
Applied Algorithms Lec 4:
Optimation Contd., External
Memory Model

Sam McCauley

September 17, 2024

Williams College

Admin

• Homework 1 due Thursday night; office hours Wed 2-5 and Thu 3-5—come

with questions (more details next slide)

• Some reading today! Optional/potentially useful for reference. We don’t cover
the topic in exactly the same way

• For ex: we’ll have K = 1; no distribution sort; no B-trees

Homework 1 Updates

• Time data is fixed

• The private time data is a little longer than the one I gave you (so expect

somewhat slower absolute times)

• The “Sam” code is pretty fast because it doesn’t binary search

• Hint: what happens if you sort both the left and the right halves?

C Debugging

• Make sure your code editor is happy with your code

• Then: run gcc (probably using make)

• Then: run valgrind

• Then: valgrind test.out testData.txt timeData.txt

• It’s slow. But will (often) literally just tell you every memory-based bug in your
program

• If you run make clean and make debug so valgrind will give you
line-by-line pointers

• To check for memory leaks: valgrind --leak-check=full test.out
testData.txt timeData.txt

• Then normal debugging with gdb etc.

Revisiting Division

Revisiting Division

• We saw last time: integer division is a little faster than I was saying

• I found some things online saying integer division performance has improved

significantly in the last couple years

• Principle does still remain

• I had a project last winter where an extra division significantly affected
performance

• (And another division that did not—in fact the compiler used a fancy math trick
to get rid of it!)

• This experience should underline that rules of thumb like “division is slow” is

just a direction to look—always back it up with experiments

Note on time taken

Latency vs throughput:

• Latency: time it takes for a sequence of data-dependent operations of a given

type

• Throughput: time after a previous operation when a new operation of the same

type can begin.

• Let’s look at an example: latencythroughput.c

Bear this distinction in mind when designing experiments!

Optimization Costs so Far

• Remember: code cleanly; let your compiler optimize as much as it can!

• Compiler is great with local optimizations that are obviously correct at

compile time

Optimization Costs so Far (with Comments on Compiler)

• Lower cost: expensive vs cheap operations; latency vs throughput; memory
allocations themselves; expensive casts

• A few clock cycles per optimization; compiler is quite good at these

• Moderate cost: branch mispredictions

• Could be on the order of 20 cycles if branch is difficult to predict!
• Fewer cycles, but still expensive, if easier to predict
• Compiler can do this when the improvement is not algorithmic

• Let’s talk about the high cost: cache efficiency

• Hardest for the compiler to help with

Cache Efficiency

Final major cost: cache misses!

• Data is stored in different places on the computer

• Cost to access the data frequently dominates running time

How caches work

• Can always assume: your computer stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Modern caches are very complicated

• Can be advantages of accessing adjacent cache lines

• Basically: close is good; recent is good; jumping around is bad.

• Examples: sortedlinkedlist.c and unsortedlinkedlist.c

Code Profiling

Profiling code

• Why not just have your computer tell you what functions are called the most, or

keep track of how long they run, or monitor specific high-cost operations like

cache misses?

• Lots of such tools! We’ll look at a couple of them right now, and use them
throughout the class.

• gprof
• cachegrind
• We won’t use perf but some people like it
• We won’t use Intel VTune either but seems very cool and powerful

• What do you think some advantages and disadvantages are of using profiling

software?

Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof on the executable

• Gives information about what calls what and how much time is in each

• Not perfect, but gives us some information, especially for simpler programs

• Can see if one function is called a LOT
• Can see if one function is only ever called by one other function
• (Can be issues with optimizations, especially -O3)

• I may ask you to use this, but be aware of its limitations

• Let’s run gprof on my twotowers.c

Profilers examples: cachegrind

• Compile with debugging info on -g AND optimizations on
• What does this entail immediately?

• Then valgrind --tool=cachegrind [your program]
wefoiaewfjoiafwej

• Use --branch-sim=yes for branch prediction statistics.
• Very oversimplified unfortunately

• Outputs number of cache misses for instructions, then data, then combined

• Simulates a simple cache (based on your machine) with separate L1 caches for

instructions and data, and unified L2 and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

• Virtual machine: not 100% accurate; slow

• Let’s do sortedlinkedlist.c and unsortedlinkedlist.c; plus

branchpredictions.c

Reading cachegrind output

• I, I1, LLi, etc.: instruction misses

• D, D1: first level of cache

• LL: last layer of cache

• Run cg_annotate cachegrind.out.118717 (the last number will change
based on which cachegrind run you are referring to) for function-by-function
and line-by-line stats

• Extremely wide output; probably want to pipe to a file

• Let’s do cg_annotate for our run of unsortedlinkedlist.c

Real-World Caching

• We looked at a simple, constructed example where caching is easy to reason

about

• But: bear in mind that modern caches are very complicated; interact

nontrivially with other costs (branch mispredictions; expensive operations;

etc.)

• I should at least mention prefetching: if your computer thinks it can get a
head start on fetching your data, it will

• Can also instruct the compiler to do this manually (another very fine-grained
optimization)

• Model things the best you can, but always use experiments when you’re not

sure

Costs of Computation

Designing Experiments

• As said before: make sure macroscopic time

• Try to avoid loop overhead when possible

• Be careful that the code actually does what you’re testing

• Careful: need to make sure the compiler does not optimize out your test!

• Compiler explorer; or compile using gcc -S --verbose-asm

Optimization Conclusions

• Different places where we can incur costs (in increasing order of cost):

• Operations
• Branches and moving around instructions
• Cache misses

• Determining costs is a matter of experimentation on modern machines!

• Rarely perfect!

• Theme throughout class: design different experiments to test different

aspects of code performance.

External Memory Model

Measuring cache misses

• Takeaway from today’s examples: cache performance is often more important

than number of operations

• But algorithmic analysis measures number of operations

• Can we algorithmically examine the cache performance of a program?

• Yes: with the external memory model

What do we want out of this model?

• Simple, but able to capture major performance considerations

• Parameters for the model? How can we make it universal across computers
that may have very different cache parameters?

• Answer: we’ll use parameters. (The exact size of cache, and a cache line, can
drastically affect algorithmic performance.)

• Do we want asymptotics? Worst case?

• Yes!

External memory model basics

• Cache of size M

• Cache line of size B

• Computation is free: only count number of “cache misses.” Can perform

arbitrary computation on items in cache.

• We will say something like “O(n/B) cache misses” rather than “O(n)

operations” to emphasize the model.

External Memory Model Basics

Transferring B consecutive items to/from the disk costs 1. Can only store M things

in cache.

Memory Evictions

• Can only hold M items in cache!

• So when we bring B in, need to write B items back to disk. (We can bring them

in later if we need them again)

• Assume that the computer does this optimally.

• Reasonable; it’s really good at it. Very cool algorithms behind this!

Vocabulary

• “Cache” of size M; “disk” of unlimited size

• With the cost of one “cache miss” can bring in B consecutive items

• (Sometimes called “memory access” or “I/Os” but I will try not to use those
terms.)

• These B items are called a “block” or a “cache line”.

Let’s revisit sortedlinkedlist.c

• What is the cost of our algorithm in the external memory model if the items

are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory model if the items

have stride B+ 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown of this process.

• (Actual performance is worse in this case: we get a slowdown of ≈ 30,

whereas the number of nodes in a cache line is 8. I imagine that this is due to

prefetching; seem to be some further optimizations internally.)

Finding the minimum element in an array

• How many cache misses in the external memory model?

• Answer: O(n/B)

Binary search?

• What is the recurrence for binary search in terms of number of operations?

• What is the recurrence for binary search in terms of the number of cache

misses?

• Each recursive call takes 1 cache miss.

• Base case: can perform all operations on B items with only 1 cache miss

• Total: O(log2(n/B)) cache misses.

Fitting in Cache

• If you have a sequence of operations on a dataset of size at most M, there is

no further cost so long as they all stay in cache!

• O(M/B) to load the items into cache, then all computation is free

• Real-world time: what if instead of a linked list of 100 million items, we

repeatedly access a linked list of 100 thousand items?

Why does the external memory model make sense?

• Simple model that captures one level of the memory hierarchy

• Idea: usually one level has by far the largest cost.

• Small programs may be dominated by L1 cache misses

• Larger programs it may be by L3 cache misses

• External memory model zooms in on one crucial level of the memory hierarchy

(with particular B, M); gives asymptotics for how well we do on that level.

Question about External Memory
Model Basics?

Joke to break up the material

Joke to break up the material

Matrix Multiplication in External
Memory

Matrix Multiplication Reminder

• Given two n× n matrices A, B

• Want to compute their product C:

• cij =
∑n

k=1 aikbkj

Example:

[
1 2

8 −1

]
×

[
2 3

−2 7

]
=

[
−2 17

18 17

]

Compute Product Directly

1 for i = 1 to n:
2 for j = 1 to n:
3 for k = 1 to n:
4 C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many I/Os does this take?

• Assume matrices are stored in
row-major order.

• First: assume M < n2 Then all
fits in cache; O(n2/B) I/Os

• What if M > n2?

• Answer: O(n3) I/Os. Every
operation requires an I/O for B.

Any ideas for how to improve this?

• One idea: transpose B (store in column-major order)

• A good idea; works well! A bit nontrivial, especially if you want the transposition
to be cache-efficient

• Another idea: swap the loops! How many cache misses is this?

1 for i = 1 to n:
2 for k = 1 to n:
3 for j = 1 to n:
4 C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) cache misses. Is this actually worth doing?

Yep!

We haven’t used the cache yet

• No Ms in any running times

• Why? All algorithms so far have read the data once and then thrown it away.

• Goal: bring items into cache so that we can perform many computations on

them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal. But we did do this with

smallunsortedlinkedlist.c

Blocking

• Standard technique for improving cache performance of algorithms.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) I/Os

• Efficiently combine them for a cache-efficient solution

Blocked Matrix Multiplication

• Split A, B, and C into blocks of size M/3

•
√
M/3×

√
M/3 matrices

• Really want blocks with size T = b
√
M/3c. Assume that T divides n for now so

there’s no rounding

• Multiply blocks one at a time

Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and

multiply (and add) them as normal, we obtain the same result as we would have in

normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication

Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

We can use this principle to multiply two larger matrices.
17 15 20 4
15 3 20 8
1 10 15 2
3 19 3 14

 ·


4 12 9 1
4 6 11 2
13 18 8 20
3 11 18 9

 =



[
17 15
15 3

]
·
[

4 12
4 6

]
+

[
20 4
20 8

]
·
[

13 8
3 11

] [
17 15
15 3

]
·
[

9 1
11 2

]
+

[
20 4
20 8

]
·
[

8 20
18 9

]
[

1 10
3 19

]
·
[

4 12
4 6

]
+

[
15 2
3 14

]
·
[

13 8
3 11

] [
1 10
3 19

]
·
[

9 1
11 2

]
+

[
15 2
3 14

]
·
[

8 20
18 9

]


Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (recall that T2 ≤ M/3)

• Do a normal n/T × n/T matrix multiplication

Blocked Matrix Multiplication Pseudocode

1 MatrixMultiply(A, B, C, n, T):
2 for i = 1 to n/T:
3 for j = 1 to n/T:
4 for k = 1 to n/T:
5 A’ = TxT matrix with upper left corner A[Ti][Tk]
6 B’ = TxT matrix with upper left corner B[Tk][Tj]
7 C’ = TxT matrix with upper left corner C[Ti][Tj]
8 BlockMultiply(A’, B’, C’, T)
9

10 BlockMultiply(A, B, C, n):
11 for i = 1 to n:
12 for j = 1 to n:
13 for k = 1 to n:
14 C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model together on the board!

Analysis

• Creating A′, B′, C′ and passing them to BlockMultiply all can be done in

O(T2/B+ T) cache misses. If B = O(T) then we can just write O(T2/B); let’s

assume this for simplicity.

• BlockMultiply only accesses elements of A′, B′, C′. Since all three matrices

are in cache, it requires zero additional cache misses

• Therefore, our total running time is the number of loop iterations times the

cost of a loop. This is O((n/T)3 · T2/B) = O((n/
√
M)3 ·M/B) = O(n3/B

√
M).

Implementation questions!

• What do we do if n is not divisible by T?

• Easy answer: pad it out! Doesn’t change asymptotics.
• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache and we’re ignoring
that space is used for other programs, other variables, etc.

• Experiment! Try different values of M and see what’s fastest on a particular
machine.

• Is blocking actually worthwhile?

• Yes; it is used all the time to speed up programs with poor cache performance.
• (Not a panacea; some programs (like linear scan, binary search) can’t be

blocked.)

Sorting in External Memory

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does n log n come from?

• Answer: each time you compare two numbers, can only have two outcomes.

• Each time we bring a cache line into cache, how many more things can we

compare it to?

Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256
1 2 4 . . .

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this fits!)

• When all B slots are empty for the array, take B more items from the array in

cache.

• Example on board

Analysis

• Divide array into M/B parts; combine in O(N/B) cache misses.

• Recursion:

T(N) = T(N/(M/B)) + O(N/B)T(B) = O(1)

• Solves to O(nB logM/B n/B) cache misses

• Optimal!

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Timsort

Timsort

• Developed to be the sorting method for python

• Now also used in Java, Rust

• Keeps cache in mind, but focuses more on taking advantage of easy patterns

in data

Blocking revisited: run generation

• Basic idea: sort all M-sized subarrays. That would give us sorted subarrays of

length M to start out with

• This is wasteful, as we empty out cache between each subarray

• Timsort starts with “run generation”: a greedy version of this that uses the

same cache for as long as possible. Always outputs sorted runs of length at

least M; can be MUCH longer

Timsort after run generation

• First, run generation

• Then, super optimized (2-way) merge sort

• Insertion sort on any very small arrays that are encountered (size < 64)

External Memory Sorting

• M/B way merge sort is most efficient

• Timsort is very popular in practice; uses a simpler blocking approach to stay

cache-friendly.

	Cache Efficiency
	Code Profiling
	Costs of Computation
	External Memory Model
	Question about External Memory Model Basics?
	Matrix Multiplication in External Memory
	Sorting in External Memory

