
Lecture 21: van Emde Boas Trees

Sam McCauley

November 26, 2024

Williams College

Admin

• Any questions?

Predecessor and Successor Queries

Problem for today:

• Store a set S of size n (must be comparable items: for any i , j ∈ S must have
i < j , i > j , or i = j).

• Want to answer predecessor and successor queries. On a query q
• Predecessor: Find the largest i ∈ S such that i ≤ q
• Successor: Find the smallest i ∈ S such that i ≥ q

• Also want to be able to insert and delete items

• In CS 136 we saw how to answer this using a balanced binary search tree in
O(log n) time

• This is optimal if all you can do is compare items

Generalizing the model

• This assumption is often too restrictive! Often we want to perform
predecessor queries on integers or strings

• Know much more about the relative values of integers or strings

• Today: let’s say that the items of S are taken from a bounded set
{0, . . . ,M − 1}

• For example: if the items of S are 64-bit integers, then we have M = 264. If
items of S are k -character strings, we have M = 256k .

• In this case, we will show how to get predecessor and successor in
O(log logM) time.

• For a w-bit integer, get O(logw) time
• For a k -character string, get O(log k) time

Data structure for today

• Van Emde Boas tree!

• Clever data structure. Very good constants, but still used sometimes in
practice

• We’ll only look at inserts, successor. Can generalize to predecessor queries
and deletes.

• Let’s not worry about space today (we’ll wind up with O(M) space). Some
techniques to achieve O(n) space.

• Also, let’s assume that log2 log2 M is an integer (M is 2 to a power of 2; like 28

or 264)

First attempt at Insert, Successor

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

q

• Let’s keep a bit array A of length M

• A[i] = 0 if i /∈ S, A[i] = 1 if i ∈ S
• Time for insert?
• O(1)
• Time for successor?
• O(M)

• Insert is really fast. Can we try to speed up successor?

Second attempt at Insert, Successor

• Split our array into “clusters” of
√

M elements.
• Let’s do a “two-level” query for the successor:

• First, find which cluster q is in
• If the successor of q is there then we are done (O(

√
M) time)

• Otherwise, find the next nonempty cluster
• Then, query within the correct cluster for the minimum element (O(

√
M) time as

before)
• How can we query for minimum using a successor query?
• How can we find the next nonempty cluster?

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 0 cluster 1 cluster 2 cluster 3

q

Second attempt at Insert, Successor

• We want to find the next nonempty cluster

• That’s a successor query!

• Let’s create a second, identical data structure to hold whether or not each
cluster is empty

1 1 0 1
0 1 2 3

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 1 cluster 2 cluster 3 cluster 4

q

Summary array:

Second attempt at Insert, Successor

O(1) insert, O(
√

M) successor query:

Successor:

• Figure out which cluster q is in (can calculate: bq/
√

Mc)

• (These are the top w/2 bits of q if q is an integer, or the first k/2 characters if
q is a string.)

• Check for the successor of q in q’s cluster

• If it’s not found:

• Find the next nonempty cluster by looking in the summary array (O(
√

M) time)

• Find the successor of q by looking for the smallest element in that cluster

• O(
√

M) time

Second attempt at Insert, Successor

1 1 0 1
0 1 2 3

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 1 cluster 2 cluster 3 cluster 4

Summary array:

Second attempt at Insert, Successor

O(1) insert, O(
√

M) successor query:

Insert:

• Set the q bit in the overall array

• Figure out which cluster q is in (can calculate: bq/
√

Mc)

• (These are the top w/2 bits of q)

• Set the cluster bit in the summary array

Where to go from here?

• Insert is still really fast, we want to improve successor.

• Where can we improve?

• All our time is spent doing array scans for successor queries within a cluster...

• But we know how to do better-than-linear successor queries! Let’s recurse.

Recursing: van Emde Boas Tree (almost)

If M = 1, just store the array.

Otherwise:

• Store a summary vEB tree of size
√
|M| to keep track of which clusters are

full

• For each cluster, store a vEB tree of size
√

M

• (Keep an array with a pointer to each of these vEB trees)

• Let’s draw a picture of it on the board

(almost) vEB Tree Insert

• To insert, we need to recursively insert into the summary vEB tree, and we
need to insert into the appropriate cluster

• Recurrence:

• T (M) = 2T (
√

M) + O(1)

• Solves to O(logM) insert time (too slow!)

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor query on the
summary vEB tree

• Then query that cluster for the minimum element

• Let’s draw what this might look like on the board.

• Recurrence:

• T (M) = 3T (
√

M) + O(1)

• Solves to O((logM)log2 3) = O(log1.585 M) insert time (way too slow!)

The Problem

• Too many recursive calls!

• Can we get rid of some of them? Let’s focus on successor

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor query on the
summary vEB tree

• Then query that cluster for the minimum element

• Finding the minimum element doesn’t require a whole successor call! Let’s
just store the minimum element in each cluster. Then finding the minimum
element is O(1).

vEB Tree: Adding Minimum Element

• On insert: proceed like before (insert into summary cluster; insert into the
cluster itself). But, every time you insert into a cluster, check to see if the
element we’re inserting is the new minimum. If so, swap it out.

• Successor: we still query the main cluster. If the successor is not found, use a
successor query in the summary vEB tree to find the next nonempty cluster.
Return the minimum element in that cluster.

• Recurrence for both: T (M) = 2T (
√

M) + O(1); solves to T (M) = logM.

vEB Tree

vEB Tree

Getting to log logM

• Target recurrence?

• T (M) = T (
√

M) + O(1). This solves to O(log logM).

• Goal: get rid of second recursive call in insert and successor query

• On query: we still query the main cluster. If the successor is not found, use a
successor query in the summary vEB tree to find the next nonempty cluster.
Return the minimum element in that cluster.

• How can we make this just one call?

• Hint: Can we store something to help us determine if q has a successor in its
cluster without a recursive query?

• Store the max element in each cluster!

vEB Tree: Store the Max and Min in each cluster

• On query: find q’s cluster.

• If q is less than the max, find successor(q) in that cluster and return it

• Otherwise, use a successor query on the summary vEB tree to find the next
nonempty cluster

• Return the minimum element in that cluster

• Example on board: store 3,5,15 from universe {0, . . .15}; query for element
8.

vEB Tree

vEB Tree

Speeding up Insert

• Before: insert q in correct cluster; insert cluster into summary data structure

• How can we turn this into one recursive call?

• We only need to insert q into summary data structure if its cluster was empty

• In that case: just store q as min!

• Change to the algorithm: don’t store minimum element recursively!

• Only need to recurse on summary data structure

Making sure successor still works

• Does successor still work if the minimum element is not stored recursively?

• No, but it’s easy to fix: just check if q < the minimum element. If so, the
minimum element is the successor.

• Done!

van Emde Boas Tree Summary

• If |M| = 1, just store whether or not the one element is in our set

• Otherwise, have a “summary” vEB tree of size
√

M; and, divide M into
√

M
parts, with one vEB tree for each

• Plus the minimum and maximum elements in our structure, if they exist

van Emde Boas Tree Summary: Insert

To insert an item x :

• Find x ’s cluster c. If c has no minimum, set the minimum of c to be x , and
insert c into the summary data structure.

• Otherwise:
• Check if x is less than the minimum m.
• If so, set x to be the minimum, and insert m into x ’s cluster.
• Do the same for the maximum.
• Otherwise, insert x into its cluster.

van Emde Boas Tree Summary: Successor

To find the successor of an item x :

• If x is less than the current minimum element m, return m.

• Find x ’s cluster c. If x is smaller than the maximum value in that cluster, query
vEB tree c for the successor of x .

• Otherwise, query the summary vEB tree for the successor of c; call it c′.
Return the minimum element of c′.

Analysis

• Successor does O(1) work and makes one recursive call of size
√

M.

• T (M) = T (
√

M) + O(1) gives O(log logM) query time

• Insert does O(1) work and makes one recursive call of size
√

M; also
O(log logM) time

Moving forward

• Predecessor queries?

• Pretty much identical

• What’s the current space usage? Can we set up a recurrence?

• S(M) = (
√

M + 1)S(
√

M) + O(
√

M)

• Solves to O(M). Very bad!

• Deletes?

• Can make deletes work pretty easily with what we have.

Smaller space

• We won’t go over this

• Basic idea: just use hashing! Only store nonempty clusters

• Can get O(n) space

• Possible to get O(n) space deterministically using another, more complicated
data structure (y-fast tries)

Predecessor/Successor data structures

For a set S from {0, . . . ,M − 1}:

• BBSTs: O(log n)

• van Emde Boas trees: O(log logM)

• Takeaway: unless M is very large or n is very small, vEB trees are quite a lot
faster

• But, they’re probably a bit more complicated

