
Applied Algorithms Lec 6:
External Memory; Optimization

Sam McCauley

September 24, 2024

Williams College

Admin

• Any questions about Homework 2?

• Heads up: if your program outputs more than ≈ 20 GB of text, I can’t run it.
So you won’t get feedback if that is happening

• Homework 1 should be graded before Thursday

• Today: finish up the external memory model; discuss Homework 1
approaches and some more optimization

Matrix Multiplication in External
Memory

External Memory Model Basics

Transferring B consecutive items to/from cache costs 1 “cache miss”. Can only
store M things in cache. Computation is free.

Matrix Multiplication Reminder(?)

• Given two n × n matrices A, B

• Want to compute their product C:

• cij =
∑n

k=1 aikbkj

Example:

[
1 2
8 −1

]
×

[
2 3
−2 7

]
=

[
−2 17
18 17

]

First Idea: Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] *

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.

Any ideas for how to improve this?

• One idea: transpose B (store in column-major order)

• A good idea; works well! A bit nontrivial, especially if you want the transposition
to be cache-efficient

• Another idea: swap the loops! How many cache misses is this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

Any ideas for how to improve this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses: (we’ll do the math on the board;
assume B < n to make things easier)

• Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k ′] with
k ′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until B[i][j ′] with
j ′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j ′] with
j ′ = j + B.

Any ideas for how to improve this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses

• Question: Is this worth doing?

Yep!

Swapping MM Loops

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• -O3 optimization of gcc actually tries to do this automatically (Very cool)

Can we do even better?

• Idea: we haven’t used the cache yet

• No Ms in any running times—except when the whole problem fits in cache

• Why? All algorithms so far have read the data once and then thrown it away.

• Goal: bring items into cache so that we can perform many computations on
them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal. But we did do this with
smallunsortedlinkedlist.c

Blocking

• Standard technique for improving cache performance of algorithms.

• Remember: cache efficiency can get WAY better when the problem fits in
cache. Let’s find subproblems that can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) cache misses

• Efficiently combine them for a cache-efficient solution

Blocked Matrix Multiplication

• Split matrices A, B, and C into blocks of size M/3
•
√

M/3×
√

M/3 blocks
• Really want blocks with size T = b

√
M/3c. Assume that T divides n for now so

there’s no rounding

• Multiply blocks one at a time

• Need some structure to help us make this work

Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and
multiply (and add) them as normal, we obtain the same result as we would have in
normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication

Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

We can use this principle to multiply two larger matrices.
17 15 20 4
15 3 20 8
1 10 15 2
3 19 3 14

 ·


4 12 9 1
4 6 11 2

13 18 8 20
3 11 18 9

 =



[
17 15
15 3

]
·
[

4 12
4 6

]
+

[
20 4
20 8

]
·
[

13 8
3 11

] [
17 15
15 3

]
·
[

9 1
11 2

]
+

[
20 4
20 8

]
·
[

8 20
18 9

]
[

1 10
3 19

]
·
[

4 12
4 6

]
+

[
15 2
3 14

]
·
[

13 8
3 11

] [
1 10
3 19

]
·
[

9 1
11 2

]
+

[
15 2
3 14

]
·
[

8 20
18 9

]


Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (recall that T 2 ≤ M/3)

• Do a normal n/T × n/T matrix multiplication

Blocked Matrix Multiplication Pseudocode

1 MatrixMultiply(A, B, C, n, T):
2 for i = 1 to n/T:
3 for j = 1 to n/T:
4 for k = 1 to n/T:
5 A′ = TxT matrix with upper left corner A[Ti][Tk]
6 B′ = TxT matrix with upper left corner B[Tk][Tj]
7 C′ = TxT matrix with upper left corner C[Ti][Tj]
8 BlockMultiply(A′, B′, C′, T)
9

10 BlockMultiply(A, B, C, n):
11 for i = 1 to n:
12 for j = 1 to n:
13 for k = 1 to n:
14 C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model together on the board!

Analysis (for future reference)

• Creating A′, B′, C′ and passing them to BlockMultiply all can be done in
O(T 2/B + T) cache misses. If B = O(T) then we can just write O(T 2/B);
let’s assume this for simplicity.

• BlockMultiply only accesses elements of A′, B′, C′. Since all three
matrices are in cache, it requires zero additional cache misses

• Therefore, our total running time is the number of loop iterations times the cost
of a loop. This is O((n/T)3 · T 2/B) = O((n/

√
M)3 ·M/B) = O(n3/B

√
M).

Implementation questions!

• What do we do if n is not divisible by T ?
• Easy way to implement: pad it out! Doesn’t change asymptotics.
• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache and we’re ignoring
that space is used for other programs, other variables, etc.

• Experiment! Try different values of M and see what’s fastest on a particular
machine.

• Is blocking actually worthwhile?
• Yes; it is used all the time to speed up programs with poor cache performance.
• (Not a panacea; some programs (like linear scan, binary search) can’t be

blocked.)

More Optimization (and Homework
1 Review)

Plan for this topic

• First, talk about how various techniques can make code more efficient

• ...or less efficient

• Focus on loops, and on compiler options

• Then, look back a bit at Homework 1. Talk about various strategies, and what
some final products looked like

• May continue this a bit Friday if we run out of time

Taking out expensive operations

1 for(int i = 0; i < strlen(str1); i++){
2 str1[i] = ’a’;
3 }

• What’s wrong with this code? How long does it take?

• Does the compiler optimize this out?

• It can’t:1 we’re changing the array, which could change the location of the first
0.

1Of course, we know that we’re never setting any values to 0 before checking them, but the compiler
doesn’t check for that.

More subtle issues

int len = strlen(str1);
for(int i=0; i < len; i++){

str1[i] = str1[0];
}

int len = strlen(str1);
int start = str1[0];
for(int i=0; i < len; i++){

str1[i] = start;
}

• Version on the right runs 2-3x faster even with optimizations on

• Why is that?

• Don’t need to look up value! (Compiler doesn’t know it doesn’t change after
the first iteration)

Theme of user optimizations vs compiler optimizations

• The compiler will do the best optimizations it can that work for all code

• Bear in mind: only common optimizations are implemented

• Opportunities for you: what do you know about your data, and about your
methodology, that allows for further efficiency?

Loop Unrolling

• Classic technique to improve loop efficiency

• What are the costs of each iteration of a simple for loop?

1 for(int x = 0; x < 1000; x++){
2 total += array[x];
3 }

Loop Unrolling

1 for(int x = 0; x < 1000; x++){
2 total += array[x];
3 }

• Need to do a branch every loop

• Instruction pointer jump every loop (cost of “jumping back” varies; outside
scope of course)

• Need to compare every loop

• Need to increment every loop

Unrolled Loop

1 for(int x = 0; x < 1000; x+=5){
2 total += array[x];
3 total += array[x+1];
4 total += array[x+2];
5 total += array[x+3];
6 total += array[x+4];
7 }

• In short: repeat body of the loop multiple times.

• What does this gain us?

Unrolled Loop

for(int x=0; x < 1000; x++){
total += array[x];

}

• Branch every loop

• Instruction pointer jump every loop

• Compare every loop

• Increment every loop

for(int x=0; x<1000; x+=5){
total += array[x];
total += array[x+1];
total += array[x+2];
total += array[x+3];
total += array[x+4];

}

• Branch every 5 loops

• Instruction pointer jump every 5 loops

• Compare every 5 loops

• Increment every 5 loops (?) Need to do
some extra additions however

What did we need to know to make this substitution?

• Needed array size to be a multiple of 5

• Can get around this with some extra work

Disadvantages of Loop Unrolling?

• Seems like we break even at worst?

• But: Loop unrolling increases code size

• Can hurt performance if important parts of code no longer fit in cache

• Fetching instructions can require cache misses!

• We saw this in the output of cachegrind

Automatic loop unrolling?

• Why can’t gcc unroll our loops?

• It can!

• Need to turn on specifically (not enabled at any optimization level)

• -O3 does a specific kind of unrolling of nested loops

Compiler optimizations?

• We’ve stumbled upon a classic (and thematic) problem in optimization: time
vs space of the machine code itself

• Many optimizations of code reduce the number of operations (or their total
time), but increase the size of the code itself—potentially leading to cache
misses

Revisiting compiler flags

• -O0: No optimizations

• -O1: Some optimizations; may take longer to compile than -O0

• -O2: Turns on “nearly all” optimizations that do not involve a space-time
tradeoff

• -O3: More optimizations. May lead to larger final programs

• -Ofast: Even more optimizations. Most notable is reordering floating point
operations (can lead to correctness issues)

Optimizations and this course

• Our projects generally involve really small programs. This is why the very
optimized versions tend to work well for your code.

• Not advised in general

• Example: Gentoo user manual. (Gentoo is a linux distribution in which all
software is compiled from scratch. So this is advice for people compiling large
software like the linux kernel, chromium, libreoffice, etc. (as well as, of course,
very small utilities like git))

Gentoo optimization advice

One more common optimization with a time-space tradeoff

• We’ve talked about how costly it is to call a function

• Well, most of the time, we don’t really need function calls at all, do we? If the
function doesn’t call another function, can just put the code for the function
directly into the code

• Called function inlining

• Tradeoff?

Function Inlining

• Can do it yourself. May not be a good idea. (Makes code harder to read.)

• gcc will judge each function for you and inline it if gcc thinks it’s a good idea
(flag to get gcc to do this is –finline-functions; it is turned on with -O2)

• Can use inline keyword. gcc will try particularly hard to inline it for you, and
if it can’t will tell you if you have -Winline flag on

• Can use __inline__; does the same thing. Some compilers may like this
better

• Probably want to always use static inline

• Can also use __attribute__((always_inline)) which really forces it
to inline even if optimizations are turned off

One more optimization flag

• –march=native

• tells gcc to use instructions specific to this processor. May increase speed

• Only disadvantage: your compiled binary may not run on other computers
unless they have an identical processor (this is not a problem for us!)

Looking Back at Homework 1

Some comments

• Lots of great submissions!

• It seems that algorithmic improvements are more important than engineering
improvements for Homework 1

• (I believe the reverse is the case for Homework 2)

• Obviously most of you did not implement these. But there are some
interesting lessons in terms of optimization!

Leaderboard at the end

Where do our costs come from in Homework 1?

• Three O(n2n/2) terms:

• Calculating the height of all subsets

• Sorting the table

• Performing a binary search for each first-half-subset

Let’s improve all of these to O(2n/2). The fastest submission is a very clean
implementation of all three of these. The second-fastest does the first two, but then
does a binary search—but a very cheap binary search?? (We’ll come back to this)

Calculating the height in constant time

• What’s faster than calculating the height from scratch each time?

• Only adding on “new” items; deleting “old” items

• That’s O(1) on average, but it’s a pain to implement efficiently (and need to be
careful of floating point issues!)

• Would want to use instructions like __bultin_clz(x): the CPU counts the
number of leading zeroes in an integer in a couple clock cycles

• Can we change the order in which we calculate the set height to get improved
performance?

• Idea: fill in set one item at a time. Only works if we store all subsets. Let’s talk
about this on the board.

Calculating the height in constant time

Sorting in linear time??

• Not possible in general, but our data has special structure

• Remember how we could more efficiently build up the heights. What would
happen if we sorted the array at the same time?

Sorting in linear time (fastest two solns this year both had this)

Binary search

• Really costly. Why? Three reasons:

1. Cache misses: every jump to a new spot in the array is likely to incur a cache
miss

2. Branch mispredictions: every if statement is true roughly half the time (that’s
the whole idea of binary search!)(that’s the whole idea of binary search!)

3. Overhead: either from recursive calls, or from updates each time the loop runs

Getting rid of the binary search

• That said, even these highly optimized binary searches are costly. Can we
avoid them entirely?

• Hint: the high cost of binary search is that we’re jumping all over the table.
Can we group entries so that we don’t need to jump all over the table?

• Stronger hint: let’s say I sort the left table (of yellow blocks), and I find the best
possible solution for some entry (the largest entry in the right table that sums
to ≤ h/2). What can I say about the best possible solution for the next—a
larger—entry?

• The solution in the right (blue) blocks must be smaller

• How can we use this insight to reimagine our searches?

Use two tables

• Idea: make a table for both halves of the input; sort each. O(2n/2) time to sort
with the optimizations from before.

• This does double our space usage!

• Now, can do a merge-like operation to determine, for each set in the first half,
the optimal set in the second half

• O(2n/2) total time.

• Cache efficiency? O(2n/2/B).

(Pretty much) rest of best solution

Two sorted tables with a binary search

• What happens if we sort both tables, and use binary search? What can we do
to optimize right away?

• Can stop searching when you hit a (yellow block) subset of size > h/2. Saves
a constant

• Harder question: how costly is the binary search really?

Two sorted tables with a binary search

Recall our costs:

1. Cache misses: every jump to a new spot in the array is likely to incur a cache
miss

2. Branch mispredictions: every if statement is true roughly half the time (that’s
the whole idea of binary search!)(that’s the whole idea of binary search!)

3. Overhead: either from recursive calls, or from updates each time the loop runs

• Since the solution to our binary search is in sorted order, we are accessing
very similar blocks in each successive search—there should be relatively few
cache misses!

• Other two costs are still high. Can we reduce them with optimizations?

Inlined, Unrolled binary search

• From a submission from few years
ago; performs quite well if both
sides sorted!

• Branch mispredictions still fairly
high; not going to be as fast as the
much simpler scan

Lessons

• Cache efficiency is king

• In this case, most optimizations depended on the problem itself. gcc can’t
help with that

• I think Homework 2 is much more optimization-heavy since our goal is fitting in
cache anyway

Sorting in External Memory

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is n
B log2

n
B .

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256
1 2 4 . . .

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in
cache.

• Example on board

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T (N) = T
(

N
M/B

)
+ O

(
N
B

)
T (B) = O(1)

• Solves to O(n
B logM/B n/B) cache misses

• Optimal!

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Timsort

Timsort

• Developed to be the sorting method for python

• Now also used in Java, Rust

• Keeps cache in mind, but focuses more on taking advantage of easy patterns
in data

Blocking revisited: run generation

• Basic idea: sort all M-sized subarrays. That would give us sorted subarrays of
length M to start out with

• This is wasteful, as we empty out cache between each subarray

• Timsort starts with “run generation”: a greedy version of this that uses the
same cache for as long as possible. Always outputs sorted runs of length at
least M; can be MUCH longer

Timsort after run generation

• First, run generation

• Then, super optimized (2-way) merge sort

• Insertion sort on any very small arrays that are encountered (size < 64)

External Memory Sorting

• M/B way merge sort is most efficient

• Timsort is very popular in practice; uses a simpler blocking approach to stay
cache-friendly.

	Matrix Multiplication in External Memory
	More Optimization (and Homework 1 Review)
	Looking Back at Homework 1
	Sorting in External Memory

