
Applied Algorithms Lec 2: Meet
in the Middle and Optimization

Sam McCauley

September 10, 2024

Williams College



Admin

• Office hours 2-5 tomorrow and 3-5 Thursday in TCL 306

• Do Assignment 0 if you haven’t

• Assignment 1 released tomorrow; we’ll talk about the assignment and handin

instructions on Friday

• Comment about Assignments: they can have (brief) questions about

techniques seen on homework, but the code and main focus is on a new,

related algorithm



Plan going forward

• Today: wrap up C review; start first part of course

• Part 1: Time and space
• Today is “meet in the middle”—topic of Assignment 1

• Friday: optimization, handing in assignments

• After that: how to analyze cache misses algorithmically



Wrapping up C Review



Memory Allocation

• malloc and free
• Also use calloc and realloc
• Need stdlib.h

• If you call C++ code, be careful with mixing new and malloc

• Use useful library functions like memset and memcpy

• Example: memory1.c



Sorting in C

• qsort() from stdlib.h

• Takes as arguments array pointer, size of array, size of each element, and a

comparison function

• What’s a downside to this in terms of efficiency?

• Many ways to get better sorts in C:

• Nicely-written homemade sort
• C++ boost library
• Third-party code

• Instructions to get this to work in handouts on the website (strictly optional)



Architecture this Semester

• x86 architecture (not AMD, not M2 etc.)

• Intel i7; run lscpu on a lab computer for details

• This is likely to have an effect on performance in some cases

• Your home computers are fine for correctness and coarse optimization; use

lab computers for fine-grained optimization

• If I ask you to do a performance comparison, you should generally do it on lab

computers. In any case you should write what you do it on.



Where are things stored?

• In CPU register (never touching
memory)

• Temporary variables like loop
indices

• Compiler decides this

• Call stack

• Small amount of dedicated
memory to keep track of current
function and local variables

• Pop back to last function when
done

• temporary



Other place to store things

• The heap!

• Very large amount of memory (basically all of RAM)

• Create space on heap using malloc

• Need stdlib.h to use malloc



How to decide stack vs heap?

• Java rules work out well:

• “objects” and arrays on the heap
• Anything that needs to be around after the function is over should be on the heap
• Otherwise declare primitive types and let the compiler work it out
• Keep scope in mind!



Makefile

• Each time we change a file, need to recompile that file

• Need to build output file (but don’t need to recompile other unchanged files)

• Makefile does this automatically



In this class

• I’ll give you a makefile

• You don’t need to change it unless you use multiple files or want to set
compiler options

• Probably don’t need to use multiple files in this class
• (Some exceptions for things like wrapper functions.)



Let’s look quickly at the default Makefile

• make, make clean, make debug



Compiler flags

• -g for debug, -c for compile without build (creates .o file)

• Different optimization flags:

• -O2 is the default level
• -O3, -Ofast is more aggressive; doesn’t promise correctness in some corner

cases
• -O0 doesn’t optimize; -Og is no optimization for debugging
• Other flags to specifically take advantage of certain compiler features (we’ll

come back to this)

• -S (along with -fverbose-asm for helpful info) to get assembly

• Also: “Compiler Explorer” online



Variable types

• int, long, etc. not necessarily the same on different systems

• On Windows long is probably 32 bits, on Mac and Unix it’s probably 64 bits
• long long is probably 64 bits

• Instead: include stdint.h, describe types explicitly

• Keep an eye out for unsigned vs signed.

• Quick example: variabletypes.c

• printf does expect primitive types



Variable types cont.

• int (etc.) is OK for things like small loops

• If you care at all about size you should use the type explicitly

• Up to you when and where you use unsigned

• Controversial in terms of style



List of particularly useful integer variable types

• int64_t, int32_t: signed integers of given size

• uint64_t, uint8_t: unsigned integers of given size

• INT64_MAX (etc.): maximum value of an object of type int64_t



Part 1: Time and Space



Article in Quanta magazine yesterday about time and space in algorithms.



Part 1 of the course

• In CS 256, we focused largely on the running time of an algorithm, and

occasionally talked about space

• But: the way time and space interact is crucial to understanding algorithmic

efficiency

• Next three weeks: explore time and space in more detail, using a couple
classic algorithms as examples of:

1. How using more space can decrease running time bounds;

2. How using higher running time bounds to improve space efficiency can decrease
wall-clock running time;

3. How time and space trade off with cache efficiency



Meet in the Middle



Two towers reminder (?)

• Input: n blocks of given area.

Taking the square root of the area

gives us the height of each block

(let’s call the set of heights S)

• Goal: make two towers with height

as close as possible



Two towers observations from 136

• Equivalent problem: make the smaller tower

as large as possible. This means our goal is:

find the subset of blocks with largest total

height that’s at most 1
2

∑
s∈S s.

• Any ideas for how to solve this correctly (but

slowly)?

• First method: try all subsets. For each,

calculate its height; store best seen at each

point.

• Running time? Space?

• O(n2n) time; O(n) space



Some implementation details

• Can store a subset using an int of at most n bits (all instances have n ≤ 64)

• Each 0 means the item is not in the set; each 1 means the item is in the set
• Let’s do a quick example on the board

• Then, can iterate through the subsets by starting at 0 and incrementing to

2n − 1.

• For each subset, calculate the height by going through the bits and adding

when you see a 1. Keep the heights as an array of floats.

• Then only need O(1) space (just store 1 integer at all times)



Meet in the middle

• Divide S into two sets: S1

and S2.

• There must be SOME subset

of S1 in the correct final

smaller tower.

• On board: how can we use

this to design a algorithm?

(Not fast yet!)

For any set S′, let h(S′) be the height of all

elements in S′.

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2:
4 if h(A2) + s1 ≤ h(S)/2:
5 updateMax(h(A2) + s1)



Meet in the Middle

1 for each subset A1 of S1:
2 s1 ← h(A1)
3 for each subset A2 of S2 :
4 if h(A2) + s1 ≤ h(S)/2 :
5 updateMax(h(A2) + s1)

• What is the inner loop

doing?

• Finds the set A2 with height

closest to h(S)/2

• How can we preprocess S2

to answer these queries

quickly?

• Answer: sort all subsets of

S2. Then can answer this

query using binary search!



Meet in the Middle

1 Fill array P with all subsets of S2

2 Sort P by height
3 for each subset A1 of S1:
4 s1 ← h(A1)
5 binsearch(P, h(S)/2− s1)
6 updateMax(h(A2) + s1)

• Let’s analyze this

approach.

• P has length O(2n/2).

Sorting it takes

O(n2n/2)

• Each binary search

takes O(n) time;

perform O(2n/2) of them

• Total: O(n2n/2) space,

O(n2n/2) time



Meet in the Middle

• Before we go forward, let’s go over the high level strategy



Meet in the Middle

Let’s say we have a set of blocks. Normally we use will try all subsets of these

blocks and find the largest subset that’s at most half the total size.



Meet in the Middle

Partition the blocks into two equal-sized sets.Partition the blocks into two equal-sized sets.

Question: what subset of the yellow blocks is used in the correct solution?



Meet in the Middle

0.0 00000
7.2 00001
5.1 00010
12.3 00011
9.8 00100
17.0 00101

. . .

First, let’s do some brute force preprocessing on the blue blocks.

Go through all subsets of the blue blocks, and store their heights in a table.



Meet in the Middle

0.0 00000
7.2 00001
5.1 00010
12.3 00011
9.8 00100
17.0 00101

. . .

First, let’s do some brute force preprocessing on the blue blocks.

Go through all subsets of the blue blocks, and store their heights in a table.

Then, sort the table by height.



Meet in the Middle

0.0 00000
5.1 00010
7.2 00001
9.8 00100
12.3 00011
17.0 00101

. . .

First, let’s do some brute force preprocessing on the blue blocks.

Go through all subsets of the blue blocks, and store their heights in a table.

Then, sort the table by height.



Meet in the Middle

?

Now, go through every possible set of yellow blocks.

If the yellow blocks have height h(A1), we want blue blocks with height as close to

h(S)/2− h(A1) as possible.



Meet in the Middle

0.0 00000
5.1 00010
7.2 00001
9.8 00100

. . .

Now, go through every possible set of yellow blocks. How quickly can we find the

best set of blue blocks? Why don’t we need to check any other subsets of blue

blocks?



What we get

• O(2n/2) space, O(n2n/2) time. (Everyone remember how?)

• “Meet in the middle”—rather than considering all subsets, we break into two

halves. We search in the yellow and blue halves one at a time, then combine

them to get one solution.

• Very wide uses: optimization problems, cryptography, etc.



What does this mean?

• What is O(n2n) vs O(n2n/2) time? Do they differ by more than a constant?

• O(2n/2) space is a lot. Is this worth it?

• Wait, can we do better than this?



Some questions about meet in the middle

• How can we store the solutions from the blue subproblems? What does this
data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly equal? Would our

strategy change? Could we get improved running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved in something like
O(
√
N) time?

• No: need the two halves to be independent. (We build the table on the blue half
once. That table needs to work for every query.)

• For example, 3SAT doesn’t work here. On assignment you’ll see another problem
where there are issues.



Optimization thought questions

• The data we’re sorting has a special structure. Can we use that structure to

improve the sort?

• Figuring out the size of a tower is expensive. Can we make this cost less than

O(n)? Do these changes have other costs?

• Binary search has many branch mispredictions and is cache-inefficient. (We’ll

talk about these terms more next lecture.) Is there a way to solve the problem

without binary search, improving cache efficiency? Or to avoid some of these

costs with the binary search?



Meet in the Middle

• A way to use extra space to dramatically improve the running time of some

search algorithms

• Any lingering questions about meet in the middle?

• Assignment 1 released tonight; I’ll set up starter repos by tomorrow evening

(fill out the Assignment 0 form if you haven’t!)



Principles of Optimization



Reminder

• “Premature optimization is the root

of all evil!”

• Don’t optimize your code until you

have a working copy.

• Some gray area with structural

decisions/trivial ideas—but until

something works that is your main

goal.



Theory and Reality

• Computers are complicated! (And processors are proprietary!)

• Efficiency is always going to be highly experimental.

• Sometimes something should work, but doesn’t. Or vice versa.

• Goal for this section: better understanding of where costs come from and how

we can measure them



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to try to optimize

first?

• Answer: the one that takes the most total time

• Time it takes × number of times it’s called
• May not be the slowest function—in fact, it’s often a very fast but very

frequently-used function

• Probably need to take into account potential to speed it up as well—I want the

function that takes up the most time that I can save.



Amdahl’s Law

If a function takes up a p fraction of

the entire program’s runtime, and you

speed it up by a factor s, then the

overall program speeds up by a fac-

tor
1

1− p+ p/s

• Examples


	Wrapping up C Review
	Part 1: Time and Space
	Meet in the Middle
	Principles of Optimization

