Applied Algorithms Lec 2: Meet in the Middle and Optimization

Sam McCauley

September 10, 2024

Williams College

- Office hours 2-5 tomorrow and 3-5 Thursday in TCL 306
- Do Assignment 0 if you haven't
- Assignment 1 released tomorrow; we'll talk about the assignment and handin instructions on Friday
- Comment about Assignments: they can have (brief) questions about techniques seen on homework, but the code and main focus is on a new, related algorithm

- Today: wrap up C review; start first part of course
 - Part 1: Time and space
 - Today is "meet in the middle"-topic of Assignment 1

- Friday: optimization, handing in assignments
- After that: how to analyze cache misses algorithmically

Wrapping up C Review

- malloc and free
 - Also use calloc and realloc
 - Need stdlib.h
- If you call C++ code, be careful with mixing new and malloc
- Use useful library functions like memset and memcpy
- Example: memory1.c

Sorting in C

- qsort() from stdlib.h
- Takes as arguments array pointer, size of array, size of each element, and a comparison function
- What's a downside to this in terms of efficiency?
- Many ways to get better sorts in C:
 - Nicely-written homemade sort
 - C++ boost library
 - Third-party code
- Instructions to get this to work in handouts on the website (strictly optional)

- x86 architecture (not AMD, not M2 etc.)
- Intel i7; run lscpu on a lab computer for details
- This *is* likely to have an effect on performance in some cases
- Your home computers are fine for correctness and coarse optimization; use lab computers for fine-grained optimization
- If I ask you to do a performance comparison, you should generally do it on lab computers. In any case you should write what you do it on.

Where are things stored?

- In CPU register (never touching memory)
 - Temporary variables like loop indices
 - Compiler decides this
- Call stack
 - Small amount of dedicated memory to keep track of current function and *local* variables
 - Pop back to last function when done
 - temporary

- The heap!
- Very large amount of memory (basically all of RAM)
- Create space on heap using malloc
- Need stdlib.h to use malloc

- Java rules work out well:
 - "objects" and arrays on the heap
 - Anything that needs to be around after the function is over should be on the heap
 - Otherwise declare primitive types and let the compiler work it out
 - Keep scope in mind!

• Each time we change a file, need to recompile that file

• Need to build output file (but don't need to recompile other unchanged files)

• Makefile does this automatically

• I'll give you a makefile

- You don't need to change it unless you use multiple files or want to set compiler options
 - Probably don't need to use multiple files in this class
 - (Some exceptions for things like wrapper functions.)

• make, make clean, make debug

- -g for debug, -c for compile without build (creates .o file)
- Different optimization flags:
 - -02 is the default level
 - -03, -Ofast is more aggressive; doesn't promise correctness in some corner cases
 - -00 doesn't optimize; -0g is no optimization for debugging
 - Other flags to specifically take advantage of certain compiler features (we'll come back to this)
- -S (along with -fverbose-asm for helpful info) to get assembly
- Also: "Compiler Explorer" online

- int, long, etc. not necessarily the same on different systems
 - On Windows long is probably 32 bits, on Mac and Unix it's probably 64 bits
 - long long is probably 64 bits
- Instead: include stdint.h, describe types explicitly
- Keep an eye out for unsigned vs signed.
- Quick example: variabletypes.c
- printf does expect primitive types

• int (etc.) is OK for things like small loops

• If you care at all about size you should use the type explicitly

- Up to you when and where you use unsigned
 - Controversial in terms of style

List of particularly useful integer variable types

• int64_t, int32_t: signed integers of given size

• uint64_t, uint8_t: unsigned integers of given size

• INT64_MAX (etc.): maximum value of an object of type int64_t

Part 1: Time and Space

How Space and Time Shape Algorithms

By BEN BRUBAKER

Do you ever strategize about ways to speed up your commute, repack a suitcase to free up some room, or tweak a recipe to get food on the table faster? That's

Article in Quanta magazine yesterday about time and space in algorithms.

- In CS 256, we focused largely on the running time of an algorithm, and occasionally talked about space
- But: the way time and space interact is crucial to understanding algorithmic efficiency
- Next three weeks: explore time and space in more detail, using a couple classic algorithms as examples of:
 - 1. How using more space can decrease running time bounds;
 - 2. How using *higher* running time bounds to improve space efficiency can decrease wall-clock running time;
 - 3. How time and space trade off with cache efficiency

Two towers reminder (?)

- Input: *n* blocks of given area. Taking the square root of the area gives us the height of each block (let's call the set of heights S)
- Goal: make two towers with height as close as possible

Two towers observations from 136

- Equivalent problem: make the smaller tower as large as possible. This means our goal is: find the subset of blocks with largest total height that's at most $\frac{1}{2} \sum_{s \in S} s$.
- Any ideas for how to solve this correctly (but slowly)?
- First method: try all subsets. For each, calculate its height; store best seen at each point.
- Running time? Space?
- $O(n2^n)$ time; O(n) space

Some implementation details

- Can store a subset using an int of at most *n* bits (all instances have $n \le 64$)
 - Each 0 means the item is not in the set; each 1 means the item is in the set
 - · Let's do a quick example on the board
- Then, can iterate through the subsets by starting at 0 and incrementing to $2^n 1$.
- For each subset, calculate the height by going through the bits and adding when you see a 1. Keep the heights as an array of floats.
- Then only need O(1) space (just store 1 integer at all times)

• Divide S into two sets: S₁ and S₂.

 There must be SOME subset of S₁ in the correct final smaller tower.

 On board: how can we use this to design a algorithm? (Not fast yet!) For any set S', let h(S') be the height of all elements in S'.

1 for each subset A_1 of S_1 : 2 $s_1 \leftarrow h(A_1)$ 3 for each subset A_2 of S_2 : 4 if $h(A_2) + s_1 \le h(S)/2$: 5 updateMax $(h(A_2) + s_1)$

```
1 for each subset A_1 of S_1:

2 s_1 \leftarrow h(A_1)

3 for each subset A_2 of S_2 :

4 if h(A_2) + s_1 \le h(S)/2 :

5 updateMax (h(A_2) + s_1)
```

- What is the inner loop doing?
- Finds the set *A*₂ with height closest to *h*(S)/2
- How can we preprocess S₂ to answer these queries quickly?
- Answer: sort all subsets of S₂. Then can answer this query using binary search!

```
1 Fill array P with all subsets of S_2

2 Sort P by height

3 for each subset A_1 of S_1:

4 s_1 \leftarrow h(A_1)

5 binsearch (P, h(S)/2 - s_1)

6 updateMax (h(A_2) + s_1)
```

- Let's analyze this approach.
- *P* has length $O(2^{n/2})$. Sorting it takes $O(n2^{n/2})$
- Each binary search takes O(n) time; perform O(2^{n/2}) of them
- Total: $O(n2^{n/2})$ space, $O(n2^{n/2})$ time

• Before we go forward, let's go over the high level strategy

Let's say we have a set of blocks. Normally we use will try all *subsets* of these blocks and find the largest subset that's at most half the total size.

Partition the blocks into two equal-sized sets.

Question: what subset of the *yellow* blocks is used in the correct solution?

0.0	00000	
7.2	00001	
5.1	00010	
12.3	00011	
9.8	00100	
17.0	00101	

First, let's do some brute force preprocessing on the blue blocks. Go through all subsets of the blue blocks, and store their heights in a table.

0.0	00000
7.2	00001
5.1	00010
12.3	00011
9.8	00100
17.0	00101

. . .

First, let's do some brute force preprocessing on the blue blocks. Go through all subsets of the blue blocks, and store their heights in a table. Then, sort the table by height.

0.0	00000
5.1	00010
7.2	00001
9.8	00100
12.3	00011
17.0	00101

. . .

First, let's do some brute force preprocessing on the blue blocks. Go through all subsets of the blue blocks, and store their heights in a table. Then, sort the table by height.

Now, go through every possible set of yellow blocks. If the yellow blocks have height $h(A_1)$, we want blue blocks with height as close to $h(S)/2 - h(A_1)$ as possible.

Now, go through every possible set of yellow blocks. How quickly can we find the *best* set of blue blocks? Why don't we need to check any other subsets of blue blocks?

. . .

- $O(2^{n/2})$ space, $O(n2^{n/2})$ time. (Everyone remember how?)
- "Meet in the middle"—rather than considering all subsets, we break into two halves. We search in the yellow and blue halves *one at a time*, then combine them to get one solution.

• Very wide uses: optimization problems, cryptography, etc.

• What is $O(n2^n)$ vs $O(n2^{n/2})$ time? Do they differ by more than a constant?

• $O(2^{n/2})$ space is a lot. Is this worth it?

• Wait, can we do better than this?

Some questions about meet in the middle

- How can we store the solutions from the blue subproblems? What does this data structure need to support?
 - Needs to support predecessor queries!
- What if we wanted to search for two towers that were exactly equal? Would our strategy change? Could we get improved running time?
- What property must a problem have for MitM to work?
 - Can *all* brute force search problems with *N* solutions be solved in something like $O(\sqrt{N})$ time?
 - No: need the two halves to be *independent*. (We build the table on the blue half once. That table needs to work for every query.)
 - For example, 3SAT doesn't work here. On assignment you'll see another problem where there are issues.

Optimization thought questions

- The data we're sorting has a special structure. Can we use that structure to improve the sort?
- Figuring out the size of a tower is expensive. Can we make this cost less than *O*(*n*)? Do these changes have other costs?
- Binary search has many branch mispredictions and is cache-inefficient. (We'll talk about these terms more next lecture.) Is there a way to solve the problem without binary search, improving cache efficiency? Or to avoid some of these costs with the binary search?

• A way to use extra space to dramatically improve the *running time* of some search algorithms

- Any lingering questions about meet in the middle?
- Assignment 1 released tonight; I'll set up starter repos by tomorrow evening (fill out the Assignment 0 form if you haven't!)

Principles of Optimization

Reminder

- "Premature optimization is the root of all evil!"
- Don't optimize your code until you have a working copy.
- Some gray area with structural decisions/trivial ideas—but until something works that is your main goal.

- Computers are complicated! (And processors are proprietary!)
- Efficiency is always going to be highly experimental.
 - Sometimes something should work, but doesn't. Or vice versa.

• Goal for this section: *better* understanding of where costs come from and how we can measure them

- What part of a program is most important to speed up?
- Let's say I have several functions. How can I choose which to try to optimize first?
- Answer: the one that takes the most *total* time
 - Time it takes \times number of times it's called
 - May not be the slowest function—in fact, it's often a very fast but very frequently-used function
- Probably need to take into account potential to speed it up as well—I want the function that takes up the most time that I can save.

If a function takes up a p fraction of the entire program's runtime, and you speed it up by a factor s, then the overall program speeds up by a factor

$$\frac{1}{1-p+p/s}$$

• Examples