIFT);
3 }

• Seed is a large prime number to multiply by; can also add a large random

prime

• Advantages?

• Fast! (And easy.)



Multiply-Shift Hashing

1 uint64_t hash3(uint64_t value){
2 return (uint64_t)(value * 0x765a3cc864bd9779) >> (64 -

SHIFT);
3 }

• How good is it?

• Pretty good! For any x, y, Pr[h(x) = h(y)] = 1/n.
• But unfortunately behavior doesn’t extend to larger numbers of elements.

• Let’s say we use this for a hash table with chaining (n items, n chains). What is

the expected number of elements we find during a query q?

• Xi = 1 if h(xi) = h(q). Then E[Xi] = 1/n. By linearity of expectation, total

number of items is
∑n

i=1 1/n = 1.

• How big do you think the largest bucket is?

• Best known bound: O(n1/3) [Knudsen 2017] (very bad!!)



Multiply-Shift hashing for other data structures

• Is this going to work well for a filter?

• Probably not. Would have to try it.

• Count-min sketch?

• On paper should work pretty well! After all, our analysis only used the
expectation

• I’d guess it won’t work as well as with a better hash function

• Hyperloglog?

• Would have to try but I would very much suspect it would not work well at all
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Murmurhash

• Popular practical hash function

• Uses repeated MUltiply and Rotate operations

• Rotate is like shift, but bits that “fall off” are replaced on other side
• Can be implemented with two shifts and an OR

• Code isn’t exactly short; 50 operations to hash a number
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Murmurhash

• Popular practical hash function

• Uses repeated MUltiply and Rotate operations

• Rotate is like shift, but bits that “fall off” are replaced on other side
• Can be implemented with two shifts and an OR

• Code isn’t exactly short; 50 operations to hash a number



Murmurhash Code



Murmurhash Code

(The light grey lines skip pieces of code.)



Murmurhash3 Performance

• No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))

• Someday may discover: might not work well in some circumstances

• This is what happened to Murmurhash2:

• “Will this flaw cause your program to fail? Probably not - what this means in
real-world terms is that if your keys contain repeated 4-byte values AND they
differ only in those repeated values AND the repetitions fall on a 4-byte
boundary, then your keys will collide with a probability of about 1 in 227.4 instead
of 232. Due to the birthday paradox, you should have a better than 50% chance
of finding a collision in a group of 13115 bad keys instead of 65536.”

• https://sites.google.com/site/murmurhash/murmurhash2flaw

https://sites.google.com/site/murmurhash/murmurhash2flaw
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Murmurhash3 Performance

Average of square of bucket sizes. Data is an intentionally bad (albeit reasonable)

case

From “Practical Hash Functions for Similarity Estimation and Dimensionality

Reduction” by Dahlgaard, Knudsen, Thorup NeurIPS 2017



Murmurhash3 Performance in Practice

• Much more resilient than multiply-shift to more-difficult statistical tests

(beyond average case)

• Visual example: let’s say we hash “number strings”: “1”, “2”, . . . “216553”

• Cool experiment from https://softwareengineering.stackexchange.com/questions/49550/

which-hashing-algorithm-is-best-for-uniqueness-and-speed

• I wouldn’t normally cite stackexchange but this is really cool

• Compare SDBM (another popular hash) with Murmurhash2; fill in pixel if

corresponding table entry is hashed to

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
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SDBM (lots of chunks of full cells!)



Murmurhash2 (visually: random)



One last murmurhash question

• Murmurhash really just does a bunch of arbitrary multiplies and rotates

• Is there anything special about this specific sequence, or will any such set

work pretty well?

• Answer: others might not work. Example: “SuperFastHash” also uses multiplies

and rotates
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Hash comparison

Hash Lowercase Random UUID Numbers
============= ============= =========== ==============
Murmur 145 ns 259 ns 92 ns

6 collis 5 collis 0 collis
SDBM 148 ns 484 ns 90 ns

4 collis 6 collis 0 collis
SuperFastHash 164 ns 344 ns 118 ns

85 collis 4 collis 18742 collis

SuperFastHash has bad performance on lowercase English words, and horrendous

performance on numbers-as-strings.

(Also from https:
//softwareengineering.stackexchange.com/questions/49550/
which-hashing-algorithm-is-best-for-uniqueness-and-speed)

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed


Unease with our options

• Murmurhash seems to do well (and is fast), but has few guarantees.

• What do we do if we’re OK with a slightly slower hash, but we REALLY want to

be sure it does well?

• Answer: cryptographic hashes! Secure even for cryptographic applications; no

known statistical weaknesses

• Examples: SHA-3, BLAKE2, many others

• Broken: MD5, SHA-1, many others
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(Source: https://shattered.io)

https://shattered.io
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