Lecture 10: Cuckoo Filter
Analysis and Streaming

Sam McCauley
October 10, 2025

Williams College

Admin Qo

o O 4z
O

Q —

-

e I am 90% sure we'll skip “HyperLoglLog counting.” I'll remove i
assignment writeup

e Assignment 3 due next Thursday. Goal: finish up Cuckoo filter; implement
Count Min Sketch

e No TA hours during reading period. I think I'll be able to still have office hours;
I'll send an email the day of.

Implementing Effective Hash
Functions

Hashes we need

h1 which maps an arbitrary element (a string in Assignment 3) to a slot in the
hash table

f which maps an arbitrary element (a string in Assignment 3) to a number from
1to 255 (we'll be doing 8-bit fingerprints)

h which maps a fingerprint from 1 to 255 to a slot in the hash table

This section is about how we do this: specifically, it's about the function
murmurhash in the code

Implementing h

e h is easy because it only needs 255 values

Implementing h

e h is easy because it only needs 255 values

e I give you an array of random values in the starter code

Implementing h

e h is easy because it only needs 255 values

e I give you an array of random values in the starter code

e To calculate h(i), fori € {1,...,255}, just use hashFingerprint[i — 1]

Implementing h; and f

e murmurhash: a popular, fast, hash function that does a good job of “acting
random”

Implementing h; and f

e murmurhash: a popular, fast, hash function that does a good job of “acting
random”

e Will be given to you as part of your starter code

Implementing h; and f

e murmurhash: a popular, fast, hash function that does a good job of “acting
random”

e Will be given to you as part of your starter code

e murmurhash outputs 128 bits. We’'ll use the first 32 bits as h4, and the second
32 bits as f

Implementing h; and f

e murmurhash: a popular, fast, hash function that does a good job of “acting
random”

e Will be given to you as part of your starter code

e murmurhash outputs 128 bits. We’'ll use the first 32 bits as h4, and the second
32 bits as f

e Use mod to get them down to size

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

e word is the string you would like to hash

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

e word is the string you would like to hash
e length is the length of word (murmurhash does not check for
null-termination!)

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

e word is the string you would like to hash
e length is the length of word (murmurhash does not check for
null-termination!)

e seed is the hash function seed (pick a large random number; keep it
consistent)

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

word is the string you would like to hash

length is the length of word (murmurhash does not check for
null-termination!)

seed is the hash function seed (pick a large random number; keep it
consistent)
hash is the 128 bits of output

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

word is the string you would like to hash

e length is the length of word (murmurhash does not check for
null-termination!)

e seed is the hash function seed (pick a large random number; keep it
consistent)

e hash is the 128 bits of output

e Why is Murmurhash made this way? Why not just return the hash?

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

e word is the string you would like to hash

e length is the length of word (murmurhash does not check for
null-termination!)

e seed is the hash function seed (pick a large random number; keep it
consistent)

e hash is the 128 bits of output

e Why is Murmurhash made this way? Why not just return the hash?

¢ MurmurHash returns 128 bits, which don't fit in a word. Hash is just a 128-bit
length array where it can store the bits

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

e word is the string you would like to hash

e length is the length of word (murmurhash does not check for
null-termination!)

e seed is the hash function seed (pick a large random number; keep it
consistent)

e hash is the 128 bits of output

e Why is Murmurhash made this way? Why not just return the hash?

¢ MurmurHash returns 128 bits, which don't fit in a word. Hash is just a 128-bit
length array where it can store the bits

e We use hash[0] for h{() and hash[1] for f()

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;

Cuckoo Filter Analysis

Union Bound

Theorem

Let X and Y be random events. Then
Pr(X orY) < Pr(X) + Pr(Y).

More generally, if X1,X>, ..., Xy are any random events, then

K
Pr(XyorXaor ... or Xi) < Z Pr(Xk).
i=1

e Simple but useful tool in randomized algorithms

Union Bound

Theorem

Let X and Y be random events. Then
Pr(X orY) < Pr(X) + Pr(Y).

More generally, if X1,X>, ..., Xy are any random events, then

K
Pr(XyorXaor ... or Xi) < Z Pr(Xk).
i=1

e Simple but useful tool in randomized algorithms

° works, even for events that are not independent

Union Bound

Theorem

Let X and Y be random events. Then
Pr(X orY) < Pr(X) + Pr(Y).

More generally, if X1,X>, ..., Xy are any random events, then

k
Pr(XyorXaor ... or Xi) < Z Pr(Xk).

=1

e Simple but useful tool in randomized algorithms
° works, even for events that are not independent

e Sometimes called “Boole’s inequality”

Union Bound Example

e Let’s say I have 10 students in a course, and I randomly assign each student
an ID between 1 and 100 (these IDs do not need to be unique).

Union Bound Example

e Let’s say I have 10 students in a course, and I randomly assign each student
an ID between 1 and 100 (these IDs do not need to be unique).

e Can you upper bound the probability that some student has ID 1?

Exact Analysis of Student ID Problem

e The probability that at least one student has ID 1 s

1— Pr(no student has ID 1).

Exact Analysis of Student ID Problem

e The probability that at least one student has ID 1 s

1— Pr(no student has ID 1).

e The probability that a single student has an ID other than 1is 99/100.

Exact Analysis of Student ID Problem

e The probability that at least one student has ID 1 s

1— Pr(no student has ID 1).

e The probability that a single student has an ID other than 1is 99/100.

e Thus, the probability that all 18 students have an ID other than 1is (99/100)'°.

Exact Analysis of Student ID Problem

The probability that at least one student has ID 1 is

1— Pr(no student has ID 1).

The probability that a single student has an ID other than 1is 99/100.

Thus, the probability that all 18 students have an ID other than 1is (99/100)S.

Thus, the probability that at least one student has ID 1is
1—(99/188) ~ 9.56%.

Exact Analysis of Student ID Problem

A
This is messy! And it would be even worse if the

IDs were not independent!

The union bound lets us avoid this work.

Union Bound Analysis of Student Problem

e The probability that a given student has ID 1is 1/100.

Union Bound Analysis of Student Problem

e The probability that a given student has ID 1is 1/100.

e From Union bound: The probability that any student has ID 1 is at most the
sum, over all 10 students, of 1/100.

Union Bound Analysis of Student Problem

e The probability that a given student has ID 1is 1/100.

e From Union bound: The probability that any student has ID 1 is at most the
sum, over all 10 students, of 1/100.

e This gives us an upper bound of 18/100 = 18%.

Analysis of Cuckoo Filters

X f(X) :182
hz(X) h1(X)

| o0 [o1 [o0 [00 [11 [80 | 18 | 00 |
® 1 2 3 4 5 6 7

Some assumptions going in (part 1):

¢ all hash functions h; are uniformly random: any x € U is mapped to any hash
slot s € {®,...,m — 1} with probability 1/m.

Analysis of Cuckoo Filters

X f(X) :182
hz(X) h1(X)

| o0 [o1 [o0 [00 [11 [80 | 18 | 00 |
® 1 2 3 4 5 6 7

Some assumptions going in (part 1):
¢ all hash functions h; are uniformly random: any x € U is mapped to any hash
slot s € {®,...,m — 1} with probability 1/m.

e Same for the fingerprint hash f: any x € U is mapped to a given fingerprint
fx € {1,...,1/e} with probability ¢.

Analysis of Cuckoo Filters

% f(X) =10,
ha(x) h1(x)

| o0 [o1 [o0 [00 [11 [00 | 18 | 00 |
® 1 2 3 4 5 6 7

Some assumptions going in (part 1):

Analysis of Cuckoo Filters

% f(x) =10,
h(x) hs(x)

| o0 [o1 [o0 [00 [11 [00 | 18 | 00 |
® 1 2 3 4 5 6 7

Some assumptions going in (part 1):

e We will analyze without partial-key cuckoo hashing (we’ll assume independent
hy and h»)

Analysis of Cuckoo Filters

% f(X) =10,
ha(x) h1(x)

| o0 [o1 [o0 [00 [11 [00 | 18 | 00 |
® 1 2 3 4 5 6 7

Some assumptions going in (part 1):

e We will analyze without partial-key cuckoo hashing (we’ll assume independent
hy and h»)

e We’'ll analyze with 1 slot per bin, 2n total slots. On Assignment 3, you’ll do the
same analysis for the actual cuckoo filter you use (with 4 slots per bin, and
1.05n total slots).

First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it
returns that q ¢ S.

Equivalently, if we query an item
q € S, then a filter will always
correctly answer q € S.

For every x € S, there exists an
i€ {1,...,k} such that f(x) is stored
in T[hi(x)].

First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it (Invariant

returns that q ¢ S. For every x € S, there exists an
Equivalently, if we query an item i€ {1,...,k} such that f(x) is stored
q € S, then a filter will always in T[hi(x)].

correctly answer q € S.

e We can see that the invariant means that there are no false negatives.

Second Guarantee: False Positive Rate

ha(a) hi(a)

| 00 | o1 | o0 [80 | 11 | 88 | 10 | 06 |
® 1 2 3 4 5 6 7

Guarantee (False Positive Rate)
A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability ¢.

e Aqueryq ¢ S is a false positive if, for some h;, T[h;i(q)] = f(q)-

Second Guarantee: False Positive Rate

ha(a) hi(a)

| 00 | o1 | o0 [80 | 11 | 88 | 10 | 06 |
® 1 2 3 4 5 6 7

Guarantee (False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability ¢.

e Aqueryq ¢ S is a false positive if, for some h;, T[h;i(q)] = f(q)-

e Let's examine each hash hy and h, individually.

Second Guarantee: False Positive Rate

e Let's start with hy. What is the probability T[h1(q)] contains a fingerprint?

Second Guarantee: False Positive Rate

e Let's start with hy. What is the probability T[h1(q)] contains a fingerprint?

e 1/2, because we are storing n elements in 2n slots.

Second Guarantee: False Positive Rate

e Let's start with hy. What is the probability T[h1(q)] contains a fingerprint?

e 1/2, because we are storing n elements in 2n slots.

o If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is e.

Second Guarantee: False Positive Rate

Let’s start with h1. What is the probability T[h1(q)] contains a fingerprint?

1/2, because we are storing n elements in 2n slots.

If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is e.

Therefore, the probability that T[h1(q)] contains a fingerprint f(x) = f(q) is /2.

Second Guarantee: False Positive Rate

e What about hy?

Second Guarantee: False Positive Rate

e What about hy?

e Same exact analysis: probability that T[h2(q)] contains a fingerprint
f(x) =f(q)ise/2.

Second: Guarantee: Putting it Together

e q is a false positive if either T[h1(q)] contains a fingerprint f(x7) such that
f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

Second: Guarantee: Putting it Together

e q is a false positive if either T[h1(q)] contains a fingerprint f(x7) such that
f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

e Each happens with probability at most /2

Second: Guarantee: Putting it Together

e q is a false positive if either T[h1(q)] contains a fingerprint f(x7) such that
f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

e Each happens with probability at most /2

e By union bound, one or the other happens with probability at most
e/2+¢e/2=c¢.

Cuckoo Filter Performance

ha(x)

1000

1010

0000

0000

0101

0000

0100

0000

0000

0000

0000

0000

1001

0000

0110

0000

0000

0000

0000

0000

0010

0000

0101

0000

0000

0000

0000

0000

1001

0000

M

0000

e Query time?

1

2

3

4

5

6

7

Cuckoo Filter Performance

ha(x)

1000

1010

0000

0000

0101

0000

0100

0000

0000

0000

0000

0000

1001

0000

0110

0000

0000

0000

0000

0000

0010

0000

0101

0000

0000

0000

0000

0000

1001

0000

M

0000

0

e Query time?

1

2

3

4

5

6

e O(1): just check 8 slots for the fingerprint and you're done

7

Cuckoo Filter Performance

ha(x)

h1(X)

1000

1010

0000

0000

0101

0000

0100

0000

0000

0000

0000

0000

1001

0000

0110

0000

0000

0000

0000

0000

0010

0000

0101

0000

0000

0000

0000

0000

1001

0000

M

0000

0

1

2

3

4

5

6

7

e Insert time? (Recall that Cuckoo Hashing was O(1) in expectation.)

Cuckoo Filter Performance

ha(x)

h1(X)

1000

1010

0000

0000

0101

0000

0100

0000

0000

0000

0000

0000

1001

0000

0110

0000

0000

0000

0000

0000

0010

0000

0101

0000

0000

0000

0000

0000

1001

0000

M

0000

0

1

2

3

4

5

6

7

e Insert time? (Recall that Cuckoo Hashing was O(1) in expectation.)
e Also O(1) in expectation; similar analysis

Cuckoo Filter Performance

= ix)

1000 | 1010 | 0000 | 0000 | 0101 | 0000 | 0100 | 000

0000 | 000 | OO0 | 0000 | 1001 | 0000 | 0110 | 0000

0000 | 000 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000

0000 | 000 [0000 | 0000 | 1001 | 0000 [1111 | 000
) 1 2 3 4 5 6 7

e Insert time? (Recall that Cuckoo Hashing was O(1) in expectation.)
e Also O(1) in expectation; similar analysis
e We had a further guarantee: the vast majority of the time, should only need to
cuckoo O(logn) times

Cuckoo Filter Performance

= ix)

1000 | 1010 | 0000 | 0000 | 0101 | 0000 | 0100 | 000

0000 | 000 | OO0 | 0000 | 1001 | 0000 | 0110 | 0000

0000 | 000 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000

0000 | 000 [0000 | 0000 | 1001 | 0000 [1111 | 000
) 1 2 3 4 5 6 7

e Insert time? (Recall that Cuckoo Hashing was O(1) in expectation.)
e Also O(1) in expectation; similar analysis
e We had a further guarantee: the vast majority of the time, should only need to
cuckoo O(logn) times
e Can we be more specific about this?

Limits of Expectation

Limits of Expectation

e Let’s say I charge you $1000 to play a game. With probability 1in 1 million, I
give you $10 billion. Otherwise, I give you $0.

Limits of Expectation

e Let’s say I charge you $1000 to play a game. With probability 1in 1 million, I
give you $10 billion. Otherwise, I give you $0.

e Would you play this game? (Like in real life, right now.)

Limits of Expectation

e Let’s say I charge you $1000 to play a game. With probability 1in 1 million, I
give you $10 billion. Otherwise, I give you $0.

e Would you play this game? (Like in real life, right now.)

e Answer: some of you might, but I'm guessing many of you would not. You're
just going to lose $1000.

e But expectation is good! You expect to win $9000.

Concentration bounds

J 100% 1§

i] GUARANTEE (' i
ey

A

e Rather than giving the average performance, bound the
probability of bad performance.

Concentration bounds

P 100% .

i‘ GUARANTEE i
i —.-'— A

e Rather than giving the average performance, bound the *
.. T\
probability of bad performance.

e Let's say I flip a coin k times. On average, I see k/2 heads. But what is the
probability I never see a heads?

Concentration bounds

100%

o =
i' GUARANTEE i
e

e Rather than giving the average performance, bound the EJ
probability of bad performance. i

e Let's say I flip a coin k times. On average, I see k/2 heads. But what is the
probability I never see a heads?

e Answer: 1/2k

Concentration bounds

100%

¢ 5
i GUARANTEE i
Tt

e Rather than giving the average performance, bound the *
probability of bad performance. o

e Let's say I flip a coin k times. On average, I see k/2 heads. But what is the
probability I never see a heads?

e Answer: 1/2k

e Quicksort has expected runtime O(nlogn). What is the probability that the
running time is more than O(n logn)?

Concentration bounds

100%

i GUARANTEE i
Tt

e Rather than giving the average performance, bound the A
probability of bad performance. AV

e Let's say I flip a coin k times. On average, I see k/2 heads. But what is the
probability I never see a heads?

e Answer: 1/2K

e Quicksort has expected runtime O(nlogn). What is the probability that the
running time is more than O(n logn)?

e Answer: O(1/n) (this is why quicksort is not worse than merge sort even though
it can be ©(n?): you're very unlikely to see a bad case if n is at all large)

With High Probability

)‘ 100% 1§

i] GUARANTEE fi
(A

e An event happens with high probability (with respect to n) if
it happens with probability 1 — O(1/n)

With High Probability

)‘ 100% {
i] GUARANTEE [i
L

e An event happens with high probability (with respect to n) if
it happens with probability 1 — O(1/n)

e We've seen:

With High Probability

P 100% §

i] GUA_'R.A#TEE [i

e An event happens with high probability (with respect to n) if
it happens with probability 1 — O(1/n)

e We've seen:

e Quicksort is O(n logn) with high probability

With High Probability

P 100% .

i“ GUARANTEE Ii

e
TNAN

e An event happens with high probability (with respect to n) if
it happens with probability 1 — O(1/n)

e We've seen:

e Quicksort is O(n logn) with high probability

e Cuckoo hashing inserts finish without looping with high probability

With High Probability

)‘ 100% 1§

e An event happens with high probability (with respect to n) if il C’:_i:\l/'j Ii
it happens with probability 1 — O(1/n)

With High Probability

P 100% §

e An event happens with high probability (with respect to n) if ii GUARANTEE ii

"
it happens with probability 1 — O(1/n) B s

e Some new results (each is O(1) in expectation):

With High Probability

P 100% .

e An event happens with high probability (with respect to n) if i] CDARANTEE Ii

=5
it happens with probability 1 — O(1/n) W
e Some new results (each is O(1) in expectation):

e Cuckoo hashing and cuckoo filter inserts require O(log n) “cuckoos” with high
probability

With High Probability

100%

e An event happens with high probability (with respect to n) if i CUARANTES i

=5
it happens with probability 1 — O(1/n) B

e Some new results (each is O(1) in expectation):

e Cuckoo hashing and cuckoo filter inserts require O(log n) “cuckoos” with high
probability

e Linear probing queries require O(log n) time with high probability.

With High Probability

100%

o

e An event happens with high probability (with respect to n) if i CUARSHTEE i
it happens with probability 1 — O(1/n) N
e Some new results (each is O(1) in expectation):

e Cuckoo hashing and cuckoo filter inserts require O(log n) “cuckoos” with high
probability

e Linear probing queries require O(log n) time with high probability.

e What do you think chaining requires?

With High Probability

100%

e An event happens with high probability (with respect to n) if i CRARANTEE i

e

it happens with probability 1 — O(1/n) NN
e Some new results (each is O(1) in expectation):

e Cuckoo hashing and cuckoo filter inserts require O(log n) “cuckoos” with high
probability

e Linear probing queries require O(log n) time with high probability.
e What do you think chaining requires?

e Chaining queries require O(|olg°ign

know the log log for the midterm.)

) time with high probability. (Don’t need to

With High Probability

100%

e An event happens with high probability (with respect to n) if i CRARANTEE i

e

it happens with probability 1 — O(1/n)
e Some new results (each is O(1) in expectation):

e Cuckoo hashing and cuckoo filter inserts require O(log n) “cuckoos” with high
probability

e Linear probing queries require O(log n) time with high probability.
e What do you think chaining requires?

e Chaining queries require O(,o'g"ﬁ)gn

know the log log for the midterm.)

) time with high probability. (Don’t need to

e With high probability is always with respect to a variable. Assume that it's with
respect to n unless stated otherwise.

WHP example

P 100% .

i‘ GUARANTEE i
i —'-'— A

B "
TN

e How many coins do I need to flip before I see a heads with high probability?
(With respect to some variable n)

WHP example

100%
<

i GUARANTEE E
Tt

"
A\
e How many coins do I need to flip before I see a heads with high probability?

(With respect to some variable n)

o If I flip k times, I see a heads with probability 1 — 1/2".

WHP example

100%

¢ 5
i GUARANTEE i
Tt

*

e How many coins do I need to flip before I see a heads with high probability?
(With respect to some variable n)

o If I flip k times, I see a heads with probability 1 — 1/2".

e So I need1/2¥ = O(1/n). Solving, k = O(logn).

WHP example

100%

i GUARANTEE i
Tt

&

e How many coins do I need to flip before I see a heads with high probability?
(With respect to some variable n)

o If I flip k times, I see a heads with probability 1 — 1/2".
e So I need 1/2K = O(1/n). Solving, k = O(logn).

e This is (a simplified version of) the analysis leading to the O(log n) worst case
bounds on the last slide

Expectation vs Concentration (WHP)
100%

& »

i‘ GUARANTEE i
i —'-'— A

*
e We’'ll usually use “with high probability” for concentration bounds o

Expectation vs Concentration (WHP)
100%

¢ 5
i GUARANTEE i
Tt

*’
\

e We’'ll usually use “with high probability” for concentration bounds

e Expectation states how well the algorithm does on average. Could be much
better or worse sometimes!

Expectation vs Concentration (WHP)
100%

i GUARANTEE i
Tt

&

e We’'ll usually use “with high probability” for concentration bounds

e Expectation states how well the algorithm does on average. Could be much
better or worse sometimes!

o “With high probability” gives a guarantee that will almost always be met: if n is
large it becomes vanishingly unlikely that the bound will be violated.

Expectation vs Concentration (WHP)
100%

i GUARANTEE i
Tt

&

e We’'ll usually use “with high probability” for concentration bounds

e Expectation states how well the algorithm does on average. Could be much
better or worse sometimes!

o “With high probability” gives a guarantee that will almost always be met: if n is
large it becomes vanishingly unlikely that the bound will be violated.

e Largely fulfills the promise of classic worst-case algorithm analysis, but
applied to randomized algorithms

Streaming

Really Large Data

e Netflix sends (so far as I can tell)
about 300-500TB per minute on
average to its customers

e Google’s search index has been
over 100,000,000 GB for most of a
decade

e Brazil Internet Exchange processes
35 trillion bits every second

Really Large Data

e Modern companies deal with
extremely large data

Really Large Data

e Modern companies deal with
extremely large data

e Can’t even store all of it sometimes!

Really Large Data

e Modern companies deal with
extremely large data

e Can’t even store all of it sometimes!

e If is possible to store, can be very
difficult to access particular pieces

A Shift in Focus (Streaming)

e Up until now: nice self-contained instances; might fit in L3 cache; might fit in
RAM

A Shift in Focus (Streaming)

e Up until now: nice self-contained instances; might fit in L3 cache; might fit in
RAM

¢ In some situations: the data is foo big and you can’t hope to do that

A Shift in Focus (Streaming)

e Up until now: nice self-contained instances; might fit in L3 cache; might fit in
RAM

¢ In some situations: the data is foo big and you can’t hope to do that

e The data is like a stream that’s constantly rushing past

A Shift in Focus (Streaming)

Up until now: nice self-contained instances; might fit in L3 cache; might fit in
RAM

In some situations: the data is too bhig and you can’t hope to do that

The data is like a stream that’s constantly rushing past

All you can do is sample pieces as they pass by

Streaming Model

e You receive a stream of N items
one by one

Streaming Model

e You receive a stream of N items
one by one

e Stream is incredibly long; you can’t
store all of the items

Streaming Model

e You receive a stream of N items
one by one

e Stream is incredibly long; you can’t
store all of the items

e Can’t move forward or backward
either; just come in one at a time

Streaming Model

e Normally you're used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

@DReP

Streaming Model

e Normally you're used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

¢ Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

@DReP

Streaming Model

v
e Normally you're used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

¢ Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

e You can only store O(log N) bytes of space, or maybe even O(1)

@DReP

Streaming Model

v
Normally you're used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

¢ Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

You can only store O(log N) bytes of space, or maybe even O(1)

What can we do in this situation?

@DReP

Streaming Model

v
e Normally you're used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

¢ Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

e You can only store O(log N) bytes of space, or maybe even O(1)
e What can we do in this situation?

e Note: very active area of research

@DReP

Streaming Model

e Normally you're used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

¢ Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

e You can only store O(log N) bytes of space, or maybe even O(1)
e What can we do in this situation?
e Note: very active area of research

e Today we’'ll look at two classic results

What We Really Want

e Much more extreme “compression” than a filter

What We Really Want

e Much more extreme “compression” than a filter

¢ (Filter used a constant number of bits per item; we can’t afford that)

What We Really Want

e Much more extreme “compression” than a filter

¢ (Filter used a constant number of bits per item; we can’t afford that)

e Today: two data structures

What We Really Want

e Much more extreme “compression” than a filter

¢ (Filter used a constant number of bits per item; we can’t afford that)

e Today: two data structures

e Count-min sketch: More aggressive than a filter. Good guarantees for counting
how many times a given element occurred in a stream.

What We Really Want

e Much more extreme “compression” than a filter

¢ (Filter used a constant number of bits per item; we can’t afford that)
e Today: two data structures

e Count-min sketch: More aggressive than a filter. Good guarantees for counting
how many times a given element occurred in a stream.

e HyperLoglLog: Only uses a few bytes. Estimates how many unique items
appeared in the stream.

When to Use Streaming Algorithms?

e Data streams: network traffic, user inputs, telephone traffic, etc.

When to Use Streaming Algorithms?

e Data streams: network traffic, user inputs, telephone traffic, etc.

e Cache-efficiency! Streaming algorithms only require you to scan the data
once.

When to Use Streaming Algorithms?

e Data streams: network traffic, user inputs, telephone traffic, etc.

e Cache-efficiency! Streaming algorithms only require you to scan the data
once.

e N/B cache misses

Actual Applications

DDOS attack: keep track of IP addresses that appear too often

Keep track of popular passwords

Google uses an improved HyperLoglLog to speed up searches

Reddit uses HyperLoglLog to estimate views of a post

Facebook uses HyperLoglLog to estimate number of unique visitors to site.

HyperLoglLog at Facebook

FACEBOOK Engineering Q =

POSTED ON DECEMBER 13, 2018 TO DATA INFRASTRUCTURE, OPEN SOURCE

HyperLogLog in Presto: A significantly faster way to handle cardinality
estimation

= L

/

“Doing this with a traditional SQL query on a data set as massive as the ones we
use at Facebook would take days and terabytes of memory... With HLL, we can
perform the same calculation in 12 hours with less than 1 MB of memory.”

Count-Min Sketch

Count-Min Sketch

Goal:

e Maintain a data structure on a stream of items

Count-Min Sketch

Goal:

e Maintain a data structure on a stream of items

e See the items one at a time; you have no control over how they are given to you

Count-Min Sketch

Goal:

e Maintain a data structure on a stream of items

e See the items one at a time; you have no control over how they are given to you

e Want to be extremely space efficient

Count-Min Sketch

Goal:

e Maintain a data structure on a stream of items

e See the items one at a time; you have no control over how they are given to you

e Want to be extremely space efficient

e At any time, estimate how frequently a given item appeared

Example

You see the following items one by one:

A
adhesive

Example

You see the following items one by one:

...
flawless

Example

You see the following items one by one:

closed

Example

You see the following items one by one:

A
adhesive

Example

You see the following items one by one:

A
describe

Example

You see the following items one by one:

closed

Example

You see the following items one by one:

Sea

Example

You see the following items one by one:

...
illustrious

Example

You see the following items one by one:

A
describe

Example

You see the following items one by one:

A
describe

Example

You see the following items one by one:

...
flawless

Example

You see the following items one by one:

..
street

Example

You see the following items one by one:

closed

Example

You see the following items one by one:

A
describe

Example

¢ Now, answer questions of the form: how many times did some item x; occur in
the stream?

Example

¢ Now, answer questions of the form: how many times did some item x; occur in
the stream?

e Example: how many times did adhesive appear? How about closed?

Example

¢ Now, answer questions of the form: how many times did some item x; occur in
the stream?

e Example: how many times did adhesive appear? How about closed?

e (2 times and 3 times respectively)

Formally

e See a stream of elements xy, . . . xy, each from a universe U’

"Like in the last lecture, this is just a requirement to make sure that we can hash them.

Formally

e See a stream of elements xy, . . . xy, each from a universe U’

e For some element q € U, estimate how many i exist with x; = q?

"Like in the last lecture, this is just a requirement to make sure that we can hash them.

Formally

e See a stream of elements xy, . . . xy, each from a universe U’
e For some element q € U, estimate how many i exist with x; = q?

e Today: pretty decent guess using [£] [In(1/0)] (1+ [log, N| bits of space

"Like in the last lecture, this is just a requirement to make sure that we can hash them.

Formally

e See a stream of elements xy, . . . xy, each from a universe U’
e For some element q € U, estimate how many i exist with x; = q?
e Today: pretty decent guess using [£] [In(1/0)] (1+ [log, N| bits of space

e ¢ and § are parameters we can use to adjust the error

Like in the last lecture, this is just a requirement to make sure that we can hash them.

Formally

e See a stream of elements xy, . . . xy, each from a universe U’
e For some element q € U, estimate how many i exist with x; = q?
e Today: pretty decent guess using [£] [In(1/0)] (1+ [log, N| bits of space

e ¢ and § are parameters we can use to adjust the error

e Don't depend on N, or |U|: so you can upper bound this as O(log N) space

Like in the last lecture, this is just a requirement to make sure that we can hash them.

Formally

e See a stream of elements xy, . . . xy, each from a universe U’

e For some element q € U, estimate how many i exist with x; = q?

e Today: pretty decent guess using [£] [In(1/0)] (1+ [log, N| bits of space
e ¢ and § are parameters we can use to adjust the error

e Don't depend on N, or |U|: so you can upper bound this as O(log N) space

e This is asymptotically the same space it takes to store the answer itself: a
number from ® to N

"Like in the last lecture, this is just a requirement to make sure that we can hash them.

How would you solve this problem with what you know right
now?

e Let's come up with a
space-inefficient solution

How would you solve this problem with what you know right
now?

e Let's come up with a
space-inefficient solution

e Keep a hash table with all elements

How would you solve this problem with what you know right
now?

e Let's come up with a
space-inefficient solution

e Keep a hash table with all elements

e Increment a counter each time you
see an element

How would you solve this problem with what you know right
now?

Let’'s come up with a
space-inefficient solution

Keep a hash table with all elements

Increment a counter each time you

see an element

O(N) space, O(1) time per query

How would you solve this problem with what you know right
now?

e Let's come up with a
space-inefficient solution

e Keep a hash table with all elements

e Increment a counter each time you
see an element

e O(N) space, O(1) time per query
e Pretty efficient! But we want way
way less space.

Sketching: A first attempt

e Randomly sampling:

Sketching: A first attempt

e Randomly sampling:
o Keep N/100 slots
e For each item, with probability
1/100, use the approach above

Sketching: A first attempt

e Randomly sampling:
o Keep N/100 slots
e For each item, with probability
1/100, use the approach above

e If an item appears k times in the
stream, we record it k/100 times in
expectation.

Sketching: A first attempt

o If an item appears k times in the
stream, we see it k/100 times in
expectation.

e So, if we wrote an item down w
times, we can estimate that it
probably occurred 100w times in
the stream.

Sketching: A first attempt

What are some downsides to this ap-
proach?

Sketching: A first attempt

What are some downsides to this ap-
proach?

o It's pretty loose. If our counter is
just one off, that changes our
guess by +100

Sketching: A first attempt

What are some downsides to this ap-
proach?

o It's pretty loose. If our counter is
just one off, that changes our
guess by +100

e Could have a fairly frequent item
that we never write down.

e Can't guarantee much about our
estimate

Second attempt: hash counts

e Maintain a hash table A with 1/< entries, each of at least 1+ |log, N| bits
o Has enough room to store a number in {®,...,N}.

Second attempt: hash counts

e Maintain a hash table A with 1/< entries, each of at least 1+ |log, N| bits
o Has enough room to store a number in {®,...,N}.

e Hash function h for A

Second attempt: hash counts

e Maintain a hash table A with 1/< entries, each of at least 1+ |log, N| bits
o Has enough room to store a number in {®,...,N}.

e Hash function h for A

e When we see an item x;:

Second attempt: hash counts

e Maintain a hash table A with 1/< entries, each of at least 1+ |log, N| bits
o Has enough room to store a number in {®,...,N}.

e Hash function h for A
e When we see an item x;:

o Increment Alh(x;)]

Second attempt: hash counts

e Maintain a hash table A with 1/< entries, each of at least 1+ |log, N| bits
o Has enough room to store a number in {®,...,N}.

e Hash function h for A
Counters of length

1+ |logN| so
don’t overflow

e When we see an item x;:

o Increment Alh(x;)]

Second attempt: hash counts

Maintain a hash table A with 1/¢ entries, each of at least 1+ |log, N| bits
o Has enough room to store a number in {®,...,N}.

Hash function h for A

When we see an item x;:

o Increment Alh(x;)]

e How can we query?

Second attempt: hash counts

How can we query q?

Second attempt: hash counts

How can we query q?

e Return Alh(q)]

Second attempt: hash counts

How can we query q?

e Return Alh(q)]

e What guarantees does this give?

Second attempt: hash counts

How can we query q?

e Return Alh(q)]
e What guarantees does this give?

e Always overestimates the number of occurrences

Second attempt: hash counts

Since we always
increase this

How can we query q?

counter when
e Return Alh(q)] we see X; = q

e What guarantees does this give?

e Always overestimates the number of occurrences

Second attempt: hash counts

How can we query q?

But, also increase
it when h(x;) =

e Return A[h(q)] h(q), but x; # q

e What guarantees does this give?

e Always overestimates the number of occurrences

Second attempt: hash counts

How can we query q?

e Return Alh(q)]
e What guarantees does this give?

e Always overestimates the number of occurrences

e How much does it overestimate by?

Second attempt: hash counts

How can we query q?

e Return Alh(q)]
e What guarantees does this give?

e Always overestimates the number of occurrences
e How much does it overestimate by?

e Each of N items hashes to same slot with probability ¢, so Ne in expectation

Second attempt: hash counts (Analysis)

Expectation is not that great!

Second attempt: hash counts (Analysis)

Expectation is not that great!

e Let’s say we have only two items;
A appears 100 times and B
appears 900

Second attempt: hash counts (Analysis)

Expectation is not that great!
e Let’s say we have only two items;
A appears 100 times and B
appears 900
e What are the possibilities for what
happens when we query A?

Second attempt: hash counts (Analysis)

Expectation is not that great!

e Let’s say we have only two items;
A appears 100 times and B
appears 900

e What are the possibilities for what
happens when we query A?

e With probability 1 — ¢ we get 100;
with probability ¢ we get 1000

What do we really want?

e To guarantee a high-quality answer, we want to say that the solution is likely to
be close to correct.

o We want concentration bounds!

What do we really want?

e To guarantee a high-quality answer, we want to say that the solution is likely to
be close to correct.

o We want concentration bounds!

e How can you increase the reliability of a random process?

What do we really want?

e To guarantee a high-quality answer, we want to say that the solution is likely to
be close to correct.

o We want concentration bounds!

e How can you increase the reliability of a random process?

e For example, let’s say we're rolling a die. We want to be sure we see a 6 at
least once. How can we do that?

What do we really want?

To guarantee a high-quality answer, we want to say that the solution is likely to
be close to correct.

o We want concentration bounds!

How can you increase the reliability of a random process?

For example, let’s say we're rolling a die. We want to be sure we see a 6 at
least once. How can we do that?

Of course: roll the die many times!

Repetitions

e Rather than having one hash table A, let’s have a two-dimensional hash table
-

Repetitions

e Rather than having one hash table A, let’s have a two-dimensional hash table
-

e T has [In(1/0)] rows

Repetitions

e Rather than having one hash table A, lg
T

e T has [In(1/0)] rows

We'll come
back to J later.

Repetitions

e Rather than having one hash table A, let’s have a two-dimensional hash table
-

e T has [In(1/0)] rows

e Each row consists of [e/¢] slots

Repetitions

e Rather than having one hash table A, let’s have a two-dimensional hash table
-

The e is im-
e T has [In(1/8)] rows portant for

the analysis.

» Each row consists of [e/¢] slo

Repetitions

Rather than having one hash table A, let's have a two-dimensional hash table
-

T has [In(1/6)] rows

Each row consists of [e/c] slots

Different hash function for each row

Example Insert

Example Insert

h1(x)

Example Insert

hz(X)

h1(x)

Example Insert

Example Insert

ha(

h1(x)

h3(x)

\ h4(X)

o N ®

Example Insert

Example Insert

yl/

hi(y)

Example Insert

ha(y

hi(y)

Example Insert

Example Insert

Inserts

To insert x;:

e Forj=0...[In(1/6)] — 1

Inserts

To insert x;:

e Forj=0...[In(1/6)] — 1
e Increment T[j][h;(x;)]

Inserts

To insert x;:

e Forj=0...[In(1/6)] — 1
e Increment T[j][h;(x;)]

We now have [In(1/d)] independent counters for each item. How can we query?

Example Query

28 10 78 9 26 69 39 28
85 40 52 70 1 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
) 1 2 3 4 5 6 7

Example Query

hi(q)
28 10 78 9 26 69 39 28
85 40 52 70 il 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
o 1 2 3 4 5 6 7

Example Query

h2(q hi(q)
28 | 9 | 78| 9 | 26 | 69 | 39 | 28
85 | 40 [52 | 78 | 11 [84 | 65 | 99
56 | 82 [34 | 75 [99 | 35 | 14 | 55
10 | 20 | 177 [80 | 92 | 89 | 71 | 13
o 1 2 3 4 5 6 7

Example Query

28

85

56

10

Example Query

28

85

56

10

Example Query

28
85
56
10

We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of
these numbers? How can we combine them into a single answer to the query?

Example Query

28
85
56
10

We have 4 numbers for q: 28, 40, 75, 71. In pairs: what do we know about each of
these numbers? How can we combine them into a single answer to the query?

Answer: each is an overestimate; take the min. It must be the closest to the true
answer!

Queries

Each entry is an overestimate.

Queries

Each entry is an overestimate.

e Find minj T[/] [hj(xi)]'

Count-Min Sketch

e Table T with [In(1/4)] rows, each with [e/e] columns. Cells of size 1+ |log N|

Count-Min Sketch

e Table T with [In(1/4)] rows, each with [e/e] columns. Cells of size 1+ |log N|

e [In(1/8)] hash functions; one for each row

Count-Min Sketch

e Table T with [In(1/4)] rows, each with [e/e] columns. Cells of size 1+ |log N|

e [In(1/8)] hash functions; one for each row

e To insert x: increment T[j][h;(x)] for allj = ®,...[In(1/5)] —1

Count-Min Sketch

Table T with [In(1/6)] rows, each with [e/c] columns. Cells of size 1+ |log N |

[In(1/6)] hash functions; one for each row

To insert x: increment T[j][h;(x)] forallj = ®,...[In(1/6)] — 1

To query q: return minje(g, .. fin(1/5)]-1} Tl1[hi(a)]

Count-Min Sketch Guarantee: Lower bound

e On query q, let’s say the filter returns that there were o, occurrences
* S0 0q = min; T}j][h;(q)]

Count-Min Sketch Guarantee: Lower bound

e On query q, let’s say the filter returns that there were o, occurrences
* S0 0q = min; T}j][h;(q)]

o In reality, the correct answer is 64 occurrences

Count-Min Sketch Guarantee: Lower bound

e On query q, let’s say the filter returns that there were o, occurrences
* S0 0q = min; T}j][h;(q)]

o In reality, the correct answer is 64 occurrences

e First: always have 0g < 0.

Count-Min Sketch Guarantee: Upper bound

e On query q, let’s say the filter returns that there were o, occurrences; correct
answer is Oq.

Count-Min Sketch Guarantee: Upper bound

e On query q, let’s say the filter returns that there were o, occurrences; correct
answer is Oq.

o We know that for any j, E [T[j][h;(q)]] < 0q + £

Count-Min Sketch Guarantee: Upper bound

e On query q, let’s say the filter returns that there were o, occurrences; correct

answer is Oq.
o We know that for any j, E [T[j][h;(q)]] < 0q + £

e That is to say: guess is off by % in expectation

Count-Min Sketch Guarantee: Upper bound

On query q, let’s say the filter returns that there were o4 occurrences; correct
answer is Oq.

We know that for any j, E [T[j][h;(q)]] < 0q + <

That is to say: guess is off by % in expectation

Can we get concentration bounds?

Markov’s Inequality

¢ (You do not need to remember this/apply it to other problems.)

Markov’s Inequality

¢ (You do not need to remember this/apply it to other problems.)

e The probability that a positive random variable is C larger than its expectation
is at most 1/C

Markov’s Inequality

¢ (You do not need to remember this/apply it to other problems.)

e The probability that a positive random variable is C larger than its expectation
is at most 1/C

e For any random variable X, Pr[X > C-E[X]] < 1/C

Markov’s Inequality

(You do not need to remember this/apply it to other problems.)

The probability that a positive random variable is C larger than its expectation
is at most 1/C

For any random variable X, Pr[X > C - E[X]] < 1/C

Let’s prove this with C = 2 on the board.

Count-Min Sketch Guarantee: Upper bound

e On query q, let’s say the filter returns that there were o4 occurrences; correct
answer is 0.

o We know that for any j, E [T[j][h;(q)]] < 0q + <&

Count-Min Sketch Guarantee: Upper bound

e On query q, let’s say the filter returns that there were o4 occurrences; correct
answer is 0.

o We know that for any j, E [T[j][h;(q)]] < 0q + <&

e By Markov’s inequality, for any positive random variable X,
PriX > e-E[X]] <1/e

Count-Min Sketch Guarantee: Upper bound

On query q, let’s say the filter returns that there were o4 occurrences; correct
answer is 0.

We know that for any j, E [T[j][h;(q)]] < 0q + &

By Markov’s inequality, for any positive random variable X,
PriX > e-E[X]] <1/e

So the probability that T[j][h;j(q)] > 04 + N is at most 1/e

Count-Min Sketch Guarantee: Upper bound

e On query q, let’s say the filter returns that there were o4 occurrences; correct
answer is 0.

o We know that for any j, E [T[j][h;(q)]] < 0q + <&

e By Markov’s inequality, for any positive random variable X,
PriX > e-E[X]] <1/e

e So the probability that T[j][h;(q)] > 0q + N is at most 1/e

e In a given row, we are at most eN over with probability 1/e

Count-Min Sketch Guarantee: Upper bound

o For each row j, the probability that T[j][h;(q)] > 04 + N is at most 1/e

Count-Min Sketch Guarantee: Upper bound

o For each row j, the probability that T[j][h;(q)] > 04 + N is at most 1/e

e Are the rows independent?

Count-Min Sketch Guarantee: Upper bound

o For each row j, the probability that T[j][h;(q)] > 04 + N is at most 1/e
e Are the rows independent?

e Yes. (For each row, we select a new hash and start over)

Count-Min Sketch Guarantee: Upper bound

o For each row j, the probability that T[j][h;(q)] > 04 + N is at most 1/e
e Are the rows independent?

e Yes. (For each row, we select a new hash and start over)

e What is Pr [min; T[j][hj(q)]] > 0q + eN?

Count-Min Sketch Guarantee: Upper bound

For each row j, the probability that T[j][h;(q)] > 04 + N is at most 1/e

Are the rows independent?

e Yes. (For each row, we select a new hash and start over)

What is Pr [min; T[j][h;(q)]] > 0q + eN?

Only fails if cell is too big in every row! Occurs with probability

Count-Min Sketch Guarantee: Upper bound

For each row j, the probability that T[j][h;(q)] > 04 + N is at most 1/e

Are the rows independent?

e Yes. (For each row, we select a new hash and start over)

What is Pr [min; T[j][h;(q)]] > 0q + eN?

Only fails if cell is too big in every row! Occurs with probability

1 # rows 1 [In1/8]
@) =) =
@ @

Count-Min Sketch Bounds

o [£][In3] (1+ [logy N]) bits of space

e For any query q, if the filter returns o4 and the actual number of occurrences is
0g, then with probability 1 — 4

0gq < 0q < 0g + &N.

Count-Min Sketch

e Small sketch (size based on error
rate)

Count-Min Sketch

e Small sketch (size based on error
rate)

e Always overestimates count

Count-Min Sketch

e Small sketch (size based on error
rate)

e Always overestimates count

e Bound on overestimation is based
on stream length

Parameters in Assignment CMS

e 300 entries in each row, 4 rows

Parameters in Assignment CMS

e 300 entries in each row, 4 rows

e 32-bit counters (a little wasteful!)

Parameters in Assignment CMS

e 300 entries in each row, 4 rows

e 32-bit counters (a little wasteful!)

e 7.3MB of data summarized in 4.8KB

Parameters in Assignment CMS

300 entries in each row, 4 rows

32-bit counters (a little wasteful!)

7.3MB of data summarized in 4.8KB

Really accurate still: in 1.2 million word stream, can estimate num occurrences
of each word within £1500

Parameters in Assignment CMS

e 300 entries in each row, 4 rows

e 32-bit counters (a little wasteful!)

e 7.3MB of data summarized in 4.8KB

e Really accurate still: in 1.2 million word stream, can estimate num occurrences
of each word within £1500

e Often more accurate! Also: feel free to try 1000 or 10000 entries per row; it
gets quite accurate

Hyper Log Log Counting

Setting up

e Count-min sketch takes up a lot of space!

Setting up

e Count-min sketch takes up a lot of space!

e OK not really. But, it stores a lot of information about the stream

Setting up

e Count-min sketch takes up a lot of space!

e OK not really. But, it stores a lot of information about the stream

e Common question: how many unique elements are there in the stream?

The problem we're trying to solve

e Stream of N elements

The problem we're trying to solve

e Stream of N elements

e Approximate number of unique
elements

The problem we're trying to solve

e Stream of N elements

e Approximate number of unique
elements

e (Compare to CMS: stores
approximately how many there are
of each element)

The problem we're trying to solve

e Stream of N elements

e Approximate number of unique
elements

e To do this exactly: need dictionary
of all elements we've already seen.

The problem we're trying to solve

Stream of N elements

Approximate number of unique
elements

To do this exactly: need dictionary
of all elements we've already seen.

How can you count unique elements
approximately? Challenge: don’t
want to double-count when we see
an element twice.

Cool way to solve this

e Let’s hash each item as it comes in

Cool way to solve this

e Let’s hash each item as it comes in

e Then instead of a list of items, we get a list of random hashes

Cool way to solve this

e Let’s hash each item as it comes in

e Then instead of a list of items, we get a list of random hashes

e Idea: let’s look at a rare event in these hashes. The more often it happens, the
more distinct hashes (and thus distinct items) we must be seeing!

Cool way to solve this

Let’s hash each item as it comes in

Then instead of a list of items, we get a list of random hashes

Idea: let’s look at a rare event in these hashes. The more often it happens, the
more distinct hashes (and thus distinct items) we must be seeing!

In particular: how many s does each hash end with?

Hashes ending in Os

e What is the probability that a hash ends in ten 0’s?

Hashes ending in Os

e What is the probability that a hash ends in ten 8’s? Answer: 1/1024

Hashes ending in Os

e What is the probability that a hash ends in ten 8’s? Answer: 1/1024

e So if we have two distinct elements, it's very unlikely that the hash of either will
end in 10 Q’s.

Hashes ending in Os

e What is the probability that a hash ends in ten 8’s? Answer: 1/1024

e So if we have two distinct elements, it's very unlikely that the hash of either will
end in 10 Q’s.

o If we have 2'® = 1024 distinct elements, it's pretty likely that the hash of one
will end with 10 @’s!

Hashes ending in Os

e What is the probability that a hash ends in ten 8’s? Answer: 1/1024

e So if we have two distinct elements, it's very unlikely that the hash of either will
end in 10 Q’s.

o If we have 2'® = 1024 distinct elements, it's pretty likely that the hash of one
will end with 10 @’s!

e Note “distinct!” All of this comes back to estimating how many unique
elements there are. Unique elements give a new hash, and a new opportunity
for many zeroes. Non-unique elements don’t give a new hash.

Example

You see the following hashes one by one:

0010001010101001

Example

You see the following hashes one by one:

0010110010111101

Example

You see the following hashes one by one:

0001000111101111

Example

You see the following hashes one by one:

0000001011000011

Example

You see the following hashes one by one:

0110010010011100

Example

You see the following hashes one by one:

1000101011100001

Example

You see the following hashes one by one:

0110100100111101

Example

You see the following hashes one by one:

0011101001100010

Example

You see the following hashes one by one:

0110000000001110

Example

You see the following hashes one by one:

0011001110001111

Example

You see the following hashes one by one:

1111100010110000

Example

You see the following hashes one by one:

1111110101011100

Example

You see the following hashes one by one:

1100010011010011

Example

You see the following hashes one by one:

1101110101001100

How many unique items were there?

Example 2

You see the following hashes one by one:

0010001010101001

Example 2

You see the following hashes one by one:

0010110010111101

Example 2

You see the following hashes one by one:

0011101001100010

Example 2

You see the following hashes one by one:

0010001010101001

Example 2

You see the following hashes one by one:

0011101001100010

Example 2

You see the following hashes one by one:

0010110010111101

Example 2

You see the following hashes one by one:

0010110010111101

Example 2

You see the following hashes one by one:

0010001010101001

Example 2

You see the following hashes one by one:

0010110010111101

Example 2

You see the following hashes one by one:

0010001010101001

Example 2

You see the following hashes one by one:

0010110010111101

Example 2

You see the following hashes one by one:

0010001010101001

Example 2

You see the following hashes one by one:

0010110010111101

Example 2

You see the following hashes one by one:

0010001010101001

Example 2

You see the following hashes one by one:

0010110010111101

How many unique items were there? Was it more or less than the last one?

Which example had more unique items?

Which example had more unique items?

e Answer: 1st had 14 items, 2nd had 3

Which example had more unique items?

e Answer: 1st had 14 items, 2nd had 3

e Notice that only one hash in the second example ended with ©

Which example had more unique items?

e Answer: 1st had 14 items, 2nd had 3

e Notice that only one hash in the second example ended with ©

e Extremely unlikely if there were 14 different elements!

Which example had more unique items?

e Answer: 1st had 14 items, 2nd had 3

e Notice that only one hash in the second example ended with ©

e Extremely unlikely if there were 14 different elements!

e One of the items in the first example ended with 4 Q’s

Which example had more unique items?

e Answer: 1st had 14 items, 2nd had 3

e Notice that only one hash in the second example ended with ©

e Extremely unlikely if there were 14 different elements!

e One of the items in the first example ended with 4 Q’s

e Unlikely if there were 3 elements!

Intuitive loglog counting

e Let’s say that the hash ending with the most Os has k Os at the end

Intuitive loglog counting

e Let’s say that the hash ending with the most Os has k Os at the end

e Any given hash has k Os with probability 1/2k

Intuitive loglog counting

e Let’s say that the hash ending with the most Os has k Os at the end

e Any given hash has k 8s with probability 1/2¢

e So it seems that, there are probably something like 2X items

Intuitive loglog counting

Let's say that the hash ending with the most s has k Os at the end

Any given hash has k Os with probability 1/2k

So it seems that, there are probably something like 2% items

But: if we're just off by 1 or 2 zeroes, that affects our answer by a lot! (We don't
get good concentration bounds)

Improving reliability

e How do we improve the consistency of a random process?

Improving reliability

e How do we improve the consistency of a random process? Repeat!* (*in a
particular way)

Improving reliability

e How do we improve the consistency of a random process? Repeat!* (*in a
particular way)

e Hash each item first to one of several counters

Improving reliability

e How do we improve the consistency of a random process? Repeat!* (*in a
particular way)

e Hash each item first to one of several counters

e For each counter, keep track of 1 + the maximum number of Os at end of any
item hashed to that counter

Improving reliability

e How do we improve the consistency of a random process? Repeat!* (*in a
particular way)

e Hash each item first to one of several counters

e For each counter, keep track of 1 + the maximum number of Os at end of any
item hashed to that counter

e For CMS, we took the min. What do we do here to combine the estimates?

Improving reliability

e How do we improve the consistency of a random process? Repeat!* (*in a
particular way)

e Hash each item first to one of several counters

e For each counter, keep track of 1 + the maximum number of Os at end of any
item hashed to that counter

e For CMS, we took the min. What do we do here to combine the estimates?

e Answer: It's complicated. (And the rationale is outside the scope of the
course.)

HyperLogLog Counting

e Keep an array of m counters (m is a power of 2); let’s call it M

HyperLogLog Counting

e Keep an array of m counters (m is a power of 2); let’s call it M

e Hash each item as it comes in. Then:

HyperLogLog Counting

e Keep an array of m counters (m is a power of 2); let’s call it M
e Hash each item as it comes in. Then:

e Get an index 7, consisting of the lowest log, m bits of h(x). Then 7 will index into
M. Shift off these bits.

HyperLogLog Counting

e Keep an array of m counters (m is a power of 2); let’s call it M
e Hash each item as it comes in. Then:

e Get an index 7, consisting of the lowest log, m bits of h(x). Then 7 will index into
M. Shift off these bits.

o Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M][i], set
Mli] =z+1

HyperLogLog Counting

e Keep an array of m counters (m is a power of 2); let’s call it M
e Hash each item as it comes in. Then:

e Get an index 7, consisting of the lowest log, m bits of h(x). Then 7 will index into
M. Shift off these bits.

o Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M][i], set
Mli] =z+1

e Make sure to add 1 to your count of the number of zeroes

Getting an Estimate

e At the end, we have an array M, each containing a count

2You have to look this constant up.

Getting an Estimate

e At the end, we have an array M, each containing a count

m—1 1 MIi]
Z:Z<2) .

i=

o Let

2You have to look this constant up.

Getting an Estimate

e At the end, we have an array M, each containing a count

m—1 1 MIi]
Z:Z<2) .

i=

o Let

e Let b be a bias constant.2 For m = 32, b = .697.

2You have to look this constant up.

Getting an Estimate

At the end, we have an array M, each containing a count

o Let

m—1 1 MIi]
Z:Z<2) .

i=

Let b be a bias constant.2 For m = 32, b = .697.

Return bm?/Z.

2You have to look this constant up.

Example (with m = 8; in practice m is higher)

X1

Example (with m = 8; in practice m is higher)

X1

h(x1) = 010001000111110111111101010118

Example (with m = 8; in practice m is higher)

X1
h(x1) = 010001000111110111111101010118
index = 110 Remaining: 010001000111110111111101010

(oo o]o[of[o]o]6 |
000 661 610 011 180 191 110 111

Example (with m = 8; in practice m is higher)

X1
h(x1) = 010001000111110111111101010118
index = 110 Remaining: 010001000111110111111101010

(oo oo [0]o]6 |
000 661 610 011 180 191 110 111

Example (with m = 8; in practice m is higher)

X1
h(x1) = 010001000111110111111101010118
index = 110 Remaining: 010001000111110111111101010

(oo oo [0]o]6 |
000 661 610 011 180 191 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores less
than 2, so we store it.

Example (with m = 8; in practice m is higher)

X1
h(x1) = 010001000111110111111101010118
index = 110 Remaining: 010001000111110111111101010

(oo o]o[of[o]2]6|
000 661 610 011 180 191 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores less
than 2, so we store it.

Example (with m = 8; in practice m is higher)

X2

Example (with m = 8; in practice m is higher)

X2

h(x2) = 011110001100100001111010010110

Example (with m = 8; in practice m is higher)

X2
h(x2) = 011110001100100001111010010110
index = 110 Remaining: 811110001100100001111010010

(oo o]o[of[o]2]6s|
000 661 610 011 180 191 110 111

Example (with m = 8; in practice m is higher)

X2
h(x2) = 011110001100100001111010010110
index = 110 Remaining: 811110001100100001111010010

(oo o]o[of[o]2]6|
000 661 610 011 180 191 110 111

Example (with m = 8; in practice m is higher)

X2
h(x2) = 011110001100100001111010010110
index = 110 Remaining: 811110001100100001111010010

(oo o]o[of[o]2]6|
000 661 610 011 180 191 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.

Example (with m = 8; in practice m is higher)

X3

Example (with m = 8; in practice m is higher)

X3

h(x3) = 110011011101100000011010000001

Example (with m = 8; in practice m is higher)

X3
h(x3) = 110011011101100000011010000001
index = ®01 Remaining: 110011011101100000011010000

oo fofoefofof2]o]
690 001 010 611 180 191 10 111

Example (with m = 8; in practice m is higher)

X3
h(x3) = 110011011101100000011010000001
index = ®01 Remaining: 110011011101100000011010000

oo fofoefofof2]o]
690 001 010 611 180 191 10 111

Example (with m = 8; in practice m is higher)

X3
h(x3) = 110011011101100000011010000001
index = ®01 Remaining: 110011011101100000011010000

(oo o [oof[oso]2]s|
000 661 610 011 180 191 110 111

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores
0, so we store 5 in the slot.

Example (with m = 8; in practice m is higher)

X3
h(x3) = 110011011101100000011010000001
index = ®01 Remaining: 110011011101100000011010000

o[s[e oo [0]2]6|
000 661 610 011 180 191 110 111

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores
0, so we store 5 in the slot.

Example (with m = 8; in practice m is higher)

X4

Example (with m = 8; in practice m is higher)

X4

h(x4) = 100010011101101110110110111001

Example (with m = 8; in practice m is higher)

X4
h(x4) = 100010011101101110110110111001
index = ®01 Remaining: 100010011101101110110110111

(o[s[e oo [0]2]6|
000 661 610 011 180 191 110 111

The remaining hash ends with ® zeroes, so we want to store 1. The counter stores
5, so we keep the slot as-is.

Example (with m = 8; in practice m is higher)

X4
h(x4) = 100010011101101110110110111001
index = ®01 Remaining: 100010011101101110110110111

o[s[e oo [0]2]6|
000 661 610 011 180 191 110 111

Example (with m = 8; in practice m is higher)

X4
h(x4) = 100010011101101110110110111001
index = ®01 Remaining: 100010011101101110110110111

o[s[e oo [0]2]6|
000 661 610 011 180 191 110 111

The remaining hash ends with ® zeroes, so we want to store 1. The counter stores
5, so we keep the slot as-is.

Example (with m = 8; in practice m is higher)

X2

Example (with m = 8; in practice m is higher)

X2

h(x2) = 011110001100100001111010010110

Example (with m = 8; in practice m is higher)

X2
h(x2) = 011110001100100001111010010110
index = 110 Remaining: 811110001100100001111010010110

(o[s[e oo [0]2]6|
000 661 610 011 180 191 110 111

Example (with m = 8; in practice m is higher)

X2
h(x2) = 011110001100100001111010010110
index = 110 Remaining: 811110001100100001111010010110

(o[s[e oo [0]2]6|
000 661 610 011 180 191 110 111

Example (with m = 8; in practice m is higher)

X2
h(x2) = 011110001100100001111010010110
index = 110 Remaining: 811110001100100001111010010110

(o[s[e oo [0]2]6|
000 661 610 011 180 191 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.

At the end of the day

Have an array of counters:

o [s|of[oe]ef[o]2]o]
000 661 818 O11 180 181 110 111

At the end of the day

Have an array of counters:

o [s|of[oe]ef[o]2]o]
000 661 818 O11 180 181 110 111

e Sum up (1/2)MU across allj = ® to m — 1; store in Z

At the end of the day

Have an array of counters:

o [s|of[oe]ef[o]2]o]
000 661 818 O11 180 181 110 111

e Sum up (1/2)MU across allj = ® to m — 1; store in Z

e Return me/Z. Here m = 8. We would have to look up the value of b for 8. (No
one does HyperLoglLog with 8)

Discussion

e How big do our counters need to be?

Discussion

e How big do our counters need to be?

¢ Need to be long enough to count the longest string of ®s in any hash

Discussion

e How big do our counters need to be?
¢ Need to be long enough to count the longest string of ®s in any hash

e Size > loglog(number of distinct elements) (hence the [oglog in the name)

Discussion

How big do our counters need to be?

Need to be long enough to count the longest string of Os in any hash

Size > log log(number of distinct elements) (hence the [oglog in the name)

8-bit counters are good enough, so long as the number of elements in your
stream is less than the number of particles in the universe

Discussion

e How big do our counters need to be?
¢ Need to be long enough to count the longest string of ®s in any hash
e Size > loglog(number of distinct elements) (hence the [oglog in the name)

e 8-bit counters are good enough, so long as the number of elements in your
stream is less than the number of particles in the universe

e Note: one thing to be careful of is hash length. But 64 bit hashes should be
good enough for any reasonable application (and 32 bits is usually fine)

HLL in the Assignment

e We'll use m = 32 counters

e Bias constant is .697

HLL Beyond the Assignment

e HLL does poorly when the number of distinct items is not much more than m

HLL Beyond the Assignment

e HLL does poorly when the number of distinct items is not much more than m

e Or is very very high

HLL Beyond the Assignment

e HLL does poorly when the number of distinct items is not much more than m

e Or is very very high

e Google developed HyperLoglLog++ to help deal with these problems

HLL Beyond the Assignment

HLL does poorly when the number of distinct items is not much more than m

Or is very very high

Google developed HyperLoglLog++ to help deal with these problems

Other known improvements as well

One More Cool Thing

e Facebook developed an HLL-based
algorithm to calculate the diameter
25 ‘ of a graph

75

50

Facebook users (millions)

N
&

4.1 43

X 33 35 37 39
Average degrees of separation

One More Cool Thing

e Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

»
X

e In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

@ 5 5
8 3 8

Facebook users (millions)

o
&

4.1

X 33 35 37 39
Average degrees of separation

One More Cool Thing

e Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

»
X

e In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

e How far away are two people on
average?

@ 5 5
8 3 8

Facebook users (millions)

o
&

4.1 43

X 33 35 37 39
Average degrees of separation

One More Cool Thing

e Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

»
X

e In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

e How far away are two people on
average?

5
8

<
3

Facebook users (millions)

: Avear'gge dgg;rees gisepa?‘astion oo : i o Usually takes o(nz) time!

One More Cool Thing

e Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

»
X

e In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

e How far away are two people on
average?

5
8

<
3

Facebook users (millions)

: Avear'gge dgg;5rees gisepa?‘agtion oo : i o Usually takes o(n2) time!

e Theirs is essentially linear time,
gives extremely accurate results

Hash Functions in Practice

What do we want out of a hash function?

Of course, we want consistency (each time we hash an item we get the same result
back). What else might we want?

e Fast

Low space requirements (i.e. may need to store a seed; don’t want that to be
too big)

Good collision avoidance

Bear in mind: different hashes work on different types of elements. We’'ll focus
on integers and strings (especially strings)

ldeal Hash Functions (Independent, Uniform Hashing)

e Best possible collision avoidance

ldeal Hash Functions (Independent, Uniform Hashing)

e Best possible collision avoidance

e But: require extremely large space usage unless universe of possible elements
is extremely small

ldeal Hash Functions (Independent, Uniform Hashing)

e Best possible collision avoidance

e But: require extremely large space usage unless universe of possible elements
is extremely small

e You did use one of these...

ldeal Hash Functions (Independent, Uniform Hashing)

e Best possible collision avoidance

e But: require extremely large space usage unless universe of possible elements
is extremely small

e You did use one of these...

e For h on Assignment 3! Those values were all chosen independently, completely
at random

Hashing in Java

e Anyone know how Java hashes a
64 bit Long?

e return x * (x >> 32);

e Advantages of this?

Is this good for:

e In cuckoo filter: hy, h, ?

e hyand f: might work if elements
are fairly well-spread (we take
mod); usually won’t

e h: probably won't work (output
too small)

e CMS? HLL?

e CMS might be OK; prob not
(same as above)

e HLL likely useless unless
elements very uniformly spread

Multiply-Shift Hashing

uint64_t hash3(uint64_t value){
return (uint64_t) (value * 0x765a3cc864bd9779) >> (64 -
SHIFT);

e Seed is a large prime number to multiply by; can also add a large random
prime

e Advantages?

e Fast! (And easy.)

Multiply-Shift Hashing

uint64_t hash3(uint64_t value){
return (uint64_t) (value * 0x765a3cc864hbd9779) >> (64 -
SHIFT);
}

How good is it?
o Pretty good! For any x, y, Pr[h(x) = h(y)] = 1/n.
e But unfortunately behavior doesn’t extend to larger numbers of elements.

Let's say we use this for a hash table with chaining (n items, n chains). What is
the expected number of elements we find during a query q?

X; = 1if h(x;) = h(q). Then E[X;] = 1/n. By linearity of expectation, total
number of items is Y7 1/n=1.

How big do you think the largest bucket is?
e Best known bound: O(n'/?) [Knudsen 2017] (very bad!!)

Multiply-Shift hashing for other data structures

e Is this going to work well for a filter?

Multiply-Shift hashing for other data structures

e Is this going to work well for a filter?

e Probably not. Would have to try it.

Multiply-Shift hashing for other data structures

e Is this going to work well for a filter?

e Probably not. Would have to try it.

e Count-min sketch?

Multiply-Shift hashing for other data structures

e Is this going to work well for a filter?
e Probably not. Would have to try it.
e Count-min sketch?

e On paper should work pretty well! After all, our analysis only used the
expectation

Multiply-Shift hashing for other data structures

e Is this going to work well for a filter?

e Probably not. Would have to try it.

e Count-min sketch?

e On paper should work pretty well! After all, our analysis only used the
expectation

e I'd guess it won't work as well as with a better hash function

Multiply-Shift hashing for other data structures

e Is this going to work well for a filter?
e Probably not. Would have to try it.
e Count-min sketch?

e On paper should work pretty well! After all, our analysis only used the
expectation

e I'd guess it won't work as well as with a better hash function

¢ Hyperloglog?

Multiply-Shift hashing for other data structures

e Is this going to work well for a filter?

e Probably not. Would have to try it.

e Count-min sketch?

e On paper should work pretty well! After all, our analysis only used the
expectation

e I'd guess it won't work as well as with a better hash function

¢ Hyperloglog?

e Would have to try but I would very much suspect it would not work well at all

Murmurhash

e Popular practical hash function

Murmurhash

e Popular practical hash function

e Uses repeated MUItiply and Rotate operations

e Rotate is like shift, but bits that “fall off” are replaced on other side
e Can be implemented with two shifts and an OR

Murmurhash

e Popular practical hash function

e Uses repeated MUItiply and Rotate operations

e Rotate is like shift, but bits that “fall off” are replaced on other side
e Can be implemented with two shifts and an OR

e Code isn’t exactly short; 50 operations to hash a number

Murmurhash Code

for(i = —nblocks; i; i++)
{
uint32_t k1
uint32_t k2
uint32_t k3
uint32_t k4

getblock(blocks, ix4+0);
getblock(blocks, ix4+1);
getblock(blocks, ix4+2);
getblock(blocks, ix4+3);

kl %= c1; k1 = ROTL32(k1,15); k1 %= c2; hl "= ki1;
hl = ROTL32(h1,19); hl += h2; hl = h1x5+0x561ccdlb;
k2 %= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ~= k2;
h2 = ROTL32(h2,17); h2 += h3; h2 = h2x5+0x0bcaa747;
k3 %= c3; k3 = ROTL32(k3,17); k3 %= c4; h3 "= k3;
h3 = ROTL32(h3,15); h3 += h4; h3 = h3%5+0x96cd1c35;
k4 x= c4; k4 = ROTL32(k4,18); k4 *= cl; h4 "= k4;

h4 = ROTL32(h4,13); h4 += hl; h4 = h4x5+0x32ac3bl7;

Murmurhash Code

switch(len & 15)
{

15: taill14] << 16;
14: taill13] << 8;
13: taill12] << 0;
c4; k4 = ROTL32(k4,18); k4 *= cl; h4 "= k4;

12: tail[11] <<
ilily tail[10] <<
taill 9] << 8;
taill 8] << 0;
c3; k3 = ROTL32(k3,17); k3

h2; hl += h3; hl += h4;
hl; h3 += h4 += hl;

fmix32(h1);
fmix32(h2);
fmix32(h3);
fmix32(h4);

h2; hl +=
hl; h3 +=

(The light grey lines skip pieces of code.)

Murmurhash3 Performance

e No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))

https://sites.google.com/site/murmurhash/murmurhash2flaw

Murmurhash3 Performance

e No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))

e Someday may discover: might not work well in some circumstances

https://sites.google.com/site/murmurhash/murmurhash2flaw

Murmurhash3 Performance

e No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))
e Someday may discover: might not work well in some circumstances

e This is what happened to Murmurhash2:

e “Will this flaw cause your program to fail? Probably not - what this means in
real-world terms is that if your keys contain repeated 4-byte values AND they
differ only in those repeated values AND the repetitions fall on a 4-byte
boundary, then your keys will collide with a probability of about 1in 2274 instead
of 232, Due to the birthday paradox, you should have a better than 58% chance
of finding a collision in a group of 13115 bad keys instead of 65536.”

® https://sites.google.com/site/murmurhash/murmurhash2flaw

https://sites.google.com/site/murmurhash/murmurhash2flaw

Murmurhash3 Performance

MuIt|pIy -shift 2- W|se PonHash Mlxed Tabulatlon MurmurHash3 "Random"

500 T T T T T T T T
MSE=0.6066 MSE=0.305 MSE=0.0099 MSE=0.0097 MSE=0.01

0 I I I I I I
0.0 05 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 05 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Average of square of bucket sizes. Data is an intentionally bad (albeit reasonable)
case

From “Practical Hash Functions for Similarity Estimation and Dimensionality
Reduction” by Dahlgaard, Knudsen, Thorup NeurIPS 2017

Murmurhash3 Performance in Practice

e Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

Murmurhash3 Performance in Practice

e Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

e Visual example: let’s say we hash “number strings™: “1”, “2”, ... “216553"

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

Murmurhash3 Performance in Practice

e Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

e Visual example: let’s say we hash “number strings™: “1”, “2”, ... “216553"

e Cool eXperiment from https://softwareengineering.stackexchange.com/questions/49550/

which-hashing-algorithm-is-best-for-uniqueness-and-speed

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

Murmurhash3 Performance in Practice

e Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

e Visual example: let’s say we hash “number strings™: “1”, “2”, ... “216553"

e Cool eXperiment from https://softwareengineering.stackexchange.com/questions/49550/

which-hashing-algorithm-is-best-for-uniqueness-and-speed

e I wouldn’t normally cite stackexchange but this is really cool

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

Murmurhash3 Performance in Practice

e Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

Visual example: let’s say we hash “number strings™: “1”, “2”, ... “216553"

Cool eXperiment from https://softwareengineering.stackexchange.com/questions/49550/

which-hashing-algorithm-is-best-for-uniqueness-and-speed

I wouldn’t normally cite stackexchange but this is really cool

Compare SDBM (another popular hash) with Murmurhash2; fill in pixel if
corresponding table entry is hashed to

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

SDBM (lots of chunks of full cells!)

Murmurhash2 (visually: random)

One last murmurhash question

e Murmurhash really just does a bunch of arbitrary multiplies and rotates

One last murmurhash question

e Murmurhash really just does a bunch of arbitrary multiplies and rotates

e Is there anything special about this specific sequence, or will any such set
work pretty well?

One last murmurhash question

e Murmurhash really just does a bunch of arbitrary multiplies and rotates

e Is there anything special about this specific sequence, or will any such set
work pretty well?

e Answer: others might not work. Example: “SuperFastHash” also uses multiplies
and rotates

Hash comparison

Hash Lowercase

Murmur 145 ns
6 collis

SDBM 148 ns
4 collis

SuperFastHash 164 ns
85 collis

Random UUID

ns
collis
ns
collis
ns
collis

Numbers

118
18742

ns
collis
ns
collis
ns
collis

SuperFastHash has bad performance on lowercase English words, and horrendous

performance on numbers-as-strings.

(Also from https:

//softwareengineering.stackexchange.com/questions/49550/
which-hashing-algorithm-is-best-for-uniqueness-and-speed)

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

Unease with our options

e Murmurhash seems to do well (and is fast), but has few guarantees.

Unease with our options

e Murmurhash seems to do well (and is fast), but has few guarantees.

e What do we do if we're OK with a slightly slower hash, but we REALLY want to
be sure it does well?

Unease with our options

e Murmurhash seems to do well (and is fast), but has few guarantees.

e What do we do if we're OK with a slightly slower hash, but we REALLY want to
be sure it does well?

e Answer: cryptographic hashes! Secure even for cryptographic applications; no
known statistical weaknesses

Unease with our options

Murmurhash seems to do well (and is fast), but has few guarantees.

What do we do if we're OK with a slightly slower hash, but we REALLY want to
be sure it does well?

Answer: cryptographic hashes! Secure even for cryptographic applications; no
known statistical weaknesses

Examples: SHA-3, BLAKE2, many others

Unease with our options

e Murmurhash seems to do well (and is fast), but has few guarantees.

e What do we do if we're OK with a slightly slower hash, but we REALLY want to
be sure it does well?

e Answer: cryptographic hashes! Secure even for cryptographic applications; no
known statistical weaknesses

e Examples: SHA-3, BLAKE2, many others

e Broken: MD5, SHA-1, many others

SHAttered SHAttered

The first concrete collision attack against SHA-1 The first concrete collision attack against SHA-1
https://shattered.io htt —

G Google | UM Google

Elie Bursztein Elie Bursztein
Ange Albertini P':::ec E;ervf::n Ange Albertini
Yarik Markov P Yarik Markov

Marc Stevens
Pierre Karpman

38762cf7f55934b34d179ae6a4c80cadccbb7f0a
38762cf7f55934b34d179ae6a4c80cadccbb7f0a

Pbb787a73e37352192383abe7e2902936d1059ad9f1ba6édaaa9c1e58ee6970d0 1.pdf
14488775d29bdef7993367d541064dbdda50d383f89f0aal13a6ff2e0894ba5ff 2.pdf

(Source: https://shattered.i0)

https://shattered.io

	Implementing Effective Hash Functions
	Cuckoo Filter Analysis
	Limits of Expectation
	Streaming
	Count-Min Sketch
	Hyper Log Log Counting
	Hash Functions in Practice

