Applied Algorithms Lec 1: C
Review; Analyzing Efficiency

Sam McCauley
September 5, 2025

Williams College



Welcome!

e Welcome back to campus.

e Can everyone see me and the projector?



Admin

e Colloquium Fridays at 2:30

e Some attendance required for majors

e Welcome colloquium today



About the Class

Goal: bridge the gap between theory and practice

How can theoretical models better predict practice?

Useful algorithms you may not have seen

Using algorithmic principles to become better coders!



Pantry Algorithms

Algorithms that you should always
have handy because they are
incredibly useful

Bloom filters, linear programming,
suffix trees

What drives the course

Algorithmic understanding of these
ideas!



Power of Modern Algorithms

A shipping company needs to efficiently pack items into its truck. How can we use
algorithms to find a good, or even the best, solution?



Power of Modern Algorithms

e

N

How far away are two average people in the Facebook graph? O(nz) doesn’t work
when n is in the billions!



e We'll be doing some coding
practice each week

e Code review from time to time

e Collaboration highly encouraged




About Me

Call me Sam (he pronouns)

Research is in algorithms

e Some experimental algorithms

Office is TCL 306 for now; moving to TPL 304 soon

(Extra) office hours Monday 12-1:30



About the Course

e No course textbook

o We will use Kleinberg-Tardos once; I'll give you access to relevant pages in case
you don’t already have it

e Questions particularly welcome!
e From last time this course was taught:

e Some grading changes

e Focus more on algorithmic and implementation ideas, less time on C debugging



Help, Questions, Comments, Etc.

Email sam@cs.williams.edu

During or after class

Stop by the lab during (or not during) office hours

Stop by my office (no promises!)

Ask our TA, Alex Root

Help each other!


sam@cs.williams.edu

Labs




Labs




Labs

TCL 312; card access

Thursdays; you should have signed up for a slot. You do not need to stick to
your slot.

(Not open yet; should be by the time we have lab.)

Lab is optional this coming week since there is no real assignment

No food or drink in lab



Assignments: Pdf portion

A small number of algorithmic problems and experiments each week

Don't fall behind! (Or get too distracted by coding)

Goal: Understanding how the algorithms work

Especially important on the midterm and final



Assignments: Coding portion

(Almost) all in C

Weekly assignments

Assignment 1 is designed to give you an opportunity to catch up

Coarse grading

(Mostly) no parallelism in this course



Why C?

register short *to, *from;
register count;

{

register n = (count + 7) / 8;
switch (count % 8) {

case 0O: do { *to

case 7: *to
case 6: *to
case 5: *to
case 4: *to
case 3: *to
case 2: *to
case 1: *to

} while (——n

*from++;
*from++;
*from++;
*from++;
*from++;
*from++;
*from++;
*from++;
9);

Familiarity

Low-level

e Course is about how design
decisions affect performance

Fast, useful to know

A couple specific features we’ll be
using



Summary of Policies and
Assessments




Weekly Assignments

Due Thursday 10pm

Code component; latex component

Resubmit lab with mistakes fixed for up to one letter grade improved

Usually released one week before

Late penalty 1 letter grade per day
¢ Let me know if there is some reason why you cannot make it!
e I have no problems giving late days if the need arises
e (Seriously do this @)
e But please tell me before!

Last part of course (after Nov. 13) will instead have a more open-ended project



Assignment Logistics

Code handed in via gitlab; pdfs via gradescope

I'll give overleaf links for the latex

For testing code, I will use the machines in the back of TCL 312

It's a good idea to write and run your code on those machines (in-person or
over SSH)



Exams

e Midterm Oct 24
e Final during finals period
e Goal: test your knowledge of experimental analysis, theory; some code

e I will not ask you to write code on the exams—instead, ask to explain code, fix
it, analyze it, etc.

e Less focus on proofs (especially formal correctness) than in algorithms

e I'll give a practice midterm/final to help get an idea of what it will look like



e No LLM usage in this class allowed
for anything

e Even debugging—you should use
google instead

e Issues with incentives, fairness

o I will try to give you snippets of any

COMPUTER SCIENCE small pieces of code




Let’s look over the syllabus quickly




Course Website




“Assignment” 0

e Due next Thursday

e I'll post soon; release repos on Monday (can’t do it until then)

e Need to get your gitlab repo; answer a couple introductory questions, and
commit (that’s it!)



Coding in C




Plan for this section

Quick review of some key concepts

Emphasize some particularly important areas for this course

Use the first week as an opportunity to catch up!

Instructor, other students, even stackexchange (etc.) are all good resources for
questions you may have'

TJust remember to cite and be sure that you can explain anything you submit.



About C

Lifetime of information to learn

I am not an expert (though I've used it a lot)

Many interesting features, many interesting behind-the-scenes effects

Close connection between your code and the computer’s actions



Arrays

e Really just pointers

¢ No bounds checking

e Can use sizeof for fixed-size array (compiler replaces with size at compile
time). Also works with variables



Structs

What C has instead of classes

e No member functions
e Still uses . operator to access member variables

Sequence of variables stored contiguously in memory

Semicolon after declaration

Need to use struct or typedef to refer to structs.



Two Examples

e struct.c
e typedef to make things easier

e pointers.c
e Local variables different local vs remote
e Access out of bounds
e Values change(?) with different optimizations
e valgrind to catch these issues



Memory Allocation

malloc and free

e Also use calloc and realloc
e Need stdlib.h

If you call C++ code, be careful with mixing new and malloc

Use useful library functions like memset and memcpy

Example: memoryl.c



Sorting in C

gsort() from stdlib.h

Takes as arguments array pointer, size of array, size of each element, and a
comparison function. Let’s look at sort.c

What's a downside to this in terms of efficiency?

Many ways to get better sorts in C:
¢ Nicely-written “homemade” sort
e C++ boost library
e Third-party code



Running Code




Accessing Lab Computers

e Can access using ssh

e Use a text-based editor (like vim or emacs) on the lab machine through the
terminal

e Can also use VSCode directly: run VSCode on your computer, modifying and
running a remote file



Notes on C and compilation

e We use gcc in this course

e Macs tell you they have gcc but it is not; it is actually clang
e Can try to install gcc using brew install gcc (I just use lab computers...)

e Unlikely to make too much of a difference, but one reason to use lab
computers if you're running into issues



Architecture

e x86 architecture (not AMD, not M1)
e Intel i7; run lscpu for details
e This is likely to have an effect on fine-grained performance in some cases

e Your home computers are fine for correctness and coarse optimization; use
lab computers for fine-grained optimization

e If I ask you to do a performance comparison, or optimize to a certain wall
clock running time, you should do it on lab computers.



Where are things stored?

STACK
INAGTIVE 28 ORIGIN
FRAME N-3 5 .
e In CPU register (never touching
memor
METE N-2 i
e Temporary variables like loop
indices
INACTIVE N_1 . . .
FRAME e Compiler decides this
e Call stack
ACTIVE |y ¢ Small amount of dedicated
FRAME
memory to keep track of current
STACK 1 1
g <= POINTER function and local variables
7 =9 e Pop back to last function when
"~ AVAILABLE | S done
STAC
g : o temporary
2
1
0

Agatallr for Wikpodia
Public Domain 2006




Other place to store things

The heap!

Very large amount of memory (basically all of RAM)

Create space on heap using ma'lloc

Need stdlib.h to use malloc



How to decide stack vs heap?

e Java rules work out well:
e “objects” and arrays on the heap
¢ Anything that needs to be around after the function is over should be on the heap
e Otherwise declare primitive types and let the compiler work it out
e Keep scope in mind!



Makefile

e Each time we change a file, need to recompile that file

¢ Need to build output file (but don’t need to recompile other unchanged files)

o Makefile does this automatically



In this class

e I'll give you a makefile

e You don’t need to change it unless you use multiple files or want to set
compiler options
e Probably don’t need to use multiple files in this class
e (Some exceptions for things like wrapper functions.)



Let’s look quickly at the default Makefile

e make, make clean, make debug



Compiler flags

e —g for debug, —c for compile without build (creates . o file)

o Different optimization flags:

e —-02 is the default level
e -03, -Ofast is more aggressive; doesn’t promise correctness in some corner

cases
e —00 doesn’t optimize; —0Og is no optimization for debugging
e Other flags to specifically take advantage of certain compiler features (we’'ll
come back to this)

e -S (along with —fverbose-asm for helpful info) to get assembly

e Also: “Compiler Explorer” online



Variable types

int, long, etc. not necessarily the same on different systems

e On Windows long is probably 32 bits, on Mac and Unix it's probably 64 bits
e long long is probably 64 bits

Instead: include stdint.h, describe types explicitly

Keep an eye out for unsigned vs signed.

Quick example: variabletypes.c

printf does expect primitive types



Variable types cont.

e int (etc.) is OK for things like small loops

e If you care at all about size you should use the type explicitly

e Up to you when and where you use unsigned
e Controversial in terms of style



List of particularly useful integer variable types

e int64_t, int32_t: signed integers of given size

e uint64_t, uint8_t: unsigned integers of given size

e INT64_MAX (etc.): maximum value of an object of type int64_t



Board Discussion: What Makes
Code Run Fast?




	Summary of Policies and Assessments
	Let's look over the syllabus quickly
	Course Website
	Coding in C
	Running Code
	Board Discussion: What Makes Code Run Fast?

