
3-SUM

The problem on Assignment 1

3-SUM PROBLEM

• Classic problem from Gajentaan and Overmars (1995)

THE PROBLEM

• Given 3 arrays A, B, and C
• Each consists of n integers

• Problem: give 𝑖, 𝑗, 𝑘 such that A[i] + B[j] = C[k]

Can someone give me a simple algorithm to solve this problem in 𝑂(𝑛!) time?

How about 𝑂(𝑛" log 𝑛) time?

IS THIS ACTUALLY WORTH SOLVING?

• Yes, surprisingly!

• Important subroutine for:
• Finding 3 collinear points (important for ruling out corner cases in computational

geometry)
• Problems in graphs (finding 0-sum triangles)

• Pattern matching (problems involving dictionaries of large strings)

BETTER ALGORITHM

• Can solve it in 𝑂(𝑛!)
• Another “walk from both sides” algorithm

• Idea: sort A and B. (can also sort C if you want)

• Fix a k

• Can find in 𝑂(𝑛) time if there is an i, j such that A[i] + B[j] = C[k]

• Invariant: if pointing at i’ and j’, then the correct i and j satisfy i >= i’, and j <= j’

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

68 + 3 = 71 > 53
So we decrement B’s

pointer

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

44 + 3 = 47 < 53
So we increment A’s

pointer

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

WALK FROM BOTH SIDES

3 5 27 33 46 51 67 89

2 7 8 9 44 55 67 68

A:

B:

Target: C[k] = 53

Done!

RUNNING TIME

• How long does all this take?
• Time to sort?
• O(n log n)

• Time to walk?
• O(n) per value of k

• How many values of C do we need to iterate over?
• All n

• Gives 𝑂 𝑛" total time

TAKING 3SUM FURTHER

• That was a cool algorithm! But it’s a bit simple to implement
• We’re implementing a version of 3-SUM that uses blocking. It has much better efficiency in

terms of cache misses.

• (An aside: I believe this blocked version of 3-SUM will not be much faster, if it’s faster at all.
This assignment is about what you learned: taking a new algorithm, and turning it into
efficient code.)

MAGIC HASH FUNCTION

uint64_t hash3(uint64_t value){

return (value * 0x765a3cc864bd9779) >> (64 - SHIFT)

}

• Why is this magic?

• If X + Y = Z, then either:
• hash3(X) + hash3(Y) = hash3(Z)

• hash3(X) + hash3(Y) = hash3(Z) + 1

MAGIC HASH FUNCTION: EXPLANATION

uint64_t hash3(uint64_t value){

return (value * 0x765a3cc864bd9779) >> (64 - SHIFT)

}

• You don’t need to know why this works. (Short version: how can lower bits of two numbers
affect their sum? The two cases are if there is a carry, or there isn’t a carry)

• You DO need to know: how many values can this hash output?
• Answer: 1 << SHIFT

This number is
not magic (any

large odd number
will work)

FINAL ALGORITHM

• Create 1 << SHIFT hash buckets for A, called BucketA
• For each item x in A, store x in bucket BucketA[hash3(x)]

• Create 1 << SHIFT hash buckets for B, called BucketB
• For each item x in B, store x in bucket BucketB[hash3(x)]

• Create 1 << SHIFT hash buckets for C, called BucketC
• For each item x in C, store x in bucket BucketC[hash3(x)]

FINAL ALGORITHM

For a = 1 to (1 << SHIFT)

For b = 1 to (1 << SHIFT)

Call the simple 3SUM algorithm with lists: BucketA[a], BucketB[b], BucketC[(a + b) (modulo 1
<< SHIFT)]

Call the simple 3SUM algorithm with lists: BucketA[a], BucketB[b], BucketC[(a + b + 1)
(modulo 1 << SHIFT)]

QUICK COMMENTS

• How to store hash buckets?

• You don’t know the size ahead of time

• But, must be cache-efficient within each bucket

• Need to find original (unsorted) value

• The running time of this version is still 𝑂(𝑛!)

• Any questions?

