
Applied Algorithms Lec 5:
Hirshberg’s Algorithm

Sam McCauley

September 20, 2024

Williams College

Admin: Office Hours

• Unfortunately: mixed poll responses. Some really wanted the Wed 4–5 to
stay; some really wanted the new hours Mon 3–4; some wanted office hours
at a different time Monday

• Let’s do the following: I’ll have drop in hours in my office Monday 9–9:45 and
3–4.

• I have to try to get some work done but you can come and work and I can
answer questions

• Wednesday will stay 2-5 as before

Admin: Office Hours

• Unfortunately: mixed poll responses. Some really wanted the Wed 4–5 to
stay; some really wanted the new hours Mon 3–4; some wanted office hours
at a different time Monday

• Let’s do the following: I’ll have drop in hours in my office Monday 9–9:45 and
3–4.

• I have to try to get some work done but you can come and work and I can
answer questions

• Wednesday will stay 2-5 as before

Admin: Office Hours

• Unfortunately: mixed poll responses. Some really wanted the Wed 4–5 to
stay; some really wanted the new hours Mon 3–4; some wanted office hours
at a different time Monday

• Let’s do the following: I’ll have drop in hours in my office Monday 9–9:45 and
3–4.

• I have to try to get some work done but you can come and work and I can
answer questions

• Wednesday will stay 2-5 as before

Admin: Office Hours

• Unfortunately: mixed poll responses. Some really wanted the Wed 4–5 to
stay; some really wanted the new hours Mon 3–4; some wanted office hours
at a different time Monday

• Let’s do the following: I’ll have drop in hours in my office Monday 9–9:45 and
3–4.

• I have to try to get some work done but you can come and work and I can
answer questions

• Wednesday will stay 2-5 as before

Admin: Homeworks

• Homework 1 in. How was it?

• Some really cool ideas! We’ll talk about some of them next week.

• Homework 2 is out
• It is probably the most difficult homework this semester (not because it’s

complicated per se—it’s recursive, which makes it hard to debug, and off-by-1s
are very consequential)

• Start early (!)
• I took out a question from last time the course was taught so it should be a touch

shorter

• For what it’s worth: Homeworks 3 and 4 are perhaps the easiest; so things will
ease up a bit in a couple weeks

Admin: Textbooks

• All course textbooks available in the lab

• In the back corner next to a bunch of VHS tapes (?!)

• Please don’t take them out of the lab so other students can use them

Admin: Textbooks

• All course textbooks available in the lab

• In the back corner next to a bunch of VHS tapes (?!)

• Please don’t take them out of the lab so other students can use them

Admin: Textbooks

• All course textbooks available in the lab

• In the back corner next to a bunch of VHS tapes (?!)

• Please don’t take them out of the lab so other students can use them

Plan for today

• Wrap up the example from last time

• Topics for Homework 2

• More external memory at the end if we have time

• Monday: mostly focus on reviewing Homework 1 and going over some gcc
features; perhaps another external memory model example (lighter day in
terms of concepts)

Plan for today

• Wrap up the example from last time

• Topics for Homework 2

• More external memory at the end if we have time

• Monday: mostly focus on reviewing Homework 1 and going over some gcc
features; perhaps another external memory model example (lighter day in
terms of concepts)

Plan for today

• Wrap up the example from last time

• Topics for Homework 2

• More external memory at the end if we have time

• Monday: mostly focus on reviewing Homework 1 and going over some gcc
features; perhaps another external memory model example (lighter day in
terms of concepts)

Plan for today

• Wrap up the example from last time

• Topics for Homework 2

• More external memory at the end if we have time

• Monday: mostly focus on reviewing Homework 1 and going over some gcc
features; perhaps another external memory model example (lighter day in
terms of concepts)

External Memory Wrapup

Let’s revisit sortedlinkedlist.c and
unsortedlinkedlist

• What is the cost of our algorithm in the external memory model if the items
are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items
have stride B + 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown of this process.

• (Actual performance is worse in this case: we get a slowdown of ≈ 30,
whereas the number of nodes in a cache line is 8. I imagine that this is due to
prefetching; seem to be some further optimizations internally.)

Let’s revisit sortedlinkedlist.c and
unsortedlinkedlist

• What is the cost of our algorithm in the external memory model if the items
are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items
have stride B + 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown of this process.

• (Actual performance is worse in this case: we get a slowdown of ≈ 30,
whereas the number of nodes in a cache line is 8. I imagine that this is due to
prefetching; seem to be some further optimizations internally.)

Let’s revisit sortedlinkedlist.c and
unsortedlinkedlist

• What is the cost of our algorithm in the external memory model if the items
are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items
have stride B + 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown of this process.

• (Actual performance is worse in this case: we get a slowdown of ≈ 30,
whereas the number of nodes in a cache line is 8. I imagine that this is due to
prefetching; seem to be some further optimizations internally.)

Let’s revisit sortedlinkedlist.c and
unsortedlinkedlist

• What is the cost of our algorithm in the external memory model if the items
are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items
have stride B + 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown of this process.

• (Actual performance is worse in this case: we get a slowdown of ≈ 30,
whereas the number of nodes in a cache line is 8. I imagine that this is due to
prefetching; seem to be some further optimizations internally.)

Let’s revisit sortedlinkedlist.c and
unsortedlinkedlist

• What is the cost of our algorithm in the external memory model if the items
are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items
have stride B + 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown of this process.

• (Actual performance is worse in this case: we get a slowdown of ≈ 30,
whereas the number of nodes in a cache line is 8. I imagine that this is due to
prefetching; seem to be some further optimizations internally.)

Let’s revisit sortedlinkedlist.c and
unsortedlinkedlist

• What is the cost of our algorithm in the external memory model if the items
are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items
have stride B + 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown of this process.

• (Actual performance is worse in this case: we get a slowdown of ≈ 30,
whereas the number of nodes in a cache line is 8. I imagine that this is due to
prefetching; seem to be some further optimizations internally.)

What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!

What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!

What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!

What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!

What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!

What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!

What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!

What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!

What about a shorter linked list?

• smallunsortedlinkedlist.c is another unsorted linked list

• But it is only 8000 items long rather than 100 million!

• How much space does this linked list take?

• We access the list 12500 times, so the total nodes accessed remains the
same

• Each linked list item is 16 bytes

• So total space is ≈ 8000 · 16 = 128000 byes; 128KB

• L1 cache is 192KB, so it should fit!

• Running time is almost as good as sortedlinkedlist.c

• The linked list stays in cache. So it is cheap to access!

Homework 2: Hirschberg’s
Algorithm

Time and space

• In Homework 1, you learned about how to use space to reduce the time
required by your algorithm

• In Homework 2, we’re going to do the opposite: we’re going to show how a
space-efficient approach can actually result in smaller wall clock time

• True even though the space-efficient approach does extra computations!

Time and space

• In Homework 1, you learned about how to use space to reduce the time
required by your algorithm

• In Homework 2, we’re going to do the opposite: we’re going to show how a
space-efficient approach can actually result in smaller wall clock time

• True even though the space-efficient approach does extra computations!

Time and space

• In Homework 1, you learned about how to use space to reduce the time
required by your algorithm

• In Homework 2, we’re going to do the opposite: we’re going to show how a
space-efficient approach can actually result in smaller wall clock time

• True even though the space-efficient approach does extra computations!

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ANCE

OCURRANCE

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ANCE

OCURRANCE

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ANCE

OCURRANCE

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ANCE

OCURRANCE

Edit Distance

• Minimum number of inserts/deletes/replaces to get from one string to another

• Useful in comp bio. Classic dynamic programming solution.

OCURRANCE vs OCCURRENCE:

OC

Delete C

CURRENCE

OCURR

Replace E with A

ANCE

OCURRANCE

Recursive edit distance (building up to D.P.)

• Base case: if X has length 0, what is the edit distance between X and some
string Y ?

• Length of Y

Recursive edit distance (building up to D.P.)

• Base case: if X has length 0, what is the edit distance between X and some
string Y ?

• Length of Y

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y match, what is ED(X ,Y)?

• If X ′ and Y ′ are X and Y respectively with the last character removed, then
ED(X ,Y) = ED(X ′,Y ′)

OCCURRAN

OCCURREN

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y match, what is ED(X ,Y)?

• If X ′ and Y ′ are X and Y respectively with the last character removed, then
ED(X ,Y) = ED(X ′,Y ′)

OCCURRAN

OCCURREN

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X ,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X ′,Y ′)

• Insert: 1 + ED(X ′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X ,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X ,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X ′,Y ′)

• Insert: 1 + ED(X ′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X ,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X ,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X ′,Y ′)

• Insert: 1 + ED(X ′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X ,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X ,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X ′,Y ′)

• Insert: 1 + ED(X ′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X ,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X ,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X ′,Y ′)

• Insert: 1 + ED(X ′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X ,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Recursive edit distance (building up to D.P.)

• If the last characters of X and Y don’t match, what is ED(X ,Y)?

• Let’s say we’re transforming Y into X

• Min of three options: (X ′ and Y ′ are X and Y with one character removed)

• Replace: 1 + ED(X ′,Y ′)

• Insert: 1 + ED(X ′,Y) (Insert the last character of X into Y . The characters of Y
must match the remaining characters of X)

• Delete: 1 + ED(X ,Y ′) (delete the last character of Y ; match the rest to X)

OCCURRA

OCCURRE

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X |, n = |Y |.

• Build an n + 1×m + 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups
instead of recursive calls)

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X |, n = |Y |.

• Build an n + 1×m + 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups
instead of recursive calls)

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X |, n = |Y |.

• Build an n + 1×m + 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups
instead of recursive calls)

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X |, n = |Y |.

• Build an n + 1×m + 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups
instead of recursive calls)

Dynamic programming

• Basically the same idea as the recursion, but we build a table

• Let m = |X |, n = |Y |.

• Build an n + 1×m + 1 table

• (+1s are so we can have 0-length entries)

• Fill out the table row-by-row using our recursive method (doing lookups
instead of recursive calls)

Example DP execution

O C C U R R E N C E
0 1 2 3 4 5 6 7 8 9 10

O 1 0 1 2 3 4 5 6 7 8 9
C 2 1 0 1 2 3 4 5 6 7 8
U 3 2 1 1 1 2 3 4 5 6 7
R 4 3 2 2 2 1 2 3 4 5 6
R 5 4 3 3 3 2 1 2 3 4 5
A 6 5 4 4 4 3 2 2 3 4 5
N 7 6 5 5 5 4 3 3 2 3 4
C 8 7 6 6 6 5 4 4 3 2 3
E 9 8 7 7 7 6 5 4 4 3 2

Edit distance analysis

• O(mn) time (to fill out a table entry just need to look in three other table slots)

• O(mn) space

Edit distance analysis

• O(mn) time (to fill out a table entry just need to look in three other table slots)

• O(mn) space

Fun aside: Can we improve on this running time?

• Edit distance is an important problem. Can we do better than quadratic time?

• Probably not by more than log factors
• [Backurs Indyk 2014]: if you can solve edit distance in less than O(nm) time,

you can solve 3SAT in less than 2n time

Fun aside: Can we improve on this running time?

• Edit distance is an important problem. Can we do better than quadratic time?
• Probably not by more than log factors

• [Backurs Indyk 2014]: if you can solve edit distance in less than O(nm) time,
you can solve 3SAT in less than 2n time

Fun aside: Can we improve on this running time?

• Edit distance is an important problem. Can we do better than quadratic time?
• Probably not by more than log factors
• [Backurs Indyk 2014]: if you can solve edit distance in less than O(nm) time,

you can solve 3SAT in less than 2n time

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Edit distance in external memory

• Number of cache misses? Let’s assume n,m are much larger than B.

• Let’s work out the number of cache misses on the board.

• Idea: after bringing O(1) cache lines in, can fill out B table entries

• O(mn
B) cache misses.

• Optimal # cache misses required to fill out that table

Example DP execution

O C C U R R E N C E
0 1 2 3 4 5 6 7 8 9 10

O 1 0 1 2 3 4 5 6 7 8 9
C 2 1 0 1 2 3 4 5 6 7 8
U 3 2 1 1 1 2 3 4 5 6 7
R 4 3 2 2 2 1 2 3 4 5 6
R 5 4 3 3 3 2 1 2 3 4 5
A 6 5 4 4 4 3 2 2 3 4 5
N 7 6 5 5 5 4 3 3 2 3 4
C 8 7 6 6 6 5 4 4 3 2 3
E 9 8 7 7 7 6 5 4 4 3 2

Can we find the edit distance between two strings in less space?

Example DP execution

O C C U R R E N C E
0 1 2 3 4 5 6 7 8 9 10

O 1 0 1 2 3 4 5 6 7 8 9
C 2 1 0 1 2 3 4 5 6 7 8
U 3 2 1 1 1 2 3 4 5 6 7
R 4 3 2 2 2 1 2 3 4 5 6
R 5 4 3 3 3 2 1 2 3 4 5
A 6 5 4 4 4 3 2 2 3 4 5
N 7 6 5 5 5 4 3 3 2 3 4
C 8 7 6 6 6 5 4 4 3 2 3
E 9 8 7 7 7 6 5 4 4 3 2

Can we find the edit distance between two strings in less space?

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and
the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n + m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and
the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n + m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and
the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n + m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and
the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n + m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and
the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n + m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and
the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n + m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Finding the edit distance more efficiently

• Can we find the edit distance between two strings in less space?

• Yes: only need to store two rows of the DP table (the row we’re filling out and
the previous row)

• Let’s say n < m. Then O(n) extra space.

• Quick example on board: SPOT vs TOPS

• What is the cache efficiency of this algorithm if 3n + m ≤ M?

• O(n+m
B): the only cache misses are from reading in the strings!

• WAY better than O(mn
B)!

Takeaway: Improved Space Can
Imply Improved Cache Efficiency

One problem

• In practice, you may want to find the actual (optimal) sequence of edits
between the two strings

• Warmup: how can we do that with the space-inefficient approach?

• Actually not so bad: follow the path back!

One problem

• In practice, you may want to find the actual (optimal) sequence of edits
between the two strings

• Warmup: how can we do that with the space-inefficient approach?

• Actually not so bad: follow the path back!

One problem

• In practice, you may want to find the actual (optimal) sequence of edits
between the two strings

• Warmup: how can we do that with the space-inefficient approach?

• Actually not so bad: follow the path back!

Recovering the edits

• How can we tell where each entry came from?

Recovering the edits

• Redo same min computation from the normal dynamic program. (Break ties
arbitrarily—for now.)

Recovering the edits

• Redo same min computation from the normal dynamic program. (Break ties
arbitrarily—for now.)

Recovering the edits

• Once you have the path back, can essentially read back the edits: a diagonal
is a match or replace; right is a delete; down is an insert. (This is if we’re
putting the target string vertically—if Y is being edited to become X , then X is
vertical.)

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the
edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the
edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the
edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the
edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Recovering the edits

• This method takes a lot of space! (The algorithm may no longer fit in cache.)

• Can we get the best of both worlds—O(n) space as well as recovering the
edits?

• A note on space vs time:

• This problem was originally looked at in 1975 with the goal of limiting space to fit
the problem on computers at that time

• Now it’s still used, but the goal is to fit the problem in cache

Intro to Hirshberg’s Original Paper

Answer: Hirschberg’s algorithm!

• Recursive approach that extends the dynamic program to make it
space-efficient

• Can find in textbook (woo); I also posted the original paper (a tad old but still a
reasonable resource).

Answer: Hirschberg’s algorithm!

• Recursive approach that extends the dynamic program to make it
space-efficient

• Can find in textbook (woo); I also posted the original paper (a tad old but still a
reasonable resource).

(Slightly odd) Thought question

• Can I recover just ONE edit?

• Specifically: the edit in the middle row
• In other words: what square in the middle row is on my solution path?

(Slightly odd) Thought question

• Can I recover just ONE edit?
• Specifically: the edit in the middle row

• In other words: what square in the middle row is on my solution path?

(Slightly odd) Thought question

• Can I recover just ONE edit?
• Specifically: the edit in the middle row
• In other words: what square in the middle row is on my solution path?

Structural Lemma

Lemma 1

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.
Then there is some way to partition Y into two parts Y1 and Y2 such that
ED(X1,Y1) + ED(X2,Y2) = k.

For example:

ADVICE and VINCENT have edit distance 5.

What parts of VINCENT match up with ADV? ICE?

ED(ADV, V) = 2

ED(ICE, INCENT) = 3

Structural Lemma

Lemma 1

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.
Then there is some way to partition Y into two parts Y1 and Y2 such that
ED(X1,Y1) + ED(X2,Y2) = k.

For example:

ADVICE and VINCENT have edit distance 5.

What parts of VINCENT match up with ADV? ICE?

ED(ADV, V) = 2

ED(ICE, INCENT) = 3

Structural Lemma

Lemma 2

Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.
Then there is some way to partition Y into two parts Y1 and Y2 such that
ED(X1,Y1) + ED(X2,Y2) = k.

Proof idea: there is some optimal sequence of edits applied to Y that obtain X .
Let’s apply those edits left to right. As we apply those edits, more and more of Y
will match X (let’s do an example with ADVICE and VINCENT on the board).

At some point, the beginning of Y will match the first half of X (that is to say: will
match X1). We can take that as Y1, and the remainder of Y as Y2.

Structural Lemma

Lemma 3
Let’s say that X and Y have edit distance k. Divide X into two halves X1 and X2.
Then there is some way to partition Y into two parts Y1 and Y2 such that
ED(X1,Y1) + ED(X2,Y2) = k.

Note: I am not showing you this lemma just to be formal. This is a useful reference
for when you’re coding so that you know exactly how subproblems fit together.
Perhaps most importantly: Y1 and Y2 do not overlap; nor do X1 and X2.

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the
middle row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to
the middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for
now! But bear with me)

• By the above lemma, there is at least one of these with sum exactly
ED(X ,Y). These correspond to optimal paths through the matrix!

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the
middle row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to
the middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for
now! But bear with me)

• By the above lemma, there is at least one of these with sum exactly
ED(X ,Y). These correspond to optimal paths through the matrix!

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the
middle row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to
the middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for
now! But bear with me)

• By the above lemma, there is at least one of these with sum exactly
ED(X ,Y). These correspond to optimal paths through the matrix!

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the
middle row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to
the middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for
now! But bear with me)

• By the above lemma, there is at least one of these with sum exactly
ED(X ,Y). These correspond to optimal paths through the matrix!

Using the Structural Lemma

• Remember: our goal is to find where the optimal sequence crosses the
middle row of the table.

• How can we use this lemma to help us out with that?

• As before: let’s split X into two equal sized parts X1 and X2 (corresponds to
the middle row of the table)

• Idea: for every possible Y1, Y2, calculate ED(X1,Y1) + ED(X2,Y2) (slow for
now! But bear with me)

• By the above lemma, there is at least one of these with sum exactly
ED(X ,Y). These correspond to optimal paths through the matrix!

Using the Structual Lemma

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once
we’re done.)

• Let’s say we can get the place where we cross over the middle in O(nm) time
and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? We reduce the size by a factor of 2 each time we recurse.
So linear time!

• Kind of like T (X) = T (X/2) + O(X)

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once
we’re done.)

• Let’s say we can get the place where we cross over the middle in O(nm) time
and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? We reduce the size by a factor of 2 each time we recurse.
So linear time!

• Kind of like T (X) = T (X/2) + O(X)

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once
we’re done.)

• Let’s say we can get the place where we cross over the middle in O(nm) time
and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? We reduce the size by a factor of 2 each time we recurse.
So linear time!

• Kind of like T (X) = T (X/2) + O(X)

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once
we’re done.)

• Let’s say we can get the place where we cross over the middle in O(nm) time
and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? We reduce the size by a factor of 2 each time we recurse.
So linear time!

• Kind of like T (X) = T (X/2) + O(X)

Why are we doing this?

(Just want a reminder of what we’re doing. We’ll come back to this analysis once
we’re done.)

• Let’s say we can get the place where we cross over the middle in O(nm) time
and O(n) space

• Where do we go from there?

• Answer: recurse on both subproblems! Then put the parts back together.

• How much time? We reduce the size by a factor of 2 each time we recurse.
So linear time!

• Kind of like T (X) = T (X/2) + O(X)

What we want

• For all Y1 and Y2 we want to calculate ED(X1,Y1) + ED(X2,Y2)

• Let’s calculate them separately: let’s calculate ED(X1,Y1) for all Y1, and
ED(X2,Y2) for all Y2.

What we want

• For all Y1 and Y2 we want to calculate ED(X1,Y1) + ED(X2,Y2)

• Let’s calculate them separately: let’s calculate ED(X1,Y1) for all Y1, and
ED(X2,Y2) for all Y2.

Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i
characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i
characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i
characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

Calculating ED(X1,Y1) for all Y1

• We want to calculate, for all i = 0 . . . n, the edit distance between the first i
characters of Y and the first m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

The values we want are the entries in row m/2 of the DP table! So we already
know how to calculate these in O(nm) time and O(n) space

Calculating ED(X2,Y2) for all Y2

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?
• Problem: this doesn’t quite correspond to a table row

Calculating ED(X2,Y2) for all Y2

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?

• Problem: this doesn’t quite correspond to a table row

Calculating ED(X2,Y2) for all Y2

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X .

• How can we do this in O(nm) time and O(n) space?
• Problem: this doesn’t quite correspond to a table row

Really nice trick

Lemma 4

Let X R be the reverse of X , and let Y R be the reverse of Y . Then
ED(X ,Y) = ED(X R,Y R).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X ” becomes...

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the first i
characters of Y R and the first m −m/2 characters of X R

• We know how to do this from last slide! It’s just the middle row of the DP table
between the reversed strings

Really nice trick

Lemma 4

Let X R be the reverse of X , and let Y R be the reverse of Y . Then
ED(X ,Y) = ED(X R,Y R).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X ” becomes...

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the first i
characters of Y R and the first m −m/2 characters of X R

• We know how to do this from last slide! It’s just the middle row of the DP table
between the reversed strings

Really nice trick

Lemma 4

Let X R be the reverse of X , and let Y R be the reverse of Y . Then
ED(X ,Y) = ED(X R,Y R).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X ” becomes...

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the first i
characters of Y R and the first m −m/2 characters of X R

• We know how to do this from last slide! It’s just the middle row of the DP table
between the reversed strings

Really nice trick

Lemma 4

Let X R be the reverse of X , and let Y R be the reverse of Y . Then
ED(X ,Y) = ED(X R,Y R).

(Proof: just apply the same edits in reverse!)

• Let’s reverse the two strings.

• “We want to calculate, for all i = 0, . . . ,n, the edit distance between the last i
characters of Y and the last m −m/2 characters of X ” becomes...

• We want to calculate, for all i = 0, . . . ,n, the edit distance between the first i
characters of Y R and the first m −m/2 characters of X R

• We know how to do this from last slide! It’s just the middle row of the DP table
between the reversed strings

Calculating the edit distances of the last characters

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!
• Reverse X2 to get X R

2 . Reverse Y to get Y R.
• Perform the space-efficient dynamic program between X R

2 and Y R (i.e. fill out
the middle row of the reversed)

• Entry (m −m/2,n − i) holds ED(X2,Y ′i) by definition (and since edit distance
is retained through reversal).

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!

• Reverse X2 to get X R
2 . Reverse Y to get Y R.

• Perform the space-efficient dynamic program between X R
2 and Y R (i.e. fill out

the middle row of the reversed)
• Entry (m −m/2,n − i) holds ED(X2,Y ′i) by definition (and since edit distance

is retained through reversal).

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!
• Reverse X2 to get X R

2 . Reverse Y to get Y R.

• Perform the space-efficient dynamic program between X R
2 and Y R (i.e. fill out

the middle row of the reversed)
• Entry (m −m/2,n − i) holds ED(X2,Y ′i) by definition (and since edit distance

is retained through reversal).

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!
• Reverse X2 to get X R

2 . Reverse Y to get Y R.
• Perform the space-efficient dynamic program between X R

2 and Y R (i.e. fill out
the middle row of the reversed)

• Entry (m −m/2,n − i) holds ED(X2,Y ′i) by definition (and since edit distance
is retained through reversal).

Putting it all together

Let X1 be the first half of X , and X2 be the second half of X . Let Yi be the first i
characters of Y , and Y ′i be the last n − i characters of Y .

Here’s how to calculate ED(X1,Yi) and ED(X2,Y ′i) for all i , in O(nm) total time and
O(n) space:

• Perform the space-efficient dynamic program (keeping track of one row at a
time) between X1 and Y (i.e. fill out the middle row of the table).

• Entry (m/2, i) holds ED(X1,Yi) by definition!
• Reverse X2 to get X R

2 . Reverse Y to get Y R.
• Perform the space-efficient dynamic program between X R

2 and Y R (i.e. fill out
the middle row of the reversed)

• Entry (m −m/2,n − i) holds ED(X2,Y ′i) by definition (and since edit distance
is retained through reversal).

Where we are

• For a given X , Y , can calculate where the optimal solution crosses the middle
row in O(nm) time and O(n) space.

• Idea: calculate all of the X1,Yi ,X2,Y ′i as above. Find the Yi and Y ′i that
minimize ED(X1,Yi) + ED(X2,Y ′i).

• If there’s a tie, any of them will give an optimal solution.

Where we are

• For a given X , Y , can calculate where the optimal solution crosses the middle
row in O(nm) time and O(n) space.

• Idea: calculate all of the X1,Yi ,X2,Y ′i as above. Find the Yi and Y ′i that
minimize ED(X1,Yi) + ED(X2,Y ′i).

• If there’s a tie, any of them will give an optimal solution.

Where we are

• For a given X , Y , can calculate where the optimal solution crosses the middle
row in O(nm) time and O(n) space.

• Idea: calculate all of the X1,Yi ,X2,Y ′i as above. Find the Yi and Y ′i that
minimize ED(X1,Yi) + ED(X2,Y ′i).

• If there’s a tie, any of them will give an optimal solution.

Now: recurse!

• For the i we calculated as the crossing point: find the optimal sequence of
edits between X1 and Yi . Then, find the optimal sequence of edits between
X2 and Y ′i .

What else does a recursive algorithm need?

• First, base case: if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance
algorithm.

• In terms of implementation, base case is a bit up to you: you can use a larger
base case, or possibly a smaller one.

• Second, need a way to come up with the actual solution. (Remember the
lemma we used to allow us to recurse?)

• Just concatenate the two recursive solutions.

What else does a recursive algorithm need?

• First, base case: if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance
algorithm.

• In terms of implementation, base case is a bit up to you: you can use a larger
base case, or possibly a smaller one.

• Second, need a way to come up with the actual solution. (Remember the
lemma we used to allow us to recurse?)

• Just concatenate the two recursive solutions.

What else does a recursive algorithm need?

• First, base case: if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance
algorithm.

• In terms of implementation, base case is a bit up to you: you can use a larger
base case, or possibly a smaller one.

• Second, need a way to come up with the actual solution. (Remember the
lemma we used to allow us to recurse?)

• Just concatenate the two recursive solutions.

What else does a recursive algorithm need?

• First, base case: if n ≤ 1 or m ≤ 1, use the space-inefficient edit distance
algorithm.

• In terms of implementation, base case is a bit up to you: you can use a larger
base case, or possibly a smaller one.

• Second, need a way to come up with the actual solution. (Remember the
lemma we used to allow us to recurse?)

• Just concatenate the two recursive solutions.

Analysis

• How much time does this approach take?

• One recursive call takes O(nm) time and O(n) space.
• We make two recursive calls: one with (i ,m/2), and the other with
(n − i ,m −m/2)

• Can prove by induction that the total time is O(nm).
• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.

Analysis

• How much time does this approach take?
• One recursive call takes O(nm) time and O(n) space.

• We make two recursive calls: one with (i ,m/2), and the other with
(n − i ,m −m/2)

• Can prove by induction that the total time is O(nm).
• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.

Analysis

• How much time does this approach take?
• One recursive call takes O(nm) time and O(n) space.
• We make two recursive calls: one with (i ,m/2), and the other with
(n − i ,m −m/2)

• Can prove by induction that the total time is O(nm).
• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.

Analysis

• How much time does this approach take?
• One recursive call takes O(nm) time and O(n) space.
• We make two recursive calls: one with (i ,m/2), and the other with
(n − i ,m −m/2)

• Can prove by induction that the total time is O(nm).

• Basic idea: the total cost of all recursive calls at a given level is the size of the
table remaining; this decreases by a factor of 2 each time.

Analysis

• How much time does this approach take?
• One recursive call takes O(nm) time and O(n) space.
• We make two recursive calls: one with (i ,m/2), and the other with
(n − i ,m −m/2)

• Can prove by induction that the total time is O(nm).
• Basic idea: the total cost of all recursive calls at a given level is the size of the

table remaining; this decreases by a factor of 2 each time.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice.
Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the
problem

• The space-inefficient approach may incur many cache misses to fill up the
table.

• We’ll have strings of length ≈ 30,000. So yes, this will be the difference
between fitting in (and not fitting in) L3 cache.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice.
Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the
problem

• The space-inefficient approach may incur many cache misses to fill up the
table.

• We’ll have strings of length ≈ 30,000. So yes, this will be the difference
between fitting in (and not fitting in) L3 cache.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice.
Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the
problem

• The space-inefficient approach may incur many cache misses to fill up the
table.

• We’ll have strings of length ≈ 30,000. So yes, this will be the difference
between fitting in (and not fitting in) L3 cache.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice.
Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the
problem

• The space-inefficient approach may incur many cache misses to fill up the
table.

• We’ll have strings of length ≈ 30,000. So yes, this will be the difference
between fitting in (and not fitting in) L3 cache.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice.
Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the
problem

• The space-inefficient approach may incur many cache misses to fill up the
table.

• We’ll have strings of length ≈ 30,000. So yes, this will be the difference
between fitting in (and not fitting in) L3 cache.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice.
Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the
problem

• The space-inefficient approach may incur many cache misses to fill up the
table.

• We’ll have strings of length ≈ 30,000. So yes, this will be the difference
between fitting in (and not fitting in) L3 cache.

Some discussion about practice

• Hirschberg’s algorithm is more space-efficient. How does its time efficiency
compare to the space-inefficient approach?

• Same asymptotics, but much worse constants.

• Hirschberg’s is (sometimes, and hopefully in your lab) faster in practice.
Why??

• Answer: improved cache efficiency!

• If all work fits into cache, we only have the cache misses to set up the
problem

• The space-inefficient approach may incur many cache misses to fill up the
table.

• We’ll have strings of length ≈ 30,000. So yes, this will be the difference
between fitting in (and not fitting in) L3 cache.

Implementation Tips

• It may be useful to keep a reversed version of both strings handy from the
beginning

• When you make your recursive calls, your solutions almost definitely should
not overlap. (Each character in a string should be a part of exactly one
recursive call.)

• Implement the space-inefficient version first. You need it anyway for the base
case.

• Let’s look over the homework quickly

Implementation Tips

• It may be useful to keep a reversed version of both strings handy from the
beginning

• When you make your recursive calls, your solutions almost definitely should
not overlap. (Each character in a string should be a part of exactly one
recursive call.)

• Implement the space-inefficient version first. You need it anyway for the base
case.

• Let’s look over the homework quickly

Implementation Tips

• It may be useful to keep a reversed version of both strings handy from the
beginning

• When you make your recursive calls, your solutions almost definitely should
not overlap. (Each character in a string should be a part of exactly one
recursive call.)

• Implement the space-inefficient version first. You need it anyway for the base
case.

• Let’s look over the homework quickly

Implementation Tips

• It may be useful to keep a reversed version of both strings handy from the
beginning

• When you make your recursive calls, your solutions almost definitely should
not overlap. (Each character in a string should be a part of exactly one
recursive call.)

• Implement the space-inefficient version first. You need it anyway for the base
case.

• Let’s look over the homework quickly

Matrix Multiplication in External
Memory

Matrix Multiplication Reminder

• Given two n × n matrices A, B

• Want to compute their product C:

• cij =
∑n

k=1 aikbkj

Example:

[
1 2
8 −1

]
×

[
2 3
−2 7

]
=

[
−2 17
18 17

]

Matrix Multiplication Reminder

• Given two n × n matrices A, B

• Want to compute their product C:

• cij =
∑n

k=1 aikbkj

Example:

[
1 2
8 −1

]
×

[
2 3
−2 7

]
=

[
−2 17
18 17

]

Matrix Multiplication Reminder

• Given two n × n matrices A, B

• Want to compute their product C:

• cij =
∑n

k=1 aikbkj

Example:

[
1 2
8 −1

]
×

[
2 3
−2 7

]
=

[
−2 17
18 17

]

Matrix Multiplication Reminder

• Given two n × n matrices A, B

• Want to compute their product C:

• cij =
∑n

k=1 aikbkj

Example:

[
1 2
8 −1

]
×

[
2 3
−2 7

]
=

[
−2 17
18 17

]

Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.

Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.

Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2

Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.

Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.

Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?

• Answer: O(n3) cache misses.
Every operation requires a
cache miss for B.

Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many cache misses does
this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) cache
misses

• What if M > n2?
• Answer: O(n3) cache misses.

Every operation requires a
cache miss for B.

Any ideas for how to improve this?

• One idea: transpose B (store in column-major order)

• A good idea; works well! A bit nontrivial, especially if you want the transposition
to be cache-efficient

• Another idea: swap the loops! How many cache misses is this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

Any ideas for how to improve this?

• One idea: transpose B (store in column-major order)

• A good idea; works well! A bit nontrivial, especially if you want the transposition
to be cache-efficient

• Another idea: swap the loops! How many cache misses is this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

Any ideas for how to improve this?

• One idea: transpose B (store in column-major order)

• A good idea; works well! A bit nontrivial, especially if you want the transposition
to be cache-efficient

• Another idea: swap the loops! How many cache misses is this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

Any ideas for how to improve this?

• One idea: transpose B (store in column-major order)

• A good idea; works well! A bit nontrivial, especially if you want the transposition
to be cache-efficient

• Another idea: swap the loops! How many cache misses is this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

Any ideas for how to improve this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses: (assume B < n to make things easier)

• Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k ′] with
k ′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until B[i][j ′] with
j ′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j ′] with
j ′ = j + B.

• Sum up each on the board

• Question: Is this worth doing?

Any ideas for how to improve this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses: (assume B < n to make things easier)

• Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k ′] with
k ′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until B[i][j ′] with
j ′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j ′] with
j ′ = j + B.

• Sum up each on the board

• Question: Is this worth doing?

Any ideas for how to improve this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses: (assume B < n to make things easier)

• Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k ′] with
k ′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until B[i][j ′] with
j ′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j ′] with
j ′ = j + B.

• Sum up each on the board

• Question: Is this worth doing?

Any ideas for how to improve this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses: (assume B < n to make things easier)

• Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k ′] with
k ′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until B[i][j ′] with
j ′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j ′] with
j ′ = j + B.

• Sum up each on the board

• Question: Is this worth doing?

Any ideas for how to improve this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses: (assume B < n to make things easier)

• Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k ′] with
k ′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until B[i][j ′] with
j ′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j ′] with
j ′ = j + B.

• Sum up each on the board

• Question: Is this worth doing?

Any ideas for how to improve this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses: (assume B < n to make things easier)

• Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k ′] with
k ′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until B[i][j ′] with
j ′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j ′] with
j ′ = j + B.

• Sum up each on the board

• Question: Is this worth doing?

Any ideas for how to improve this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses: (assume B < n to make things easier)

• Let’s say A[i][k] is a cache miss. No more cache misses until A[i][k ′] with
k ′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until B[i][j ′] with
j ′ = j + B.

• Let’s say C[i][j] is a cache miss. No more cache misses until C[i][j ′] with
j ′ = j + B.

• Sum up each on the board

• Question: Is this worth doing?

Yep!

We haven’t used the cache yet

• No Ms in any running times—except when the whole problem fits in cache

• Why? All algorithms so far have read the data once and then thrown it away.

• Goal: bring items into cache so that we can perform many computations on
them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal. But we did do this with
smallunsortedlinkedlist.c

We haven’t used the cache yet

• No Ms in any running times—except when the whole problem fits in cache

• Why? All algorithms so far have read the data once and then thrown it away.

• Goal: bring items into cache so that we can perform many computations on
them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal. But we did do this with
smallunsortedlinkedlist.c

We haven’t used the cache yet

• No Ms in any running times—except when the whole problem fits in cache

• Why? All algorithms so far have read the data once and then thrown it away.

• Goal: bring items into cache so that we can perform many computations on
them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal. But we did do this with
smallunsortedlinkedlist.c

We haven’t used the cache yet

• No Ms in any running times—except when the whole problem fits in cache

• Why? All algorithms so far have read the data once and then thrown it away.

• Goal: bring items into cache so that we can perform many computations on
them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal. But we did do this with
smallunsortedlinkedlist.c

Blocking

• Standard technique for improving cache performance of algorithms.

• Remember: cache efficiency can get WAY better when the problem fits in
cache. Let’s find subproblems that can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) cache misses

• Efficiently combine them for a cache-efficient solution

Blocking

• Standard technique for improving cache performance of algorithms.

• Remember: cache efficiency can get WAY better when the problem fits in
cache. Let’s find subproblems that can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) cache misses

• Efficiently combine them for a cache-efficient solution

Blocking

• Standard technique for improving cache performance of algorithms.

• Remember: cache efficiency can get WAY better when the problem fits in
cache. Let’s find subproblems that can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) cache misses

• Efficiently combine them for a cache-efficient solution

Blocking

• Standard technique for improving cache performance of algorithms.

• Remember: cache efficiency can get WAY better when the problem fits in
cache. Let’s find subproblems that can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) cache misses

• Efficiently combine them for a cache-efficient solution

Blocking

• Standard technique for improving cache performance of algorithms.

• Remember: cache efficiency can get WAY better when the problem fits in
cache. Let’s find subproblems that can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) cache misses

• Efficiently combine them for a cache-efficient solution

Blocked Matrix Multiplication

• Split A, B, and C into blocks of size M/3
•
√

M/3×
√

M/3 matrices
• Really want blocks with size T = b

√
M/3c. Assume that T divides n for now so

there’s no rounding

• Multiply blocks one at a time

Blocked Matrix Multiplication

• Split A, B, and C into blocks of size M/3
•
√

M/3×
√

M/3 matrices
• Really want blocks with size T = b

√
M/3c. Assume that T divides n for now so

there’s no rounding

• Multiply blocks one at a time

Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and
multiply (and add) them as normal, we obtain the same result as we would have in
normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication

Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and
multiply (and add) them as normal, we obtain the same result as we would have in
normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication

Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and
multiply (and add) them as normal, we obtain the same result as we would have in
normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication

Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

We can use this principle to multiply two larger matrices.
17 15 20 4
15 3 20 8
1 10 15 2
3 19 3 14

 ·


4 12 9 1
4 6 11 2

13 18 8 20
3 11 18 9

 =



[
17 15
15 3

]
·
[

4 12
4 6

]
+

[
20 4
20 8

]
·
[

13 8
3 11

] [
17 15
15 3

]
·
[

9 1
11 2

]
+

[
20 4
20 8

]
·
[

8 20
18 9

]
[

1 10
3 19

]
·
[

4 12
4 6

]
+

[
15 2
3 14

]
·
[

13 8
3 11

] [
1 10
3 19

]
·
[

9 1
11 2

]
+

[
15 2
3 14

]
·
[

8 20
18 9

]


Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

We can use this principle to multiply two larger matrices.


17 15 20 4
15 3 20 8
1 10 15 2
3 19 3 14

 ·


4 12 9 1
4 6 11 2

13 18 8 20
3 11 18 9

 =



[
17 15
15 3

]
·
[

4 12
4 6

]
+

[
20 4
20 8

]
·
[

13 8
3 11

] [
17 15
15 3

]
·
[

9 1
11 2

]
+

[
20 4
20 8

]
·
[

8 20
18 9

]
[

1 10
3 19

]
·
[

4 12
4 6

]
+

[
15 2
3 14

]
·
[

13 8
3 11

] [
1 10
3 19

]
·
[

9 1
11 2

]
+

[
15 2
3 14

]
·
[

8 20
18 9

]


Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

We can use this principle to multiply two larger matrices.
17 15 20 4
15 3 20 8
1 10 15 2
3 19 3 14

 ·


4 12 9 1
4 6 11 2

13 18 8 20
3 11 18 9

 =



[
17 15
15 3

]
·
[

4 12
4 6

]
+

[
20 4
20 8

]
·
[

13 8
3 11

] [
17 15
15 3

]
·
[

9 1
11 2

]
+

[
20 4
20 8

]
·
[

8 20
18 9

]
[

1 10
3 19

]
·
[

4 12
4 6

]
+

[
15 2
3 14

]
·
[

13 8
3 11

] [
1 10
3 19

]
·
[

9 1
11 2

]
+

[
15 2
3 14

]
·
[

8 20
18 9

]


Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

We can use this principle to multiply two larger matrices.
17 15 20 4
15 3 20 8
1 10 15 2
3 19 3 14

 ·


4 12 9 1
4 6 11 2

13 18 8 20
3 11 18 9

 =



[
17 15
15 3

]
·
[

4 12
4 6

]
+

[
20 4
20 8

]
·
[

13 8
3 11

] [
17 15
15 3

]
·
[

9 1
11 2

]
+

[
20 4
20 8

]
·
[

8 20
18 9

]
[

1 10
3 19

]
·
[

4 12
4 6

]
+

[
15 2
3 14

]
·
[

13 8
3 11

] [
1 10
3 19

]
·
[

9 1
11 2

]
+

[
15 2
3 14

]
·
[

8 20
18 9

]


Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (recall that T 2 ≤ M/3)

• Do a normal n/T × n/T matrix multiplication

Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (recall that T 2 ≤ M/3)

• Do a normal n/T × n/T matrix multiplication

Blocked Matrix Multiplication Pseudocode

1 MatrixMultiply(A, B, C, n, T):
2 for i = 1 to n/T:
3 for j = 1 to n/T:
4 for k = 1 to n/T:
5 A’ = TxT matrix with upper left corner A[Ti][Tk]
6 B’ = TxT matrix with upper left corner B[Tk][Tj]
7 C’ = TxT matrix with upper left corner C[Ti][Tj]
8 BlockMultiply(A’, B’, C’, T)
9

10 BlockMultiply(A, B, C, n):
11 for i = 1 to n:
12 for j = 1 to n:
13 for k = 1 to n:
14 C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model together on the board!

Blocked Matrix Multiplication Pseudocode

1 MatrixMultiply(A, B, C, n, T):
2 for i = 1 to n/T:
3 for j = 1 to n/T:
4 for k = 1 to n/T:
5 A’ = TxT matrix with upper left corner A[Ti][Tk]
6 B’ = TxT matrix with upper left corner B[Tk][Tj]
7 C’ = TxT matrix with upper left corner C[Ti][Tj]
8 BlockMultiply(A’, B’, C’, T)
9

10 BlockMultiply(A, B, C, n):
11 for i = 1 to n:
12 for j = 1 to n:
13 for k = 1 to n:
14 C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model together on the board!

Analysis

• Creating A′, B′, C′ and passing them to BlockMultiply all can be done in
O(T 2/B + T) cache misses.

If B = O(T) then we can just write O(T 2/B);
let’s assume this for simplicity.

• BlockMultiply only accesses elements of A′, B′, C′. Since all three
matrices are in cache, it requires zero additional cache misses

• Therefore, our total running time is the number of loop iterations times the cost
of a loop. This is O((n/T)3 · T 2/B) = O((n/

√
M)3 ·M/B) = O(n3/B

√
M).

Analysis

• Creating A′, B′, C′ and passing them to BlockMultiply all can be done in
O(T 2/B + T) cache misses. If B = O(T) then we can just write O(T 2/B);
let’s assume this for simplicity.

• BlockMultiply only accesses elements of A′, B′, C′. Since all three
matrices are in cache, it requires zero additional cache misses

• Therefore, our total running time is the number of loop iterations times the cost
of a loop. This is O((n/T)3 · T 2/B) = O((n/

√
M)3 ·M/B) = O(n3/B

√
M).

Analysis

• Creating A′, B′, C′ and passing them to BlockMultiply all can be done in
O(T 2/B + T) cache misses. If B = O(T) then we can just write O(T 2/B);
let’s assume this for simplicity.

• BlockMultiply only accesses elements of A′, B′, C′. Since all three
matrices are in cache, it requires zero additional cache misses

• Therefore, our total running time is the number of loop iterations times the cost
of a loop. This is O((n/T)3 · T 2/B) = O((n/

√
M)3 ·M/B) = O(n3/B

√
M).

Analysis

• Creating A′, B′, C′ and passing them to BlockMultiply all can be done in
O(T 2/B + T) cache misses. If B = O(T) then we can just write O(T 2/B);
let’s assume this for simplicity.

• BlockMultiply only accesses elements of A′, B′, C′. Since all three
matrices are in cache, it requires zero additional cache misses

• Therefore, our total running time is the number of loop iterations times the cost
of a loop. This is O((n/T)3 · T 2/B) = O((n/

√
M)3 ·M/B) = O(n3/B

√
M).

Implementation questions!

• What do we do if n is not divisible by T ?
• Easy answer: pad it out! Doesn’t change asymptotics.
• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache and we’re ignoring
that space is used for other programs, other variables, etc.

• Experiment! Try different values of M and see what’s fastest on a particular
machine.

• Is blocking actually worthwhile?
• Yes; it is used all the time to speed up programs with poor cache performance.
• (Not a panacea; some programs (like linear scan, binary search) can’t be

blocked.)

Implementation questions!

• What do we do if n is not divisible by T ?
• Easy answer: pad it out! Doesn’t change asymptotics.
• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache and we’re ignoring
that space is used for other programs, other variables, etc.

• Experiment! Try different values of M and see what’s fastest on a particular
machine.

• Is blocking actually worthwhile?
• Yes; it is used all the time to speed up programs with poor cache performance.
• (Not a panacea; some programs (like linear scan, binary search) can’t be

blocked.)

Implementation questions!

• What do we do if n is not divisible by T ?
• Easy answer: pad it out! Doesn’t change asymptotics.
• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache and we’re ignoring
that space is used for other programs, other variables, etc.

• Experiment! Try different values of M and see what’s fastest on a particular
machine.

• Is blocking actually worthwhile?
• Yes; it is used all the time to speed up programs with poor cache performance.
• (Not a panacea; some programs (like linear scan, binary search) can’t be

blocked.)

Sorting in External Memory

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we
compare it to?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we
compare it to?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we
compare it to?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we
compare it to?

Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256
1 2 4 . . .

Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256
1 2 4 . . .

Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256
1 2 4 . . .

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in
cache.

• Example on board

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in
cache.

• Example on board

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in
cache.

• Example on board

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:
T (N) = T (N/(M/B)) + O(N/B)T (B) = O(1)

• Solves to O(n
B logM/B n/B) cache misses

• Optimal!

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:
T (N) = T (N/(M/B)) + O(N/B)T (B) = O(1)

• Solves to O(n
B logM/B n/B) cache misses

• Optimal!

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:
T (N) = T (N/(M/B)) + O(N/B)T (B) = O(1)

• Solves to O(n
B logM/B n/B) cache misses

• Optimal!

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:
T (N) = T (N/(M/B)) + O(N/B)T (B) = O(1)

• Solves to O(n
B logM/B n/B) cache misses

• Optimal!

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Timsort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Timsort

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Timsort

Timsort

• Developed to be the sorting method for python

• Now also used in Java, Rust

• Keeps cache in mind, but focuses more on taking advantage of easy patterns
in data

Timsort

• Developed to be the sorting method for python

• Now also used in Java, Rust

• Keeps cache in mind, but focuses more on taking advantage of easy patterns
in data

Timsort

• Developed to be the sorting method for python

• Now also used in Java, Rust

• Keeps cache in mind, but focuses more on taking advantage of easy patterns
in data

Blocking revisited: run generation

• Basic idea: sort all M-sized subarrays. That would give us sorted subarrays of
length M to start out with

• This is wasteful, as we empty out cache between each subarray

• Timsort starts with “run generation”: a greedy version of this that uses the
same cache for as long as possible. Always outputs sorted runs of length at
least M; can be MUCH longer

Blocking revisited: run generation

• Basic idea: sort all M-sized subarrays. That would give us sorted subarrays of
length M to start out with

• This is wasteful, as we empty out cache between each subarray

• Timsort starts with “run generation”: a greedy version of this that uses the
same cache for as long as possible. Always outputs sorted runs of length at
least M; can be MUCH longer

Blocking revisited: run generation

• Basic idea: sort all M-sized subarrays. That would give us sorted subarrays of
length M to start out with

• This is wasteful, as we empty out cache between each subarray

• Timsort starts with “run generation”: a greedy version of this that uses the
same cache for as long as possible. Always outputs sorted runs of length at
least M; can be MUCH longer

Timsort after run generation

• First, run generation

• Then, super optimized (2-way) merge sort

• Insertion sort on any very small arrays that are encountered (size < 64)

Timsort after run generation

• First, run generation

• Then, super optimized (2-way) merge sort

• Insertion sort on any very small arrays that are encountered (size < 64)

Timsort after run generation

• First, run generation

• Then, super optimized (2-way) merge sort

• Insertion sort on any very small arrays that are encountered (size < 64)

External Memory Sorting

• M/B way merge sort is most efficient

• Timsort is very popular in practice; uses a simpler blocking approach to stay
cache-friendly.

External Memory Sorting

• M/B way merge sort is most efficient

• Timsort is very popular in practice; uses a simpler blocking approach to stay
cache-friendly.

	External Memory Wrapup
	Homework 2: Hirschberg's Algorithm
	Takeaway: Improved Space Can Imply Improved Cache Efficiency
	Matrix Multiplication in External Memory
	Sorting in External Memory

