
CS358: Applied Algorithms

Assignment 1: Two Towers (due 9/18/24)

Instructor: Sam McCauley

1 Implementation

Instructions

There are two parts to the assignment: code, and a pdf submission.
Code can be submitted by committing and pushing them to gitlab. I strongly suggest

that you access evolene.cs.williams.edu through a web browser to make sure everything
was uploaded as you expected. You may collaborate on code with your classmates, as well
as the instructor and TA, but you may not use any LLM assistance.

The pdf should be uploaded to Gradescope for submission and feedback. The pdf should
be entirely your own work; you should only use “hands in pockets” discussions with your
classmates and the TA; you should not use any online (including LLM) assistance.

Please contact me at srm2@williams.edu if you have any questions or find any problems
with the assignment materials.

Problem Description

Goal: The input represents a set of blocks; the ith integer in the input represents the “area”
of the ith block. The height of a block is the square root of its area.

The goal is to partition the blocks into two sets (which we call towers), such that the
height of the towers is as close as possible. The value returned should be the blocks that
make up the smaller of these two towers.

Input: The input to the problem will be an array of at most 64 unsigned 64-bit integers
(this array will be given as a pointer of type uint64 t*), along with an integer representing
how many elements there are in the array.

Output: The output is a single unsigned 64-bit integer whose bits represent a subset of the
blocks in the array. For example, the subset consisting of only the first element in the array
would be represented by the integer 1; the subset consisting of the first, third, and fourth
elements of the array would be represented by 13.

Testing Parameters

The main() method of the testing program (in test.c) takes two arguments, each of which
is a file containing instances of the two towers problem. An instance of the problem is

1

srm2@williams.edu


Assignment 1: Two Towers 2

represented by a sequence of integers (separated by spaces) on one line, and the intended
solution (represented as a decimal number) on the second line. You can test your program by
first running make, and then running ./test.out data.txt (you should replace data.txt

with the name of the data file being used). If the solution is incorrect, the program will say
so (with some extra information to help debug); if the solution is correct, the program will
output the running time in seconds.

There are three instances: a smaller instance, smallData.txt, and two larger instances,
data1.txt and data2.txt.

For all instances, the best solution is guaranteed to be at least .0001 larger than the
second-best solution (i.e. the smaller tower in the optimal solution is .0001 larger than any
other tower smaller than half the height). This guarantee is to help rule out issues with
floating point errors. This also means that the smaller tower is strictly smaller than the
larger tower—you do not need to worry about tiebreaking.

Provided Code

The provided code is to help you; you can use it any way you wish.
In test.c, there is code which reads in the input file, calls your implementation functions,

times them, and tests if the answer is correct. You probably don’t need to modify or read
this.

In twotowers.c there is a struct, called Subset with two member variables: the first
variable is a uint64 t storing the subset itself, and the second is a double storing the height
of the subset.

I have also provided the following functions for you to use in your implementation. These
can be found in the files twotowers.h and helper.c

• updateBest: given a new solution, compares to the best found so far and updates if
necessary

• getTotalHeights: takes the square root to get the height of each block and stores
them in an array; returns the total height

• getHeight: gets the height of a particular set of blocks

• compareSlns: compares two Subsets; this function can be used to sort with qsort

• binarySearchTable: binary searches for the predecessor of a target in a table of
Subsets

• merge: merges two sorted arrays

• mergeSort: uses merge sort to sort an array of Subsets

Questions

We will compare four implementations for this assignment.



Assignment 1: Two Towers 3

Basic Implementation: First, implement the algorithm as given in class using qsort as
the sorting function. This algorithm should store all Subsets of blue blocks in a table and
sort them using qsort (remember that I already provided a comparator function for you to
use). Then, it should iterate through all subsets of yellow blocks, use binarySearchTable

to search for the best blue subset for the given yellow blocks, and call updateBest to update
if it is the best option automatically.

I strongly recommend that you create a function to create the table of subsets, as you’ll
use it repeatedly throughout the assignment. I left a stub for this purpose, generateTable,
in twotowers.c in the starter code.

Implementation 1. Implement this algorithm in the function basicTowers() in
twotowers.c

Improved Sort Implementation: Second, alter Implementation 1 to use mergeSort

rather than qsort. (This should require very few changes.)

Implementation 2. Implement this algorithm in the function mergeSortTowers() in
twotowers.c

Sort Both: Third, we will do something slightly odd. Let’s build two tables: one on the
blue blocks, and one on the yellow blocks. Then we will sort both tables by height. After
that, we will iterate through the table of yellow blocks (this means we iterate in sorted order
by height); for each do the binary search for the best set of blue blocks and update as before.

Implementation 3. Implement this algorithm in the function sortBothTowers() in
twotowers.c

Problem 1 (Extra Credit). Show that in the external memory model, the total cost of
all binary search operations is O(2n/2/B). (We will likely go over the external memory
model in class on Tuesday.)

Solution.

Better Sort: Finally, let’s work towards a surprising result: for this specific problem, there
is a sort function that runs in linear time—it can sort all 2n/2 subsets in time O(2n/2), rather
than O(n2n/2). Let’s break down how this function works.

Our goal is to create a sorted table with all Subsets of n/2 blocks (let’s say the n/2 blue
blocks; we’ll do the same for the yellow blocks). We will do this inductively, by adding one
block at a time.



Assignment 1: Two Towers 4

Problem 2. First, explain how to sort all subsets of zero blocks. (Yes, this is trivial, but
you’ll implement this in the code.)

Solution.

Now, assume you have sorted all subsets of k blocks, for some k ≥ 0. Our goal is to
obtain two arrays of size 2k. The first array is the array you already have: it consists of all
subsets of k blocks, in sorted order. The second array consists of all subsets of k + 1 blocks
that include the k + 1st block. In other words, between the two sorted arrays we have all
subsets of k+1 blocks: the first contains the subsets that do ont have the k+1st block, and
the second contains the subsets that do.

Problem 3. Explain how to obtain the second array using a single scan through the first
array, in O(2k) time.

Solution.

Problem 4. Now, explain how to use these two sorted arrays of size O(2k) to obtain the
sorted array of all k + 1 blocks, in O(2k) time. (Hint: can we use a function that we
already have available?)

Solution.

Problem 5. Analyze the running time of this algorithm, showing that it requires O(2n/2)
time to generate the sorted table of all yellow blocks.

Solution.

Implementation 4. The above gives us an algorithm to generate a sorted table of all
subsets: we do the above for k = 1, 2, up to the number of blocks. Implement this
algorithm in the function generateSortedTable() in twotowers.c. Then, use this new
algorithm to create a two towers algorithm: alter your sortBothTowers() solution to
generate the sorted table using generateSortedTable(); implement this in the fucntion
betterSortBothTowers().

Implementation 5 (Extra Credit). It is possible to compare the arrays without a binary
search each time. (Hint: use the fact that both tables are sorted. If we know where



Assignment 1: Two Towers 5

the binary search lands for a given yellow subset, what can we say about the next
one?) Implement an O(2n/2) time algorithm in the function extraCredit() for this
problem—the implementation is sufficient, you do not need to prove the running time.
The implementation should run in at most .90 seconds on input data2.txt. Achieving
this time likely requires further optimization of the merge implementation in helper.c.

2 Comparison

Problem 6. Please fill in below the time each algorithm took on data1.txt and data2.txt.

Hopefully, the times decreased with each successive implementation. The reason why will
be a focus of the next couple weeks.

Impl. 1 Impl. 2 Impl. 3 Impl. 4
0 0 0 0

data1.txt

Impl. 1 Impl. 2 Impl. 3 Impl. 4
0 0 0 0

data2.txt


	Implementation
	Comparison

