
Lecture 8: Bloom Filters and
Cuckoo Filters

Sam McCauley

October 4, 2024

Williams College



Admin

• Assignment 1 deadline extended to Saturday

• Any lingering Assignment 1 questions?

• Today we’ll talk about Homework 3 (in case Mountain Day is Friday)

• Lecture notes for today’s class posted



Prep for Homework 3

• Short lab video to help with setting up hashes

• (I made it a couple years ago; there may be very small differences with the
current course. E.g. I call it an “assignment” even though it’s a homework. But
the main ideas should still be useful.)



Filters: Goals for Today



What we want

• Worst-case compression

• Lossy compression with algorithmic guarantees

• That is to say: we know what we’re losing and what we’re not



Filter

• Stores a set S of size n

• Answers queries q of the form: “is q ∈ S?”
• Really just a very simple dictionary that only returns whether or not a key exists

(no values)

• All elements x ∈ S and all queries must be from some universe U

• (Only need U to make sure that we can hash everything.)



Filter Guarantees

Guarantee 1 (No False Negatives)
A filter is always correct when it returns that q /∈ S.
Equivalently, if we query an item q ∈ S, then a filter will always correctly
answer q ∈ S.



Guarantee 1 Sanity check

• Can you create a very simple data structure that has no false negatives?

• Easiest option: my data structure stores nothing. On every query q, my data
structure responds “q ∈ S.”

• Another easy option: I store the entire set S using a standard dictionary
(perhaps using a hash table). On a query q, I look it up and give the correct
answer.



Filter Guarantees

Guarantee 2 (Bounded False Positive Rate)
A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)
returns “q ∈ S” with probability ε.
We want our filter to have a false positive rate ε < 1.

The filters we will talk about today will work for any false positive rate ε, so long as
1/ε is a power of 2.1

So we can, if we want, guarantee a false positive rate of 1/2, or 1/1024—whatever
is best for your use case.

1The cuckoo filter will actually need 1 + 1/ε to be a power of 2.



Guarantee 2 Sanity check

• Can you create a very simple data structure that has a good false positive
rate?

• I store the entire set S using a standard dictionary (perhaps using a hash
table). On a query q, I look it up and give the correct answer. This satisfies
Guarantee 2 with ε = 0.



Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.



Space bounds

We talk about two filters today:

• A Bloom filter requires 1.44n log2(1/ε) bits of space.

• The cuckoo filter uses 1.05n log2(1 + 1/ε) + 3.15n bits of space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with ε = 1/63, the filter takes
less than 1 byte of space per element being stored.

• Notice that this space does not depend on the size of the original elements.
We can store very long strings and still require only one byte per string stored.



History and Discussion



Bloom filter

• Invented by Burton H. Bloom in
1970

• Original publication only talked
about good practical performance;
theoretical analysis came later.



Cuckoo filter

• Invented by Fan et al. in 2014

• Provides better space usage for
small ε (i.e. when the compression
is not too lossy)

• Requires fewer hashes; has better
cache performance.



When should you use a filter?

1st example: avoiding cache
misses

• Let’s say we have a very
large table of data

• Large enough that it doesn’t
fit in L3

• Maybe it doesn’t even fit
in RAM

• Frequently query items not
in the table



Common filter usage

q
LOOKUP(q)

Queries to the entire dataset are very expensive!



Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in
the table. (query q /∈ S)

• Classic example: dictionary of unusually-hyphenated words for a
spellchecker.

• Checking if key already exists before an insert (deduplication in general)

• Check for malicious URLs

• Table with many empty entries

Classic filter usage: succinct data structure that will allow us to “filter out” negative
queries.



Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving
performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.



Common filter usage

• With O(n log 1/ε) local memory (perhaps fitting in L3 cache), can filter out
1− ε cache misses for keys q /∈ S.

• Greatly reduces number of remote accesses, thereby reducing time.



When should you use a filter?

2nd example: Approximately storing a set

• Before, we stored the actual set S. (It was expensive to access, but we stored
it.)

• But what if we don’t want to?

• Example: approximate spell checker



Approximate spell checker

• Want to build a spell checker; don’t have room to store dictionary

• Store the words in a filter. What do our guarantees mean?

• Guarantee 1: if we query a correctly-spelled word, it is never marked as
misspelled

• Guarantee 2: if we query a misspelled word, we only miss it (don’t mark it
misspelled) with probability ε

• Using only a byte or so per item, can do almost as well as storing a full
dictionary! (Roughly 98% accuracy.)



Bloom Filters



Bloom Filter

A Bloom filter consists of:

• k = log2 1/ε hash functions, which I will denote using h1,h2, . . . ,hk ,

3x2 ∈ R ⊂ Q.

• Bit array A of m = nk log2 e ≈ 1.44n log2
1
ε bits.

• Since we’re doing compression, we measure space in bits, and track constants

• For each i = 1, . . . , k , hi : U → {0, . . . ,m − 1} (that is to say, hi maps an
element from the universe of possible elements U to a slot in the hash table).

• Assume 1/ε is a power of 2; round m up to the nearest integer



Building a Bloom Filter

• Begin with A[i] = 0 for all i . (Basically, just calloc the bit array.)

• Then add the items one at a time by setting all their slots to 1:

1 for each x in S:

2 for i = 1 to k:

3 A[h_i(x)] = 1



Building a Bloom Filter

10 0 1 0 0 10 0 10 0 10
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.



Invariant

• What invariant does this data structure satisfy?

Invariant 1

A Bloom filter storing a set S using hashes h1, . . .hk satisfies A[hi(x)] = 1 for all
x ∈ S and all i ∈ {1, . . . , k}.



Querying a Bloom filter

On a query q, we check all the hash slots to see if any stores 0:

1 for i = 1 to k:

2 if A[h_i(q)] == 0:

3 return false //q is not in S

4
5 // we have A[h_i(q)] = 1 for all h_i

6 return true //q is in S



Query example

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q) h2(q)

An example query to an element not in the set; k = 3.



Query example 2

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q)

h2(q)h3(q)

An example false positive query.



Query example 2

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q)

h2(q)h3(q)

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)



Discussion

• Can we insert into a Bloom filter?
• Yes, but performance degrades as it fills up. We are OK so long as no more than

n items are inserted.

• Can we delete?
• No. If we flip a bit from 1 to 0, it may cause a false negative, violating Guarantee

1.



Bloom filter analysis

• Assume our hashes hi are perfectly uniform random: any x ∈ U is mapped to
any hash slot s ∈ {0, . . . ,m − 1} with probability 1/m; independently of any
other hash.

• Let’s strategize: what about the Bloom filter can we use to prove that
Guarantee 1 and Guarantee 2 hold?



Guarantee 1

Guarantee (No False Negatives)
If we query an item q ∈ S, then a filter will always answer q ∈ S.

• By the Bloom filter Invariant, if q ∈ S, then A[hi(q)] = 1 for all i ∈ {1, . . . k}.

• This means that the query algorithm always returns “q ∈ S.”



Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)
A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)
returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?
• No! But it seems like the independence isn’t too big of a deal...let’s assume

they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.



Cuckoo Filter



Assignment 3

• In short: you’ll implement a cuckoo filter to speed up a sequence of dictionary
queries

• You’re looking for “bilingual palindromes”: strings whose reverse is a word in
another language

• Most words are not bilingual palindromes, so a filter can significantly speed up
queries



Cuckoo Filter

A cuckoo filter consists of:

• k hash functions denoted by h1,h2, . . . ,hk (k is a constant)
• We’ll only use one of these hash functions (h1) in our implementation!

• a fingerprint hash function f that takes an item from the universe and outputs
a number from 1 to 1/ε (we’ll call this number the fingerprint of the item)

• a cuckooing hash function h that takes in a fingerprint and outputs a number
from 1 to m, and

• a hash table T of m slots, where each slot has room for log2(1 + 1/ε) bits.



Some initial parameters

• k = 2 hash functions (for now)

• m = 2n slots

• These parameters are easy to
analyze, but space inefficient. We’ll
fix it later.

• Also assume that 1/ε+ 1 is a
power of 2, and m is a power of 2.



Initializing a Cuckoo Filter

• Make sure all slots of T are empty

• Today: we’ll set all slots to 0. A slot in T is nonempty if and only if it stores a
number larger than 0.

Invariant 2
For any x ∈ S, either slot h1(x) or h2(x) stores the fingerprint f (x).

Question: with this invariant, how can we query to avoid false negatives?



Inserting into a Cuckoo Filter

• If there is an hi such that T [hi(x)] is nonempty, then store f (x) in T [hi(x)].

• Otherwise, we cuckoo:

• Choose some i ∈ {1, . . . , k}

• Let’s say that x1 is the element stored in T [hi(x)].

• Then we store f (x) in T [hi(x)] and “cuckoo” x1 to another slot

• If we cuckoo more than log n elements, we rebuild the filter.



Cuckoo Filter Insert First Attempt

00 01 00 00 11 1000 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f (x) = 102

A cuckoo filter with ε = 1/3 and k = 2.



Cuckoo Filter Insert First Attempt

00 01 00 00 000111 10 10 0100
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2)

Element’s other slot

f (x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Is our invariant maintained?



Implementing Insertions

There’s a problem with what I said!

• We don’t have access to the element that hashed to that slot. So how can we
calculate its other hash?

• If k = 2, we can use partial-key cuckoo hashing.

• Only use one hash h1 for slots. But then, have a second hash h that maps a
fingerprint to a number from 1 to m.

• Set h2(x) = h1(x) ∧ h(f (x)). (XOR)

• Note that then h2(x) ∧ h(f (x)) = h1(x)∧h(f (x))∧h(f (x)) = h1(x).



Cuckooing

So to cuckoo a fingerprint φ stored in a slot s to its other location:

• Calculate h(φ)

• Its other slot is s ∧ h(φ).

• If that other slot is empty we can store φ in it (woo)! Otherwise, take the
fingerprint stored there and cuckoo it to its other slot.



Cuckoo Filter Insert Example With Partial-Key Cuckoo Hashing

00 01 00 00 11 1000 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f (x) = 102

A cuckoo filter with ε = 1/3 and k = 2.



Cuckoo Filter Insert Example 2

00 01 00 00 000111 10 10 0100
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2) = h1(x2)

∧ h(f (x2))

h(012) = 0112

4 ∧ h(012) = 7

f (x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.



Cuckoo Filter Invariant

Using partial-key cuckoo hashing with k = 2:

Invariant 3

For any x ∈ S, either slot h1(x) or h2(x) = h1(x) ∧ h(f (x)) stores the fingerprint
f (x).

For higher k :

Invariant 4
For every x ∈ S, there exists an i ∈ {1, . . . , k} such that f (x) is stored in T [hi(x)].



Querying a Cuckoo Filter

To query an element q:

1 for i = 1 to k:

2 if T[h_i(q)] = f(q):

3 return true // q is in S

4 //did not find the fingerprint in any slot

5 return false // q is not in S



Querying a Cuckoo Filter: Example

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q f (q) = 102
h(102) = 0102

h1(q)
h2(q) = 1 ∧ h(102) = 3

Querying a cuckoo filter with ε = 1/3 and k = 2.



Querying a Cuckoo Filter: Example 2

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q2 f (q2) = 112

h1(q2) h2(q2) = 1 ∧ h(112) = 7

Querying a cuckoo filter with ε = 1/3 and k = 2.



Discussion

• Can a cuckoo filter handle inserts?

• Yes! But as we insert more and more elements the number of cuckoos we
expect will get larger and larger (and higher probability of a cycle of cuckoos)

• How about deletes?

• Oftentimes yes—if you are careful! (Need to make sure we don’t delete another
element’s fingerprint.)



Implementing Effective Hash
Functions



Practical Hash Functions

• We’ll talk about this next lecture in more detail

• I will post a video with the assignment that also focuses on this

• I want to go over the basics so that you can get started on the assignment in
case Friday is mountain day



Hashes we need

• h1 which maps an arbitrary element (a string in Homework 3) to a slot in the
hash table

• f which maps an arbitrary element (a string in Homework 3) to a number from
1 to 255 (we’ll be doing 8-bit fingerprints)

• h which maps a fingerprint from 1 to 255 to a slot in the hash table



Implementing h

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code (let’s take a look)

• To calculate h(i), for i ∈ {1, . . . ,255}, just use hashFingerprint[i − 1]



Implementing h1 and f

• murmurhash: a popular, fast, hash function that does a good job of “acting
random”

• Will be given to you as part of your starter code

• murmurhash outputs 128 bits. We’ll use the first 32 bits as h1, and the second
32 bits as f

• Use mod to get them down to size



Calling Murmurhash

1 uint32_t hash [4] = {0,0,0,0};

2 MurmurHash3_x64_128(word , length , seed , hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for
null-termination!)

• seed is the hash function seed (pick a large random number; keep it
consistent)

• hash is the 128 bits of output

1 uint32_t position = hash [0] % numSlots;

2 uint32_t fingerprint = 1 + hash [1] % fingerprintMask;



Cuckoo Filter Analysis



Union Bound

• Simple but useful tool in randomized algorithms

• Always works, even for events that are not independent

• Sometimes called “Boole’s inequality”

Theorem 1

Let X and Y be random events. Then

Pr(X or Y ) ≤ Pr(X ) + Pr(Y ).

More generally, if X1,X2, . . . ,Xk are any random events, then

Pr(X1 or X2 or . . . or Xk ) ≤
k∑

i=1

Pr(Xk ).



Union Bound Example

• Let’s say I have 10 students in a course, and I randomly assign each student
an ID between 1 and 100 (these IDs do not need to be unique).

• Can you upper bound the probability that some student has ID 1?



Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1− Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is
(99/100)10.

• Thus, the probability that at least one student has ID 1 is
1− (99/100)10 ≈ 9.56%.



Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1− Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is
(99/100)10.

• Thus, the probability that at least one student has ID 1 is
1− (99/100)10 ≈ 9.56%.

This is messy! And it would be even worse if the
IDs were not independent!

The union bound lets us avoid this work.



Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that any student has ID 1 is at most the
sum, over all 10 students, of 1/100.

• This gives us an upper bound of 10/100 = 10%.



Analysis of Cuckoo Filters

Some assumptions going in:

• all hash functions hi are uniformly random: any x ∈ U is mapped to any hash
slot s ∈ {0, . . . ,m − 1} with probability 1/m.

• Same for the fingerprint hash f : any x ∈ U is mapped to a given fingerprint
fx ∈ {1, . . . ,1/ε} with probability ε.

• We will analyze without partial-key cuckoo hashing (we’ll assume independent
h1 and h2)



First Guarantee: No False Negatives

Guarantee (No False Negatives)
A filter is always correct when it
returns that q /∈ S.
Equivalently, if we query an item
q ∈ S, then a filter will always
correctly answer q ∈ S.

Invariant
For every x ∈ S, there exists an
i ∈ {1, . . . , k} such that f (x) is stored
in T [hi(x)].

• We can see that the invariant means that there are no false negatives.



Second Guarantee: False Positive Rate

Guarantee 3 (False Positive Rate)
A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)
returns “q ∈ S” with probability ε.

• A query q /∈ S is a false positive if, for some hi , T [hi(q)] = f (q).

• Let’s examine each hash h1 and h2 individually.



Second Guarantee: False Positive Rate

• Let’s start with h1. What is the probability T [h1(q)] contains a fingerprint?

• 1/2, because we are storing n elements in 2n slots.

• If T [h1(q)] contains a fingerprint, the probability that f (x) = f (q) is ε.

• Therefore, the probability that T [h1(q)] contains a fingerprint f (x) = f (q) is
ε/2.



Second Guarantee: False Positive Rate

• What about h2?

• Same exact analysis: probability that T [h2(q)] contains a fingerprint
f (x) = f (q) is ε/2.



Second: Guarantee: Putting it Together

• q is a false positive if either T [h1(q)] contains a fingerprint f (x1) such that
f (x1) = f (q), or T [h2(q)] contains a fingerprint f (x2) such that f (x2) = f (q)

• Each happens with probability at most ε/2

• By union bound, one or the other happens with probability at most
ε/2 + ε/2 = ε.



Improved Cuckoo Filter
Performance



Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints
hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• Then can set m = 1.05n/4, giving total space usage
1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.



Example

1000 1010 0000 0000 0101 0000 0100 0000
0000 0000 0000 0000 1001 0000 0110 0000
0000 0000 0000 0000 0010 0000 0101 0000
0000 0000 0000 0000 1001 0000 1111 0000

0 1 2 3 4 5 6 7

x

h2(x)
h1(x)

A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.



Example 2

1000 1010 0000 0000 0101 0000 0100 0000
0000 0000 0000 0000 1001 0000 0110 0000
0000 0000 0000 0000 0010 0000 0101 0000
0000 0000 0000 0000 1001 0000 1111 0000

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.



Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may
improve practical performance)

• Good cache efficiency: only need
to access the hash table 2 times,
rather than log2(1/ε).


	Filters: Goals for Today
	History and Discussion
	Bloom Filters
	Cuckoo Filter
	Implementing Effective Hash Functions
	Cuckoo Filter Analysis
	Improved Cuckoo Filter Performance

