
Applied Algorithms Lec 3:
Optimization

Sam McCauley

September 13, 2024

Williams College



Admin

• Highly relevant talk during colloquium today (right after class)

• Reminder: this is Homework 1 (one or two places old versions of the class have

slipped through; should be fixed). You can collaborate on code; questions

should be your own

• Homework 1 (should be) fully available; we’ll talk about momentarily



How to do Homework/Assignments



Basics of submission

• Each of you have a git repo

• Your code is automatically run twice a day on TCL312 machines

• Feedback from automatic runs given back to you in feedback/ directory

• Also some thought questions in handout/ directory; please answer in the

latex

• Grading is anonymous (I use a local script) (This also means you shouldn’t put

your name in your code or latex)



Handing in Assignments document



Accessing lab computers

• Ssh into one of the listed lab computers, or work in person

• Use software you’re comfortable with. But I’m happy to help if you’re learning

something. (vim and/or emacs are something you should all probably know the

basics of at some point.)

• Whatever editor you want; VSCode is widely recommended

• Use Remote-SSH on VSCode for best of both worlds

• You should almost certainly use software with syntax highlighting and some
automatic indentation. Nowadays it’s best if you use software with an LSP (or
something similar) that tells you about errors immediately.

• Working in person on lab machines mean you can use a GUI application



How to work on Homework/Assignments

• Work in the repo I gave you

• Don’t alter test.c; only alter Makefile if you want to (or need to)

• Really it’s best to work on lab computers; but not 100% necessary



Accessing lab computers from off campus

• Cannot ssh into the lab computers directly from off-campus!

• First ssh into lohani. From lohani, ssh into lab computers.
• This double ssh is a bit of a pain, and may cause issues with things like syntax

highlighting; has anyone done this with VSCode?
• Working on your computer; pushing and running on lab computers; is always an

option.



Homework 1

• Code can be done collaboratively if you cite

• Question should be done on your own

• We’ll talk about experiments in a bit: this question is fairly open-ended, but
the important part is thinking about what goes into an experiment

• Don’t need to generate your own data

• Questions 3a and 3b are intended to only have short answers. 3b in particular

is mostly a hint for 3c.

• Homeworks and assignments are meant to challenge everyone across a fairly
broad set of areas!

• May be particularly difficult when not in your wheelhouse
• Talk to me; remember that you’re not expected to get all As on every homework

or assignment



Automatic Runs

• Twice a day

• Uses different files than those available to you

• Pros/cons of this

• Debugging without full information can be important, but also can be frustrating

• I’m happy to help; talk to me if something seems insurmountable



Feedback

• Each run generates a timestamped text file with information about what

happened

• Also have an .html file summarizing. (Can open in the browser and it should

look reasonably nice)

• The HTML feedback file also contains your ID for the leaderboard

• Let’s look at that too



Homework questions

• I’ll give you the latex under handout/ in your repo; answer the questions

there

• Can upload to overleaf if you want

• Honestly I’ll probably grade it just by reading the latex; I’ll only compile it if I

can’t read it. So don’t worry too much about it being perfect.



Optimization



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Amdahl’s Law

If a function takes up a p fraction of

the entire program’s runtime, and you

speed it up by a factor s, then the

overall program speeds up by a fac-

tor
1

1− p+ p/s



Amdahl’s Law and Asymptotics

• Can estimate the total time of an algorithm asymptotically

• Example: Where to improve Dijkstra’s algorithm?



Dijkstra’s Algorithm

1 function Dijkstra(Graph, source):
2 create vertex set Q
3 for each vertex v in Graph:
4 dist[v] ← INFINITY
5 prev[v] ← UNDEFINED
6 add v to Q
7 dist[source] ← 0
8 while Q is not empty:
9 u ← vertex in Q with min dist[u]

10 remove u from Q
11 for each neighbor v of u still in Q:
12 alt ← dist[u] + length(u, v)
13 if alt < dist[v]:
14 dist[v] ← alt
15 prev[v] ← u
16 return dist[], prev[]



Dijkstra’s Algorithm

1 function Dijkstra(Graph, source):
2 while Q is not empty:
3 u ← vertex in Q with min dist[u]
4 remove u from Q
5 for each neighbor v of u still in Q:
6 alt ← dist[u] + length(u, v)
7 if alt < dist[v]:
8 dist[v] ← alt
9 prev[v] ← u

10 return dist[], prev[]

The inner for loop (blue part) is, at first glance, by far the most important part to

optimize.



Measuring Performance



What units to measure time?



What units to measure time?

• Overall: CPU time

• Some idiosyncracies in how we’re measuring it
• CPU vs wall clock time shouldn’t make much difference for us
• Parallelism doesn’t help

• Costs of specific operations are sometimes given using number of “CPU

cycles” (we’ll come back to this in a second)

• Not-really-accurate-anymore definition of a cycle: time to perform one basic

operation



Easiest way to measure time: just time it using built-in tools!

Easy, probably reflective of what you want.

But some things to bear in mind:

• Make sure your timing is macroscopic.

• No timing is exact.
• CPU clocks usually only have a resolution of ≈ 1 million ticks per second

(sometimes less)
• Minimize issues with overhead, external factors
• Rule of thumb: ideally an experiment will take ≈ 1 second
• Always repeat several times and check consistency

• Let’s look at how test.c times your code on Homework 1

• Can also use unix time function



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes over all calls. How

can we hope to do that if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct types of data.
• Make sure the compiler does not optimize out your whole experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will the change in data
affect running time?

3. Profiling!

We’ll come back to this with some examples later today. Bear in mind:

benchmarking itself is an entire area of computer science.



What is Slow on Modern
Computers? (Rules of Thumb)



Note on time taken

In the last couple years, Intel has stopped releasing this information!

• Too much else going on for strong conclusions.

• I’ll go over the numbers from a couple years ago anyway; some (very high

level) lessons to be learned

• To know if something is fast: run an experiment!



Basic operations (latency)

• Integer add, multiply (bit operations, move, push, pop, etc.)

• fast! 1-2 cycles

• Divide, modulo

• Pretty slow; 5-20 cycles

• Float add, multiply?

• Pretty fast on x86; almost as fast as integers



Experiments

• Let’s run some (really rough) experiments: timetests.c

• Unroll loops to minimize loop overhead; compile with optimizations off

• Why is this important? Let’s look at the assembly

• Compiler explorer: recent, super cool tool to look at assembly for C code

• godbolt.org
• Awesome for people (like me) who aren’t assembly experts but sometimes care

about what exactly the computer is doing

godbolt.org


More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• memory allocation in bytes? timetests2.c

• memory allocation in megabytes?

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself
• (For what it’s worth: malloc really is O(1))



Modern processors

• Lots going on

• Moving things around takes more

time than processing



Casts and moving data around

• Casts can be expensive if they require moving the data into another part of the

processor!

• (Can be free if they don’t)



Branch mispredictions, etc.

• Instructions need to be moved into the CPU

• Modern CPUs predict what instructions will be next; move while completing

other operations

• What if the CPU gets it wrong?

• “Branch misprediction:” 10-20 cycles to fetch the new instructions from

memory

• Can have similar issues with calling non-inlined functions (compiler is very

good at avoiding this)



Branch predictors

• CPU keeps track of your branches as it runs

• Divides into four categories of how likely it is to be taken

• gcc also predicts your branches during compilation

• Can also give preprocessor directives about branches. Can be helpful (one of

the last things you should do for optimization)



Avoiding branch mispredictions

1 int max(int a, int b) {
2 int diff = a - b;
3 int dsgn = diff >> 31;
4 return a - (diff & dsgn);
5 }

1 int swap(int a, int b) {
2 a = a ^ b;
3 b = a ^ b;
4 a = a ^ b;
5 }

• Avoid branches (ifs, etc.) by

refactoring when possible

• Crazy tricks often not worth it

nowadays—true in general;

though some exceptions

(again, check this only at the

very end of optimizing; only for

crucial operations)



Avoiding branch mispredictions

1 int max(int a, int b) {
2 int diff = a - b;
3 int dsgn = diff >> 31;
4 return a - (diff & dsgn);
5 }

1 int swap(int a, int b) {
2 a = a ^ b;
3 b = a ^ b;
4 a = a ^ b;
5 }

• cmov operations help a lot in

modern processors; compilers

are great at avoiding

expensive branches

• If you do create a branch, ask

yourself how easy it is to

predict!

• Only way to be sure is to

experiment

• branchpredictions.c



Code Profiling



Profiling code

• Why not just have your computer tell you what functions are caused the most,

or keep track of how long they run, or monitor specific high-cost operations?

• Lots of such tools! We’ll look at a couple of them right now, and use them
throughout the class.

• gprof
• cachegrind
• We won’t use perf but some people like it
• We won’t use Intel VTune either but seems very cool and powerful

• What do you think some advantages and disadvantages are of using profiling

software?



gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize; overhead; sampling
problems

• We’ll look at some examples later



callgrind and cachegrind

• Features of valgrind

• callgrind gives gprof-like profiling

• cachegrind helps determine the cost of moving data: cache misses, branch

mispredictions, etc.

• Essentially runs the program on a virtual machine

• Gives information about costs you could not otherwise get, but VERY slow.



Costs of Computation



Note on time taken

Latency vs throughput:

• Latency: time it takes for a sequence of data-dependent operations of a given

type

• Throughput: time after a previous operation when a new operation of the same

type can begin.

• Let’s look at an example: latencythroughput2.c



Designing Experiments

• As said before: make sure macroscopic time

• Try to avoid loop overhead when possible

• Be careful that the code actually does what you’re testing

• Careful: need to make sure the compiler does not optimize out your test!

• Compiler explorer; or gcc -S --verbose-asm

• Let’s try the gcc method on latencythroughput1.c



Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof on the executable

• Gives information about what calls what and how much time is in each

• Not perfect, but gives us some information, especially for simpler programs

• Can see if one function is called a LOT
• Can see if one function is only ever called by one other function

• Gets confusing with recursive calls

• I may ask you to use this, but be aware that it’s useful sometimes at best



Final major cost: cache misses!

• Data is stored in different places on the computer

• Cost to access the data frequently dominates running time





How caches work

• Stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; recent is good; jumping around is bad.

• Example: sortedlinkedlist.c unsortedlinkedlist.c



Profilers examples: cachegrind

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind [your program]

• Outputs number of cache misses for instructions, then data, then combined

• Simulates a simple cache (based on your machine) with separate L1 caches for

instructions and data, and unified L2 and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

• Virtual machine: not 100% accurate; slow



Reading cachegrind output

• I, I1, LLi, etc.: instruction misses

• D, D1: first level of cache

• LL: last layer of cache

• Run cg_annotate cachegrind.out.118717 (the last number will change
based on which cachegrind run you are referring to) for function-by-function
and line-by-line stats

• Extremely wide output; probably want to pipe to a file

• Let’s look at sortedlinkedlist.c and unsortedlinkedlist.c again



Real-World Caching

• We looked at simple, constructed examples where caching is easy to reason

about

• But: bear in mind that modern caches are very complicated; interact

nontrivially with other costs (branch mispredictions; expensive operations;

etc.)

• I should at least mention prefetching: if your computer thinks it can get a

head start on fetching your data, it will

• Model things the best you can, but always use experiments when you’re not

sure





Conclusions

• Different places where we can incur costs:

• Operations
• Branches and moving around instructions
• Cache misses

• Determining costs is a matter of experimentation on modern machines!

• Rarely perfect!

• Theme throughout class: design different experiments to test different

aspects of code performance.


	How to do Homework/Assignments
	Optimization
	Measuring Performance
	What is Slow on Modern Computers? (Rules of Thumb)
	Code Profiling
	Costs of Computation

