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Admin: Office Hours

• Unfortunately: mixed poll responses. Some really wanted the Wed 4–5 to
stay; some really wanted the new hours Mon 3–4; some wanted office hours
at a different time Monday

• Let’s do the following: I’ll have drop in hours in my office Monday 9–9:45 and
3–4.

• I have to try to get some work done but you can come and work and I can
answer questions

• Wednesday will stay 2-5 as before
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Admin: Homeworks

• Homework 1 in. How was it?

• Some really cool ideas! We’ll talk about some of them next week.

• Homework 2 is out
• It is probably the most difficult homework this semester (not because it’s

complicated per se—it’s recursive, which makes it hard to debug, and off-by-1s
are very consequential)

• Start early (!)
• I took out a question from last time the course was taught so it should be a touch

shorter

• For what it’s worth: Homeworks 3 and 4 are perhaps the easiest; so things will
ease up a bit in a couple weeks



Admin: Textbooks

• All course textbooks available in the lab

• In the back corner next to a bunch of VHS tapes (?!)

• Please don’t take them out of the lab so other students can use them
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Plan for today

• Wrap up the example from last time

• Topics for Homework 2

• More external memory at the end if we have time

• Monday: mostly focus on reviewing Homework 1 and going over some gcc
features; perhaps another external memory model example (lighter day in
terms of concepts)
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External Memory Wrapup



Let’s revisit sortedlinkedlist.c and
unsortedlinkedlist

• What is the cost of our algorithm in the external memory model if the items
are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items
have stride B + 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown of this process.

• (Actual performance is worse in this case: we get a slowdown of ≈ 30,
whereas the number of nodes in a cache line is 8. I imagine that this is due to
prefetching; seem to be some further optimizations internally.)
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What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!
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Homework 2: Hirschberg’s
Algorithm



Time and space

• In Homework 1, you learned about how to use space to reduce the time
required by your algorithm

• In Homework 2, we’re going to do the opposite: we’re going to show how a
space-efficient approach can actually result in smaller wall clock time

• True even though the space-efficient approach does extra computations!
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Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ANCE

OCURRANCE
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Recursive edit distance (building up to D.P.)

• Base case: if X has length 0, what is the edit distance between X and some
string Y ?

• Length of Y
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Recursive edit distance (building up to D.P.)

• If the last characters of X and Y match, what is ED(X ,Y )?

• If X ′ and Y ′ are X and Y respectively with the last character removed, then
ED(X ,Y ) = ED(X ′,Y ′)
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OCCURREN
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• If the last characters of X and Y don’t match, what is ED(X ,Y )?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X ′,Y ′)

• Insert: 1 + ED(X ′,Y ) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X )

• Delete: 1 + ED(X ,Y ′) (delete the last character of Y ; match the rest to X )
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Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X |, n = |Y |.

• Build an n + 1×m + 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups
instead of recursive calls)
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Example DP execution

O C C U R R E N C E
0 1 2 3 4 5 6 7 8 9 10

O 1 0 1 2 3 4 5 6 7 8 9
C 2 1 0 1 2 3 4 5 6 7 8
U 3 2 1 1 1 2 3 4 5 6 7
R 4 3 2 2 2 1 2 3 4 5 6
R 5 4 3 3 3 2 1 2 3 4 5
A 6 5 4 4 4 3 2 2 3 4 5
N 7 6 5 5 5 4 3 3 2 3 4
C 8 7 6 6 6 5 4 4 3 2 3
E 9 8 7 7 7 6 5 4 4 3 2



Edit distance analysis

• O(mn) time (to fill out a table entry just need to look in three other table slots)

• O(mn) space
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Fun aside: Can we improve on this running time?

• Edit distance is an important problem. Can we do better than quadratic time?

• Probably not by more than log factors
• [Backurs Indyk 2014]: if you can solve edit distance in less than O(nm) time,

you can solve 3SAT in less than 2n time
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Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B ) cache misses.

• Optimal # cache misses required to fill out that table



Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B ) cache misses.

• Optimal # cache misses required to fill out that table



Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B ) cache misses.

• Optimal # cache misses required to fill out that table



Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B ) cache misses.

• Optimal # cache misses required to fill out that table



Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B ) cache misses.

• Optimal # cache misses required to fill out that table



Example DP execution
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Can we find the edit distance between two strings in less space?
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Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and
the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n + m ≤ M?

• O(n+m
B ): the only cache misses are from reading in the strings!

• WAY better than O(mn
B )!
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• O(n+m
B ): the only cache misses are from reading in the strings!

• WAY better than O(mn
B )!



Takeaway: Improved Space Can
Imply Improved Cache Efficiency



One problem

• In practice, you may want to find the actual (optimal) sequence of edits
between the two strings

• Warmup: how can we do that with the space-inefficient approach?

• Actually not so bad: follow the path back!
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Recovering the edits

• How can we tell where each entry came from?



Recovering the edits

• Redo same min computation from the normal dynamic program. (Break ties
arbitrarily—for now.)
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Recovering the edits

• Once you have the path back, can essentially read back the edits: a diagonal
is a match or replace; right is a delete; down is an insert. (This is if we’re
putting the target string vertically—if Y is being edited to become X , then X is
vertical.)



Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the
edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache
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• Now it’s still used, but the goal is to fit the problem in cache



Intro to Hirshberg’s Original Paper



Answer: Hirschberg’s algorithm!

• Recursive approach that extends the dynamic program to make it
space-efficient

• Can find in textbook (woo); I also posted the original paper (a tad old but still a
reasonable resource).
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(Slightly odd) Thought question

• Can I recover just ONE edit?

• Specifically: the edit in the middle row
• In other words: what square in the middle row is on my solution path?
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Structural Lemma

Lemma 1

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.
Then there is some way to partition Y into two parts Y1 and Y2 such that
ED(X1,Y1) + ED(X2,Y2) = k.

For example:

ADVICE and VINCENT have edit distance 5.

What parts of VINCENT match up with ADV? ICE?

ED(ADV, V) = 2

ED(ICE, INCENT) = 3
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Structural Lemma

Lemma 2

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.
Then there is some way to partition Y into two parts Y1 and Y2 such that
ED(X1,Y1) + ED(X2,Y2) = k.

Proof idea: there is some optimal sequence of edits applied to Y that obtain X .
Let’s apply those edits left to right. As we apply those edits, more and more of Y
will match X (let’s do an example with ADVICE and VINCENT on the board).

At some point, the beginning of Y will match the first half of X (that is to say: will
match X1). We can take that as Y1, and the remainder of Y as Y2.



Structural Lemma

Lemma 3
Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.
Then there is some way to partition Y into two parts Y1 and Y2 such that
ED(X1,Y1) + ED(X2,Y2) = k.

Note: I am not showing you this lemma just to be formal. This is a useful reference
for when you’re coding so that you know exactly how subproblems fit together.
Perhaps most importantly: Y1 and Y2 do not overlap; nor do X1 and X2.



Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the
middle row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to
the middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for
now! But bear with me)

• By the above lemma, there is at least one of these with sum exactly
ED(X ,Y ). These correspond to optimal paths through the matrix!
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Using the Structual Lemma



Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once
we’re done.)

• Let’s say we can get the place where we cross over the middle in O(nm) time
and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? We reduce the size by a factor of 2 each time we recurse.
So linear time!

• Kind of like T (X ) = T (X/2) + O(X )
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What we want

• For all Y1 and Y2 we want to calculate ED(X1,Y1) + ED(X2,Y2)

• Let’s calculate them separately: let’s calculate ED(X1,Y1) for all Y1, and
ED(X2,Y2) for all Y2.
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Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i
characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?
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Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i
characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

The values we want are the entries in row m/2 of the DP table! So we already
know how to calculate these in O(nm) time and O(n) space



Calculating ED(X2,Y2) for all Y2

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?
• Problem: this doesn’t quite correspond to a table row
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Calculating ED(X2,Y2) for all Y2

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?
• Problem: this doesn’t quite correspond to a table row



Really nice trick

Lemma 4

Let X R be the reverse of X , and let Y R be the reverse of Y . Then
ED(X ,Y ) = ED(X R,Y R).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X ” becomes...

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the first i
characters of Y R and the first m −m/2 characters of X R

• We know how to do this from last slide! It’s just the middle row of the DP table
between the reversed strings
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Calculating the edit distances of the last characters



Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i ) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!
• Reverse X2 to get X R

2 . Reverse Y to get Y R.
• Perform the space-efficient dynamic program between X R

2 and Y R (i.e. fill out
the middle row of the reversed)

• Entry (m −m/2,n − i) holds ED(X2,Y ′i ) by definition (and since edit distance
is retained through reversal).



Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i ) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!

• Reverse X2 to get X R
2 . Reverse Y to get Y R.

• Perform the space-efficient dynamic program between X R
2 and Y R (i.e. fill out

the middle row of the reversed)
• Entry (m −m/2,n − i) holds ED(X2,Y ′i ) by definition (and since edit distance

is retained through reversal).



Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i ) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!
• Reverse X2 to get X R

2 . Reverse Y to get Y R.

• Perform the space-efficient dynamic program between X R
2 and Y R (i.e. fill out

the middle row of the reversed)
• Entry (m −m/2,n − i) holds ED(X2,Y ′i ) by definition (and since edit distance

is retained through reversal).



Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i ) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!
• Reverse X2 to get X R

2 . Reverse Y to get Y R.
• Perform the space-efficient dynamic program between X R

2 and Y R (i.e. fill out
the middle row of the reversed)

• Entry (m −m/2,n − i) holds ED(X2,Y ′i ) by definition (and since edit distance
is retained through reversal).



Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i ) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!
• Reverse X2 to get X R

2 . Reverse Y to get Y R.
• Perform the space-efficient dynamic program between X R

2 and Y R (i.e. fill out
the middle row of the reversed)

• Entry (m −m/2,n − i) holds ED(X2,Y ′i ) by definition (and since edit distance
is retained through reversal).



Where we are

• For a given X , Y , can calculate where the optimal solution crosses the middle
row in O(nm) time and O(n) space.

• Idea: calculate all of the X1,Yi ,X2,Y ′i as above. Find the Yi and Y ′i that
minimize ED(X1,Yi) + ED(X2,Y ′i ).

• If there’s a tie, any of them will give an optimal solution.
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Now: recurse!

• For the i we calculated as the crossing point: find the optimal sequence of
edits between X1 and Yi . Then, find the optimal sequence of edits between
X2 and Y ′i .



What else does a recursive algorithm need?

• First, base case: if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance
algorithm.

• In terms of implementation, base case is a bit up to you: you can use a larger
base case, or possibly a smaller one.

• Second, need a way to come up with the actual solution. (Remember the
lemma we used to allow us to recurse?)

• Just concatenate the two recursive solutions.
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Analysis

• How much time does this approach take?

• One recursive call takes O(nm) time and O(n) space.
• We make two recursive calls: one with (i ,m/2), and the other with
(n − i ,m −m/2)

• Can prove by induction that the total time is O(nm).
• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.
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Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice.
Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the
problem

• The space-inefficient approach may incur many cache misses to fill up the
table.

• We’ll have strings of length ≈ 30,000. So yes, this will be the difference
between fitting in (and not fitting in) L3 cache.
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• The space-inefficient approach may incur many cache misses to fill up the
table.

• We’ll have strings of length ≈ 30,000. So yes, this will be the difference
between fitting in (and not fitting in) L3 cache.
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Implementation Tips

• It may be useful to keep a reversed version of both strings handy from the
beginning

• When you make your recursive calls, your solutions almost definitely should
not overlap. (Each character in a string should be a part of exactly one
recursive call.)

• Implement the space-inefficient version first. You need it anyway for the base
case.

• Let’s look over the homework quickly
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Matrix Multiplication in External
Memory



Matrix Multiplication Reminder

• Given two n × n matrices A, B

• Want to compute their product C:

• cij =
∑n

k=1 aikbkj

Example:

[
1 2
8 −1

]
×

[
2 3
−2 7

]
=

[
−2 17
18 17

]
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Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.



Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.



Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2

Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.



Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.



Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?

• Answer: O(n3) cache misses.
Every operation requires a
cache miss for B.



Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.



Any ideas for how to improve this?

• One idea: transpose B (store in column-major order)

• A good idea; works well! A bit nontrivial, especially if you want the transposition
to be cache-efficient

• Another idea: swap the loops! How many cache misses is this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]
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1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses: (assume B < n to make things easier)

• Let’s say A[i][k ] is a cache miss. No more cache misses until A[i][k ′] with
k ′ = k + B.

• Let’s say B[k ][j] is a cache miss. No more cache misses until B[i][j ′] with
j ′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j ′] with
j ′ = j + B.

• Sum up each on the board

• Question: Is this worth doing?
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Yep!



We haven’t used the cache yet

• No Ms in any running times—except when the whole problem fits in cache

• Why? All algorithms so far have read the data once and then thrown it away.

• Goal: bring items into cache so that we can perform many computations on
them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal. But we did do this with
smallunsortedlinkedlist.c
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Blocking

• Standard technique for improving cache performance of algorithms.

• Remember: cache efficiency can get WAY better when the problem fits in
cache. Let’s find subproblems that can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) cache misses

• Efficiently combine them for a cache-efficient solution
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Blocked Matrix Multiplication

• Split A, B, and C into blocks of size M/3
•
√

M/3×
√

M/3 matrices
• Really want blocks with size T = b

√
M/3c. Assume that T divides n for now so

there’s no rounding

• Multiply blocks one at a time
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Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and
multiply (and add) them as normal, we obtain the same result as we would have in
normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication
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Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

We can use this principle to multiply two larger matrices.
17 15 20 4
15 3 20 8
1 10 15 2
3 19 3 14

 ·


4 12 9 1
4 6 11 2

13 18 8 20
3 11 18 9

 =



[
17 15
15 3

]
·
[

4 12
4 6

]
+

[
20 4
20 8

]
·
[

13 8
3 11

] [
17 15
15 3

]
·
[

9 1
11 2

]
+

[
20 4
20 8

]
·
[

8 20
18 9

]
[

1 10
3 19

]
·
[

4 12
4 6

]
+

[
15 2
3 14

]
·
[

13 8
3 11

] [
1 10
3 19

]
·
[

9 1
11 2

]
+

[
15 2
3 14

]
·
[

8 20
18 9

]
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• Decompose matrix into blocks of length T (recall that T 2 ≤ M/3)

• Do a normal n/T × n/T matrix multiplication
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Blocked Matrix Multiplication Pseudocode

1 MatrixMultiply(A, B, C, n, T):
2 for i = 1 to n/T:
3 for j = 1 to n/T:
4 for k = 1 to n/T:
5 A’ = TxT matrix with upper left corner A[Ti][Tk]
6 B’ = TxT matrix with upper left corner B[Tk][Tj]
7 C’ = TxT matrix with upper left corner C[Ti][Tj]
8 BlockMultiply(A’, B’, C’, T)
9

10 BlockMultiply(A, B, C, n):
11 for i = 1 to n:
12 for j = 1 to n:
13 for k = 1 to n:
14 C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model together on the board!
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Analysis

• Creating A′, B′, C′ and passing them to BlockMultiply all can be done in
O(T 2/B + T ) cache misses.

If B = O(T ) then we can just write O(T 2/B);
let’s assume this for simplicity.

• BlockMultiply only accesses elements of A′, B′, C′. Since all three
matrices are in cache, it requires zero additional cache misses

• Therefore, our total running time is the number of loop iterations times the cost
of a loop. This is O((n/T )3 · T 2/B) = O((n/

√
M)3 ·M/B) = O(n3/B

√
M).
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Implementation questions!

• What do we do if n is not divisible by T ?
• Easy answer: pad it out! Doesn’t change asymptotics.
• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache and we’re ignoring
that space is used for other programs, other variables, etc.

• Experiment! Try different values of M and see what’s fastest on a particular
machine.

• Is blocking actually worthwhile?
• Yes; it is used all the time to speed up programs with poor cache performance.
• (Not a panacea; some programs (like linear scan, binary search) can’t be

blocked.)
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Sorting in External Memory



What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?
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Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we
compare it to?
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Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)
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1 2 4 . . .
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Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .



More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in
cache.

• Example on board



More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in
cache.

• Example on board



More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in
cache.

• Example on board



Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:
T (N) = T (N/(M/B)) + O(N/B)T (B) = O(1)

• Solves to O( n
B logM/B n/B) cache misses

• Optimal!
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Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Timsort
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Timsort

• Developed to be the sorting method for python

• Now also used in Java, Rust

• Keeps cache in mind, but focuses more on taking advantage of easy patterns
in data
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Blocking revisited: run generation

• Basic idea: sort all M-sized subarrays. That would give us sorted subarrays of
length M to start out with

• This is wasteful, as we empty out cache between each subarray

• Timsort starts with “run generation”: a greedy version of this that uses the
same cache for as long as possible. Always outputs sorted runs of length at
least M; can be MUCH longer
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Timsort after run generation

• First, run generation

• Then, super optimized (2-way) merge sort

• Insertion sort on any very small arrays that are encountered (size < 64)
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• M/B way merge sort is most efficient

• Timsort is very popular in practice; uses a simpler blocking approach to stay
cache-friendly.
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