
CS358: Applied Algorithms

Assignment 2: Space-Efficient Edit Distance (due 10/2/25)

Instructor: Sam McCauley

Instructions

There are two parts to the assignment: code, and a pdf submission.
Code can be submitted by committing and pushing them to gitlab. I strongly suggest

that you access evolene.cs.williams.edu through a web browser to make sure everything
was uploaded as you expected. You may collaborate on code with your classmates, as well
as the instructor and TA, but you may not use any LLM assistance.

The pdf should be uploaded to Gradescope for submission and feedback. The pdf should
be entirely your own work; you should only use “hands in pockets” discussions with your
classmates and the TA; you should not use any online (including LLM) assistance.

Please contact me at srm2@williams.edu if you have any questions or find any problems
with the assignment materials.

Problem Description

Input: The input consists of a sequence of tests. Each test begins with a line that has
four numbers on it. These numbers are the length of string1, the length of string2, the
length of the intended solution string, and finally the size of the alphabet. Following this
line, string1 is listed in 80-character lines, followed by string2 and finally the intended
solution. These strings each have brief comments (to make it more human-readable) that
are ignored by the input reader provided to you.

Output: The output is a string describing a sequence of edits. Each character in the string
should be ‘i’, ‘r’, ‘d’, or ‘m’. The string should be null-terminated.

Goal: The output is a string describing how string2 can be modified to obtain string1.
The output is a string of characters, where each character is ‘i’, ‘r’, ‘d’, or ‘m’, repre-
senting an insert, replacement, delete, or match, respectively.

Thus, if string2 is ac, and string1 is a, the optimal output string is md.
There is a function in test.c that will make sure your sequence of edits is the right

length, and ensure that it correctly edits string2 to obtain string1. There may be many
correct answers; any of them should be recognized as correct by this function.

Testing Parameters

The main() method of the testing program (in test.c) takes one argument, which is a file
containing edit distance instances. You can test your program by first running make, and

1

srm2@williams.edu


Assignment 2: Space-Efficient Edit Distance 2

then running (say) ./test.out smallData1.txt. As always, you should first debug on the
small instances before testing on the larger instances.

There are four files given. smallData1.txt is very small, and useful for debugging.
smallData2.txt contains further small instances, and is particularly useful for testing base
cases. Note that a correct answer is given for each instance, which may be useful for de-
bugging. data1.txt and data2.txt contain larger instances, each taken from either human
DNA, or from English text.

test.out takes an extra optional parameter. If this parameter is given, then all strings
are set to be exactly the given length (they are either truncated to this length, or duplicated
until reaching that length). For example, ./test.out data2.txt 30000 will set all strings
to length 30000, and then find the edit distance between them.

Helper Functions

The following functions are in helper.c and are there to help you in your implementation.
You may modify them if you wish. See the comments in the code for more detail on how to
call them.

• minOfThree: returns the min of three ints.

• reverseString: returns the reverse of a string

• baseCase(): base case implementation for Hirshberg’s algorithm. Works if at least
one of the strings has length at most 1.

• editCostRow(): gives the cost of the last row of the dynamic programming table
between two given strings. Can be used to find the “crossover” point for Hirshberg’s
algorithm.

• backtracking(): the backtracking implementation of the edit distance seen in class.
This requires much more space than Hirshberg’s algorithm.

Questions

Implementation 1. Implement Hirschberg’s space-efficient algorithm for edit distance.
Change the code so that editDistance() in editDistance.c calls your implementation
(see the comments in the code for a few small hints).

Implementation 2. Compare the running time of your Hirshberg’s implementation with
the running time of the space-inefficient function backtracking() (recall that this is
given to you in helper.c). You should compare the times for strings of size 20k, 40k,
60k, 80k on data set data2.txt. Your results should be in the form of a plot.

You should also include the time for 100k for your Hirshberg’s implementation; the



Assignment 2: Space-Efficient Edit Distance 3

space-inefficient version will likely be killed by the operating system due to using too
much memory (you should test this and see if it’s the case).

Solution.

Implementation 3. Use cachegrind to compare the (simulated) number of cache misses
of your Hirshberg’s implementation with the cache misses of the space-inefficient function
backtracking() on the data set data2.txt.

You do not need to make a plot or change the length of the strings; just give the
number of L1 and LL cache misses below.

Solution.

Shelving Books with Labels

Updated 9/25
Let’s say you work in a library. You have to put m books (let’s call them b1, . . . , bm)

on n ≤ m shelves (which we’ll call s1, . . . sn). The books are numbered using the Dewey
Decimal system, and must be placed in order starting on shelf s1. Furthermore, there may
not be an empty shelf between two shelves that contain books.1 For example, if book 10
goes on shelf 2, book 11 must go on shelf 2 or shelf 3. Each shelf can hold any number of
books; even all m books may be placed on a single shelf. The books must start being placed
on the first shelf.

This would normally be fairly easy—for example, you could just put all books on the first
shelf. Unfortunately, this library also keeps track of k topics to help people browse for books
they may be interested in. Each shelf sj has a label `j representing the topics of books on
that shelf. Similarly, each book bi has a list of topics ti representing what topics are covered
in that book.

You were instructed to reprint all the labels on the shelves so that the shelves indicate
the topics of their books: if book bi is on shelf sj, then each topic in ti can be found in `j.
However, in an effort to stay green you want to keep the labels as-is, and place the books so
that they match the current labels as closely as possible (while still retaining Dewey Decimal
order).

Let’s say that the cost of placing book bi on shelf sj is the number of topics ti that do not
appear in the list `j. This leads to an algorithmic problem: how can the books be assigned
to shelves to minimize the total cost; i.e. the number of missing topics over all books on all
shelves?

Dynamic Program. The above book shelving problem can be solved with the following
dynamic programming algorithm.

Firs, the subproblems. We will consider the problem of putting the first i books on the
first j shelves (where all j shelves are used; so the ith book is on the jth shelf). We will

1Your boss at the library is a stickler for aesthetics.



Assignment 2: Space-Efficient Edit Distance 4

store this cost in a table T [j][i]. Since we require that the first and last shelf are used, and
that there are no gaps, we only consider entries where i ≥ j (since if i < j you would not
have enough books to cover all the shelves).

This table is sometimes called the memoization data structure. We will fill out the
table for i = 1 . . .m and j = 1 . . . n, so it is an n ×m table (that is to say: a table with n
rows and m columns).

Now, let’s look at the base cases. If n = 1, all books must be stored on one shelf, and
the total cost is the sum of the costs of putting all books on the first shelf. Otherwise, if
n = m, then the number of books is equal to the number of shelves. This means the ith
book must be on the ith shelf, summing over the books/shelves gives us the cost.

Now, the heart of the dynamic program: the recurrence. We want to find a recurrence
for T [j][i]: the cost of putting the first i books on the first j shelves. We know that book i
must be stored on shelf j. There are two possibilities for book i: either it is the first book
on shelf j, or it is not. If it is the first book on its shelf, the cost is the cost of putting all
previous books on all previous shelves (which we have calculated as T [j− 1][i− 1]), plus the
cost of putting book i on shelf j. If it is not the first book on its shelf, it goes on shelf j, and
the previous books must also be on shelves 1 through j (which we have calculated as cost
T [j][i−1]). We take the minimum between these options. That gives the following equation
(which denotes the cost of putting book i on shelf j as cij for simplicity):

T [j][i] = min {T [j − 1][i− 1] + cij, T [j][i− 1] + cij}

We fill in the table row by row. Recall that in the base case, we filled in T [1][1] through
T [1][n], and we also filled in T [j][j] for all j (and recall that we assume that i ≥ j). We
begin our recursion on the second row: T [2][2] is already filled in, so we begin by filling in
T [2][3], then T [2][4], and so on until T [2][n]. Then we go to the next row: T [3][3] is filled,
so we fill T [3][4] then T [3][5], and so on. The final answer is stored in minj≤m T [j][n].

Problem 1. Analyze the above dynamic programming algorithm in the external memory
model—how many cache misses does it have in terms of n, m, and B?

You should assume for this analysis that n and m are much larger than B. Further-
more, assume the table is stored in row-major order: in a single cache miss we can bring
read or write (say) T [1][1] through T [1][B].

Solution.

Problem 2. If the table T was stored in column-major order, how many cache misses
would it have? (You only need to give the bound and a 1-sentence explanation.)

Solution.

As we saw with edit distance, if we only care about the cost of a solution (rather than
reconstructing the solution itself), there’s an immediate optimization that saves space.



Assignment 2: Space-Efficient Edit Distance 5

Problem 3. Give an algorithm to find the minimum number of mismatches in O(nmk)
time and O(n + m) space (you do not need to find the optimal assignment of books to
shelves).a A one-to-two sentence explanation is enough.

aYou may notice that it’s probably possible to tighten the space a bit, to something like
O(min{n,m}). This is not required.

Solution.

Finally, let’s use the ideas from Hirschberg’s algorithm to improve the space usage while
giving the assignment itself, not just the cost.

Problem 4. Finally, give an algorithm to find the assignment of books to shelves that
minimizes the number of mismatches in O(nmk) time and O(n + m) space.

You will probably want to solve this in two parts. First, in O(nmk) time and O(n+m)
space, find the optimal last shelf j′.a Then, we can assume that the last book is placed
on shelf j′; with that assumption, we are ready to use a Hirschberg’s-like strategy.

aThis first step is important in order to use the “reversing” trick to determine the optimal splitting
point—you should make sure you understand why that is.

Solution.


