
Applied Algorithms Lec 1: C
Review; Analyzing Efficiency

Sam McCauley

September 5, 2025

Williams College

Welcome!

• Welcome back to campus.

• Can everyone see me and the projector?

Admin

• Colloquium Fridays at 2:30

• Some attendance required for majors

• Welcome colloquium today

About the Class

• Goal: bridge the gap between theory and practice

• How can theoretical models better predict practice?

• Useful algorithms you may not have seen

• Using algorithmic principles to become better coders!

Pantry Algorithms

• Algorithms that you should always

have handy because they are

incredibly useful

• Bloom filters, linear programming,

suffix trees

• What drives the course

• Algorithmic understanding of these

ideas!

Power of Modern Algorithms

A shipping company needs to efficiently pack items into its truck. How can we use

algorithms to find a good, or even the best, solution?

Power of Modern Algorithms

How far away are two average people in the Facebook graph? O(n2) doesn’t work

when n is in the billions!

Coding

• We’ll be doing some coding

practice each week

• Code review from time to time

• Collaboration highly encouraged

About Me

• Call me Sam (he pronouns)

• Research is in algorithms

• Some experimental algorithms

• Office is TCL 306 for now; moving to TPL 304 soon

• (Extra) office hours Monday 12–1:30

About the Course

• No course textbook

• We will use Kleinberg-Tardos once; I’ll give you access to relevant pages in case
you don’t already have it

• Questions particularly welcome!

• From last time this course was taught:

• Some grading changes

• Focus more on algorithmic and implementation ideas, less time on C debugging

Help, Questions, Comments, Etc.

• Email sam@cs.williams.edu

• During or after class

• Stop by the lab during (or not during) office hours

• Stop by my office (no promises!)

• Ask our TA, Alex Root

• Help each other!

sam@cs.williams.edu

Labs

Labs

Labs

• TCL 312; card access

• Thursdays; you should have signed up for a slot. You do not need to stick to

your slot.

• (Not open yet; should be by the time we have lab.)

• Lab is optional this coming week since there is no real assignment

• No food or drink in lab

Assignments: Pdf portion

• A small number of algorithmic problems and experiments each week

• Don’t fall behind! (Or get too distracted by coding)

• Goal: Understanding how the algorithms work

• Especially important on the midterm and final

Assignments: Coding portion

• (Almost) all in C

• Weekly assignments

• Assignment 1 is designed to give you an opportunity to catch up

• Coarse grading

• (Mostly) no parallelism in this course

Why C?

1 register short * to , * from ;
2 register count ;
3 {
4 register n = (count + 7) / 8 ;
5 switch (count % 8) {
6 case 0: do { * to = * from ++;
7 case 7 : * to = * from ++;
8 case 6 : * to = * from ++;
9 case 5 : * to = * from ++;

10 case 4 : * to = * from ++;
11 case 3 : * to = * from ++;
12 case 2 : * to = * from ++;
13 case 1 : * to = * from ++;
14 } while (−−n > 0) ;
15 }
16 }

• Familiarity

• Low-level

• Course is about how design
decisions affect performance

• Fast, useful to know

• A couple specific features we’ll be

using

Summary of Policies and
Assessments

Weekly Assignments

• Due Thursday 10pm

• Code component; latex component

• Resubmit lab with mistakes fixed for up to one letter grade improved

• Usually released one week before

• Late penalty 1 letter grade per day

• Let me know if there is some reason why you cannot make it!
• I have no problems giving late days if the need arises
• (Seriously do this)
• But please tell me before!

• Last part of course (after Nov. 13) will instead have a more open-ended project

Assignment Logistics

• Code handed in via gitlab; pdfs via gradescope

• I’ll give overleaf links for the latex

• For testing code, I will use the machines in the back of TCL 312

• It’s a good idea to write and run your code on those machines (in-person or

over SSH)

Exams

• Midterm Oct 24

• Final during finals period

• Goal: test your knowledge of experimental analysis, theory; some code

• I will not ask you to write code on the exams—instead, ask to explain code, fix

it, analyze it, etc.

• Less focus on proofs (especially formal correctness) than in algorithms

• I’ll give a practice midterm/final to help get an idea of what it will look like

LLMs

• No LLM usage in this class allowed
for anything

• Even debugging—you should use
google instead

• Issues with incentives, fairness

• I will try to give you snippets of any

small pieces of code

Let’s look over the syllabus quickly

Course Website

“Assignment” 0

• Due next Thursday

• I’ll post soon; release repos on Monday (can’t do it until then)

• Need to get your gitlab repo; answer a couple introductory questions, and

commit (that’s it!)

Coding in C

Plan for this section

• Quick review of some key concepts

• Emphasize some particularly important areas for this course

• Use the first week as an opportunity to catch up!

• Instructor, other students, even stackexchange (etc.) are all good resources for

questions you may have1

1Just remember to cite and be sure that you can explain anything you submit.

About C

• Lifetime of information to learn

• I am not an expert (though I’ve used it a lot)

• Many interesting features, many interesting behind-the-scenes effects

• Close connection between your code and the computer’s actions

Arrays

• Really just pointers

• No bounds checking

• Can use sizeof for fixed-size array (compiler replaces with size at compile

time). Also works with variables

Structs

• What C has instead of classes

• No member functions
• Still uses . operator to access member variables

• Sequence of variables stored contiguously in memory

• Semicolon after declaration

• Need to use struct or typedef to refer to structs.

Two Examples

• struct.c
• typedef to make things easier

• pointers.c
• Local variables different local vs remote
• Access out of bounds
• Values change(?) with different optimizations
• valgrind to catch these issues

Memory Allocation

• malloc and free
• Also use calloc and realloc
• Need stdlib.h

• If you call C++ code, be careful with mixing new and malloc

• Use useful library functions like memset and memcpy

• Example: memory1.c

Sorting in C

• qsort() from stdlib.h

• Takes as arguments array pointer, size of array, size of each element, and a

comparison function. Let’s look at sort.c

• What’s a downside to this in terms of efficiency?

• Many ways to get better sorts in C:

• Nicely-written “homemade” sort
• C++ boost library
• Third-party code

Running Code

Accessing Lab Computers

• Can access using ssh

• Use a text-based editor (like vim or emacs) on the lab machine through the

terminal

• Can also use VSCode directly: run VSCode on your computer, modifying and

running a remote file

Notes on C and compilation

• We use gcc in this course

• Macs tell you they have gcc but it is not; it is actually clang
• Can try to install gcc using brew install gcc (I just use lab computers...)

• Unlikely to make too much of a difference, but one reason to use lab

computers if you’re running into issues

Architecture

• x86 architecture (not AMD, not M1)

• Intel i7; run lscpu for details

• This is likely to have an effect on fine-grained performance in some cases

• Your home computers are fine for correctness and coarse optimization; use

lab computers for fine-grained optimization

• If I ask you to do a performance comparison, or optimize to a certain wall

clock running time, you should do it on lab computers.

Where are things stored?

• In CPU register (never touching
memory)

• Temporary variables like loop
indices

• Compiler decides this

• Call stack

• Small amount of dedicated
memory to keep track of current
function and local variables

• Pop back to last function when
done

• temporary

Other place to store things

• The heap!

• Very large amount of memory (basically all of RAM)

• Create space on heap using malloc

• Need stdlib.h to use malloc

How to decide stack vs heap?

• Java rules work out well:

• “objects” and arrays on the heap
• Anything that needs to be around after the function is over should be on the heap
• Otherwise declare primitive types and let the compiler work it out
• Keep scope in mind!

Makefile

• Each time we change a file, need to recompile that file

• Need to build output file (but don’t need to recompile other unchanged files)

• Makefile does this automatically

In this class

• I’ll give you a makefile

• You don’t need to change it unless you use multiple files or want to set
compiler options

• Probably don’t need to use multiple files in this class
• (Some exceptions for things like wrapper functions.)

Let’s look quickly at the default Makefile

• make, make clean, make debug

Compiler flags

• -g for debug, -c for compile without build (creates .o file)

• Different optimization flags:

• -O2 is the default level
• -O3, -Ofast is more aggressive; doesn’t promise correctness in some corner

cases
• -O0 doesn’t optimize; -Og is no optimization for debugging
• Other flags to specifically take advantage of certain compiler features (we’ll

come back to this)

• -S (along with -fverbose-asm for helpful info) to get assembly

• Also: “Compiler Explorer” online

Variable types

• int, long, etc. not necessarily the same on different systems

• On Windows long is probably 32 bits, on Mac and Unix it’s probably 64 bits
• long long is probably 64 bits

• Instead: include stdint.h, describe types explicitly

• Keep an eye out for unsigned vs signed.

• Quick example: variabletypes.c

• printf does expect primitive types

Variable types cont.

• int (etc.) is OK for things like small loops

• If you care at all about size you should use the type explicitly

• Up to you when and where you use unsigned

• Controversial in terms of style

List of particularly useful integer variable types

• int64_t, int32_t: signed integers of given size

• uint64_t, uint8_t: unsigned integers of given size

• INT64_MAX (etc.): maximum value of an object of type int64_t

Board Discussion: What Makes
Code Run Fast?

	Summary of Policies and Assessments
	Let's look over the syllabus quickly
	Course Website
	Coding in C
	Running Code
	Board Discussion: What Makes Code Run Fast?

