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Admin

• Apply to be a TA in the Spring (you should have gotten an email)

• Assignment 1 deadline Saturday

• Any lingering Assignment 1 questions?

• Homework 2 back

• Homework 3 out tonight

• Maybe short day today? We’ll wrap up probability analysis and some other
lingering topics



Useful formulas for probability (e = 2.71 . . .)

Two useful approximations for simplifying exponents (presented as inequalities,
but really quite tight even for moderate n):

(1 + 1/n)n ≤ e (1− 1/n)n ≤ 1/e

Example: (1.1)10 = 2.593 . . .

With probability we often use choose (a.k.a. binomial) notation, but it’s unweidly.
These inequalities can help approximate it:(
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Expectation



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable
indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4
• What is the probability that S is 0?
• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043
• What is the probability that S is 4?
• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• Since each card is a club with probability (about) 1/4, and we draw 4 cards, it
seems like S should generally be around 1. Can we formalize this intuition?
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Expectation

• When we make random decisions, we often care about the average outcome

• Example: let’s say I flip a fair coin until I get a heads. How long will it take me
on average?

• 2 flips

• Another example: Consider a quicksort implementation that chooses each
pivot at random.

• This algorithm takes O(n log n) time in expectation.
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Definition of Expectation

• Let’s say a random variable X takes values {1, . . . k}

• Then the expectation of X is

E[X ] =
k∑

i=1

i · Pr[X = i].

• It is a weighted average of the outcomes
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Expectation example

Let’s say I roll a 20-sided die, and I give you money equal to the number that
shows up on top. I charge $10 to play this game. Should you play it?

Let’s look at what you win on average

• Random variable X to represent how much you win

• E[X ] =
∑20

i=1 i/20

• E[X ] = 20·21
2·20 = 10.5

• So you’ll win $.50 on average; you should probably play the game
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Independence of Random Variables

• Intuition: Two random variables are independent if the value of one does not
depend on the value of the other.

• More formally: X is independent of Y if for all i and j ,
Pr[X = j |Y = i] = Pr[X = j]. Let’s look at intuitive examples

• Example: let X1 denote the number of heads on my first coin flip, and X2

denote the number of heads on my second coin flip. These are independent.

• But: let XH denote the number of heads I flip over k coin flips, and XT denote
the number of tails. These are not independent.
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Linearity of Expectation

• Consider a random variable that can be represented as the sum of other
random variables (we’ll see an example in a moment)

• X = X1 + X2 + . . . + Xn

• Then E[X ] = E[X1] + E[X2] + . . . + E[Xn]

• True even if the Xi are not independent!!!



Linearity of Expectation

• Consider a random variable that can be represented as the sum of other
random variables (we’ll see an example in a moment)

• X = X1 + X2 + . . . + Xn

• Then E[X ] = E[X1] + E[X2] + . . . + E[Xn]

• True even if the Xi are not independent!!!



Linearity of Expectation

• Consider a random variable that can be represented as the sum of other
random variables (we’ll see an example in a moment)

• X = X1 + X2 + . . . + Xn

• Then E[X ] = E[X1] + E[X2] + . . . + E[Xn]

• True even if the Xi are not independent!!!



Linearity of Expectation

• Consider a random variable that can be represented as the sum of other
random variables (we’ll see an example in a moment)

• X = X1 + X2 + . . . + Xn

• Then E[X ] = E[X1] + E[X2] + . . . + E[Xn]

• True even if the Xi are not independent!!!



Using Linearity of Expectation

• Let’s say I flip a coin 100 times. How many heads will I see on average?

• Let’s figure this out on the board using linearity of expectation

• X = number of heads I see in 100 flips.

•

Xi =

1 if the i th flip is heads

0 otherwise

• So then X = X1 + X2 + . . .X100

• We can see that E[Xi ] = 1/2.

• E[X ] = 50 by linearity of expectation
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Linearity of Expectation Example 2

• Let’s say we want to Bubble Sort an array A, where A is randomly permuted

1 bubbleSort(A : list of sortable items)

2 n = length(A)

3 do

4 swapped = false

5 for i = 1 to n-1 do

6 if A[i-1] > A[i] then

7 swap(A[i-1], A[i])

8 swapped = true

9 end if

10 end for

11 while not swapped



Linearity of Expectation Example 2

• Let’s say we want to Bubble Sort an array A, where A is randomly permuted

• How many swaps does Bubble Sort perform?

• Fact: number of swaps performed by Bubble Sort is exactly the number of
inversions in A (pairs i ,j such that i < j but A[i] > A[j])

• Two line proof: each time bubble sort swaps, the number of inversions goes
down by exactly one. Doesn’t stop swapping until sorted (there are 0 remaining
inversions)

• Rephrasing: how many inversions are there in a randomly-permuted array?
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Linearity of Expectation Example 2

• X = number of inversions in A. What is E[X ]?

• Let Xij = 1 if i , j are an inversion; 0 otherwise

• Are the Xij independent?

• No! If a,b is an inversion, and b, c is an inversion, then a, c is an inversion.

• Reason: know a < b < c, but A[a] > A[b] and A[b] > A[c], so A[a] > A[c].
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• X = number of inversions in A. What is E[X ]?

• Let Xij = 1 if i , j represent an inversion; 0 otherwise

• X =
∑

i,j Xij

• E[X ] =
∑

i,j E[Xij ]

• E[Xij ] = 1/2

• E[X ] = n(n − 1)/4
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Cuckoo Hashing



A randomized algorithm

• Before we finish talking about probability, let’s look at an example of a
randomized algorithm

• Hashing: way to implement a dictionary with constant-time insert, delete,
lookup

• Hashing is randomized, so performance can be bad sometimes

• Cuckoo hashing: O(1) worst-case lookup. (Inserts are usually constant-time,
but can be expensive sometimes.)
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Cuckoo filters vs Cuckoo hashing

• Cuckoo hashing is used to store a hash table (an alternative to e.g. chaining)

• Cuckoo filters store an approximate representation of a set

• They use the same underlying ideas!

• Cuckoo hashing is widely used and highly relevant to the course anyway
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Reminder: Dictionary

• You’ve seen in 136 and/or 256

• Idea: want to store n key/value pairs

• Can insert new key/value pair

• Query: given a key, get the associated value stored in the dictionary

• How fast can we do inserts and queries? How much space do we need?

• Can get O(1) expected time for both operations using O(n) space.
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• Let’s assume we have access to a uniform random hash h that hashes any
item to a value in {0, . . . ,M}.
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Pr(h(x) = i) = 1/M”
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Building a Dictionary (doesn’t quite work yet)

To store n items:

• Allocate an array A with cn slots for some c. Each slot must be large enough
to store a key/value pair

• Hash tables have cn slots for the rest of today

• Insert x : store item x at position h(x) % cn

• Query q: look at position h(q) % cn and see if the key is stored there

• If we can do this: O(1) worst-case query, insert; always correct.

• What’s the problem with this approach?
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Chaining

• Each entry in our array A is the head of a new data structure

• Often implemented as a singly-linked list (let’s draw this on the board)

• Insert: add item to linked list

• Query: find item in linked list

• Advantages?

• Space-efficient (just need pointers for linked list)

• Simple. What is the insert and query time?

• Good worst-case insert time of O(1); we’ll analyze query time in a moment

• Disadvantages?

• Cache inefficient
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Linearity of Expectation Example 3: Chaining

• Chaining running time: hash in O(1). May need to traverse other elements in
the chain. Finally, need to compare the query if it exists in the bucket, in O(1)

time.

• What’s the expected number of non-query elements in a given chain?

• X j = number of non-query items in chain j

• X j
i = 1 if the i th item hashes to slot j

• E[X j
i ] = 1/cn

• E[X j ] =
∑n

i=1 E[X j
i ] = 1/c

• So the expected length of the chain is O(1 + 1/c) = O(1)
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Linear Probing

• Set c > 1 (often have 1.5n or 2n slots in practice)

• Insert: attempt to insert x into h(x) % cn. If slot is full, keep moving down the
table to find the next empty slot.

• Query: start at h(x) % cn. Need to keep checking until find the item, or find an
empty slot

• Let’s look at this on the board
• Advantages?

• Somewhat space-efficient
• Insert is O(1 + 1

1−1/c ) = O(1) and query is O(1 + 1
(1−1/c) ) = O(1) in expectation

(Knuth’s classic result; nontrivial)
• Cache-efficient!

• Disadvantages?
• Not that efficient; performance is terrible if table fills up
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Cuckoo Hashing [Pagh, Rodler 2005]

• A third method of resolving collisions

• Queries are O(1) worst case

• Insert will still be O(1) in expectation

• Comparison to linear probing and chaining?

• Chaining: O(1) worst case inserts; O(1) expected queries. Not as good for
query-heavy workloads!

• Linear probing: more cache-efficient, but both inserts and queries are only O(1)

on average
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Cuckoo Hashing Invariant

• Have two hash functions h1, h2. (No partial key/XOR stuff! That’s only for the
filters. We’ll come back to why.)

• Table of size cn with c = 2 (for now)

• Invariant: item x is either stored at h1(x) % cn, or at slot h2(x) % cn.

• We’ll come back to inserts. But how can we query? How much time does a
query take?

• Check both hash slots. Immediately get O(1) time
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Cuckoo Hashing Inserts

c x u

0 1 2 3 4 5

a

h1(a) = 1
h2(a) = 2

e

h1(e) h2(e)

• Let’s say we want to insert a new
item a. How can we do that?

• Easy case: if h1(a) % cn or
h2(a) % cn is free, can just store a
immediately.

• What do we do if both are full?
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Why not partial-key?

• In Cuckoo Filters, we had to do this partial key cuckoo hashing trick where we
used h2(x) = h1(x) ∧ h(f (x))

• Why don’t we need this here?

• Answer: since we are storing a dictionary, we have access to the item x itself
• In the filter we only stored f (x) rather than x

• So we can just rehash it!
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Does this always work?

• Recall our invariant: every item x is stored at h1(x) % cn or h2(x) % cn

• Is there a simple example where this is impossible?

• One option: three items x , y , and z all have the same two hashes

• What is the probability that this exact scenario happens?
• There exist slots s1 and s2 such that all of x , y , and z all hash to one of these

two slots
• For a given x , y , z, s1, and s2, how often does h1(x) = h1(y) = h1(z) = s1 and

h2(x) = h2(y) = h2(z) = s2?
• (1/m)6

• There are
(n

3

)(m
2

)
choices of x , y , z, s1, and s2

• So this happens with probability Θ(n3m2/m6) = Θ(1/n).
• Probability of any impossible configuration is O(1/n) (outside the scope of the

course)
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Cuckoo Hashing Performance

• Queries: O(1) worst case

• Cache performance?

• Two cache misses per query. Is that good?

• Kind of! Probably better than chaining. But linear probing has only ≈one cache
miss on any query, so long as log n items fit in a cache line

• What is the Insert performance?

• O(1) in expectation if we do not encounter an infinite loop

• Idea: half the slots are empty, so each time we go to a new slot, we should have
a ≈ 1/2 probability of being done

• (Analysis is nontrivial since we need to carefully avoid cases with an infinite loop)
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Limits of Expectation

• Let’s say I charge you $1000 to play a game. With probability 1 in 1 million, I
give you $10 billion. Otherwise, I give you $0.

• Would you play this game?

• Answer: maybe, but probably not. You’re just going to lose $1000.

• But expectation is good! You expect to win $9000.
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Concentration bounds

• Rather than giving the average performance, bound the probability of bad
performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads. But what is the
probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the probability that the
running time is more than O(n log n)?

• Answer: O(1/n) (this is why quicksort is not worse than merge sort: you’ll
never see the worst case in your life if n is at all large)
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• Answer: O(1/n) (this is why quicksort is not worse than merge sort: you’ll
never see the worst case in your life if n is at all large)
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With High Probability

• An event happens with high probability (with respect to n) if it happens with
probability 1−O(1/n)

• So: quicksort is O(n log n) with high probability

• Cuckoo hashing can maintain its invariant with high probability

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability. (Contrast to
O(1) in expectation!)

• With high probability is always with respect to a variable. Assume that it’s with
respect to n unless stated otherwise.
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WHP example

• How many coins do I need to flip before I see a heads with high probability?
(With respect to some variable n)

• If I flip k times, I see a heads with probability 1− 1/2k .

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).
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Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration bounds

• Expectation states how well the algorithm does on average. Could be much
better or worse sometimes!

• With high probability gives a guarantee that will almost always be met: if n is
large it becomes vanishingly unlikely that the bound will be violated.
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Quick Cuckoo Filters Review



Cuckoo Filter

1000 1010 0000 0000 0101 0000 0100 0000
0000 0000 0000 0000 1001 0000 0110 0000
0000 0000 0000 0000 0010 0000 0101 0000
0000 0000 0000 0000 1001 0000 1111 0000

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Reminder: how do we calculate h2(x)?
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Cuckoo Filter

1000 1010 0000 0000 0101 0000 0100 0000
0000 0000 0000 0000 1001 0000 0110 0000
0000 0000 0000 0000 0010 0000 0101 0000
0000 0000 0000 0000 1001 0000 1111 0000

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Please note: when choosing what slot to cuckoo out of, you cannot always use the
same slot! Easy solution: increment every time.
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Remember to rotate what slot in a bit you cuckoo out of.
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Choosing Hash Functions in
Practice



Choosing a hash function

What do we want out of a hash function?

• Quick to compute

• Small space to store the function

• Random enough that different elements usually don’t hash together.
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Hashing in Java

• Java.hashCode() hashes a 64 bit long to a 32 bit int. Anyone have any
ideas how?

• h(x) = x ∧ (x >> 32) (the ∧ means XOR)

• Is this going to work well for a filter or dictionary?

• No: if x < 232 then h(x) = x !
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Multiply-Shift Hashing

• The hash you used on Assignment 1

• Is it fast?

• Does it spread items out well?

• Answer: works well in expectation, but bad concentration bounds!

• Can show that if you hash n items to n bucket, expect 1 item per bucket

• But...good probability of getting some bucket of size Θ(
√

n)!

• Big problem for cuckoo hashing/cuckoo filters/etc.
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Murmurhash

• Popular hash that does a bunch of random-looking operations

• No theory bounds!

• But GREAT practical performance, which is why we’ll use it on Homework 3

• We’ll look at this in detail the lecture after next.
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Have a great weekend!
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