
CS358: Applied Algorithms

Assignment 4: Locality-Sensitive Hashing (due 10/30/25 10PM)

Instructor: Sam McCauley

Instructions

Code can be submitted by committing and pushing them to gitlab. I strongly suggest that
you access evolene.cs.williams.edu through a web browser to make sure everything was
uploaded as you expected. You may collaborate on code with your classmates, as well as
the instructor and TA, but you may not use any LLM assistance. Please contact me at
srm2@williams.edu if you have any questions or find any problems with the assignment
materials.

Problem Description

In this problem, we will be trying to find the closest pair of items in a large, high-dimensional
dataset.

In particular, you will receive as input a large number of random 128 bit numbers (each
broken up into four 32-bit chunks). There will also be a single planted pair of numbers,
which are close in terms of Jaccard similarity. The goal of your program is to return the
index of these items.

The Jaccard similarity is a set similarity measure. In the context of bit strings a and b,
the Jaccard similarity can be defined (using C notation for bitwise operations & and |) as

number of bits in a & b

number of bits in a | b
.

In this assignment, you will use locality-sensitive hashing to efficiently find the pair of
items in the list with similarity .8 or greater.

Input: test.out is given two arguments; each is a text file containing any number
of problem instances. A problem instance begins with three numbers on a line. The first
number represents the size of the instance; this is equal to the number of subsequent lines
in the file that are a part of this instance. The next two numbers indicate the two indices of
the close pair (these indices assume the array is 0-indexed).

Each of the following lines represents a 128 bit number. Each line consists of four signed
32-bit integers, separated by a space. Concatenating the bits representing these integers
results in a single signed 128 bit number. It may be useful to represent each number as an
array of four 32 bit integers, or as two 64 bit integers in a struct (this is what I used, and
this is how the data will be passed to your function). It may be possible to store the number
in a single 128 bit data type, but I have not experimented with this.

1

srm2@williams.edu


Assignment 4: Locality-Sensitive Hashing 2

In each problem instance, exactly one pair of numbers has similarity .8 or greater.
After all inputs are completed, the file may end, or another problem instance may be

immediately concatenated onto the end. For example, largeInput.txt contains 8 problem
instances.

The functionality in test.c will read the file, and store each number in an array (in order)
of objects of type Item. A Item is a struct containing two unsigned 64-bit integers. test.c
will, for each problem instance, call the function find_close(Item* input, int length)—
the arguments to this function are the array of Items, and the length of the array.

I have included two files for testing: simpleInput.txt and largeInput.txt. Unfor-
tunately, we have reached the lab where “big data” is beginning to get a bit annoying:
largeInput.txt is nearly 300MB, and cannot be stored in a github repo. Therefore, this
input is available in two places: on the website, and in my scratch drive where you can access
it from the lab computers (the location of the file is given in the example below).

Be sure to not add largeInput.txt to your git repo! Git does not handle large
files well and it is a pain to remove. Your .gitignore file contains largeInput.txt, which
should mean that it should not be added unless you override the ignore file.

You may also generate your own input; largeInput.txt was generated using 14 instances
of size 500,000, so doing the same should result in an almost-identical test file without any
downloads required. (Make sure you don’t commit those either.)

A simple run of the program can proceed as follows, accessing the version of largeInput.txt
on my scratch drive (this should work as-is if you run it on a lab computer, from your ac-
count):

./test.out simpleInput.txt /home/scratch/srm2/Assignment4/largeInput.txt

or, if you have largeInput.txt stored locally:

./test.out simpleInput.txt largeInput.txt

Output: The function should output the indices of the close pair of elements, i.e. the pair
with similarity .8 or greater. To make these easier to pass around, we assume that these
indices are 32-bit numbers, and concatenate them together to create one 64-bit number to
pass back to the calling function. That is to say: the return value of function find_close

is an unsigned 64-bit number where the first 32 bits represent one index of the close pair,
and the last 32 bits represent the other index of the close pair. The order of the solution
pair does not matter!

Note on Output Times: This assignment is likely to take a bit longer to run than
previous assignments—a relatively simple implementation seems to take 20–120 seconds to
solve largeInput.txt.

Questions



Assignment 4: Locality-Sensitive Hashing 3

Implementation 1. Implement MinHash to find the most similar pair of items, as de-
scribed above. You do not need to describe your implementation.

Implementation 2 (Extra Credit). Optimize the code so that it consistenly (say, roughly
half the time) runs in 10 seconds or less. Some suggestions:

• Experiment to find an effective value for k

• How are you storing your buckets? Consider storing them in a way with less
overhead. (In fact, with a little preprocessing we can store all buckets in a single
array without any metadata at all.)

• Make sure the compiler flags ensure that your code is optimized.

• It may be that unusually large buckets are slowing you down. How can you avoid
this? (There are many good answers to this question.)

If you choose to do this extra credit, please briefly explain your optimizations below.

Solution.

Problem 1. In class, we calculated R, the number of expected repetitions to find the
close pair.

Let’s say you have a dataset of n sets that may or may not have a close pair in
it. You want to make sure that you don’t loop infinitely, so you place a bound on the
number of repetitions. Let’s call it RMAX .

Let j1 be the similarity of the close pair, and j2 be the similarity of all other pairs.
In class, we saw that since k = log1/j2 n, the expected number of repetitions is R =

O(nlog1/j2 (1/j1)). In fact, we can show a similar result: after R′ repetitions, we find the
close pair with probability exactly 1/2, with R′ = O(nlog1/j2 (1/j1)).

What should we set RMAX to be so that we find a close pair (if it exists) with high
probability? I am looking for an asymptotic answer, i.e. big-O notation.

Hint: You want to use “basic” probability calculations here—by which I mean not
union bound, linearity of expectation, or anything like that. Start with R′ and use it to
help you obtain RMAX .

Solution.

Problem 2. Assume we have an instance of n items. The Jaccard similarity between
any two of these items is exactly .25, except for one pair which has similarity exactly .5.

Let’s say you have a working implementation; this question asks how perturbations



Assignment 4: Locality-Sensitive Hashing 4

in your implementation are likely to change its behavior. Let k be the number of
hash functions you concatenate in your implementation to obtain the final hash of your
element (note that this variable just stores the number of concatenated hashes in an
implementation: it may not be log4 n, or any other particular function of n and the
similarities).

Assume that with k concatenated hashes, the expected size of each hash bucket is
B. Furthermore, as above, let R′ be a fixed number of repetitions, where exactly 1/2 of
the time, your implementation finds the close pair in R′ or fewer repetitions.

(a) Let’s say we (again) increase the number of concatenations in your hash function:
you concatenate k′ = k+1 hash functions instead of k. How does this affect the expected
size of each bucket (i.e. if B′ is the expected size of each bucket when concatenating k′

hashes, what is the relationship between B′ and B)? Please briefly justify your answer.

Solution.

(b) Let’s say we increase the number of concatenations in your hash function: you
concatenate k′ = k + 1 hash functions instead of k. What fraction of the time will your
implementation now find the closest pair after R′ repetitions? Please briefly justify your
answer.

Hint for (b): First, write out what we’re looking for as a function of R′ and k as in
part (a). This will be worth substantial partial credit. For full credit, use (1−1/x)x = 1/e
(you can assume they are exactly equal) to obtain a number—i.e. a single constant rather
than an equation—for the answer.

Solution.


