
Lecture 19: Burrow-Wheeler
Transform

Sam McCauley

November 19, 2024

Williams College

Admin

• Jeremy Fineman visiting Friday!

• Talking about: his improvement to the classic Bellman-Ford Dynamic
Programming algorithm

• First improvement since 1958!

• I’ve been very excited about this talk all semester

• Final project proposals by email on Thursday.

• Schedule updated on website. Probably no Van Emde Boas trees :(

• Any questions?

Reflections on course so far

• Part 1: Time vs space

• Part 2: Randomization

• Part 3: LP, ILP, MIP

Part 4: Strings

What is this part of the course?

The “Lexicon lab” in 136

• Previously in this course we’ve
looked at how to solve problems

• This section: more about how to
handle data

• Focus on strings—tons of
applications; lots of really cool
algorithms research

Focus: compression

• Take data and make it smaller

• Important! (Though sometimes
overstated. . .)

• Nice self-contained topic to start
before Thanksgiving

Compression: Our goals

• Take a string s, map it to a string m = c(s) (using a compression function c)

• There exists a decryption function d , such that for all s, d(c(s)) = s

• Lossless compression: we want to be able to recover the exact string

• Goal: make the string smaller. Want |m| ≤ |s|.

Bad news: lossless compression is not possible

Proof sketch:

• Let’s say we want to compress all binary strings of length ≤ ` (in other words:
map all to a string of length ≤ `− 1).

• Each of the 2`+1 − 1 strings of length ≤ ` must be mapped to some string of
length < `

• A given compressed string m can only be mapped to by one string (otherwise
we don’t know which of the original strings to recover)

• But there are only 2` − 1 strings of length ≤ `− 1. So ≈ half the strings can’t
be compressed!

What does this mean?

• Can’t guarantee that strings get smaller

• What we’ll do instead:
• Methods that often help on strings we care about!

• We probably don’t want to compress an arbitrary string like
afoiewjfiowefjweoifjawepgvheufgahegieg

• Instead, we want to compress strings that look like English text, or DNA, or
something like that.

• Goal: compression methods that work well on real-world data

First try: Huffman Coding

• Assign a sequence of bits to each
character

• More frequent characters get
longer sequences of bits

• Prefix-free: allows us to greedily
decode

• No code is a prefix of another!

• There is a simple, O(n log n) time
method to calculate the optimal
Huffman code

Huffman Coding

Symbol Huffman Code

[space] 111
e 010
t 1101
a 1011

.

j 1100001011
q 11000010101
z 11000010100

• Let’s encode zeta and decode
10111101010

• Useful when some characters are
much more common than others

• English text? Yes! Other
languages? Also yes. DNA? ...kind
of.

• What compression opportunities in
(say) language text is this missing
out on?

Key observation for compressing much of text

• Characters are NOT independent!

• u after q is extremely frequent in English. But Huffman codes alone can’t
capture this.

• DNA (and some kinds of text) may have long sequences of the same letter.

• What can we do about this?

• Could look at encoding pairs of characters. (Treat every pair of consecutive
characters as a single character.)

• Or, could use a fancier method. (Run length encoding? Keep track of common
substrings? Some adaptive combination of both?)

Two methods for lossless compression

Tailor-made methods (like Lempel-Ziv
and variants):

• Interesting methods, used
frequently in practice

• Tons of research into making
these methods efficient, effective

Other option: adjust Huffman coding to
try to make it work

• How well can this do?

Some Intuition

• Let’s say we have the string AAAAAAAA.... (1 million characters long)

• How can we encode this with Huffman??

• Map A to 0. Then can write 00000000.... Can we do better?

• Better encoding: something like “Write A 1 million times”

• Huffman falls short!

• Even worse if we have something like 1 million As, followed by 1 million Bs,
then 1 million Cs, 1 million Ds...

• What about ABABABAB... ?

Move-to-front transform

Move-to-front: a cool first step to address some of these issues.

• Goal: preprocess the string so that long runs (and long close-to-runs) of the
same character can be encoded more efficiently.

• Must be invertible (so that we can decode later)

• Does:
• Improve performance when the same character is close to other occurrences of

the same character
• Perform well when one character is repeated a lot

• Does NOT:
• Take advantage of relationships between different successive characters
• Example: u always coming after q is no advantage at all

Move-to-front transform

Transform a string s into a string MTF (s):

• Keep an list L of all possible characters. Start with L just keeping the
characters in some arbitrary order.

• For these examples: L = {a,b, c, . . . , y , z}
• In general, L encodes all 255 possible char values. Start with L[i] = i .

• Start with empty s′. For each i = 1 to |s|:

• If s[i] is the j th character in L, append j to s

• Move j to the front of L.

• Return s′ as MTF (s) when done

• Let’s do a couple examples on the board: banana, abracadabra

Move-to-front transform: decode

Transform a string s′ = MTF (s) into the original string s:

• Goal: recover L at each time step used when encoding

• Start with same L

• Start with empty s. For each i = 1 to |s′|:

• If s′[i] = j , then write L[j] to s

• Move j to the front of L.

• Let’s decode the board examples.

Move-to-front discussion

• Move to front transforms sequences of nearby characters into common
characters

• Plan: to encode a string s, we first calculate MTF (s), and do Huffman coding
on that

• To decode, first Huffman decode the string. This gives us MTF (s). Use the
above method to recover s

• Can greatly improve Huffman coding performance if characters are close
together

• In the worst case might not improve anything. (Could even make performance
a good amount worse—when?)

Burrows-Wheeler Transform

Where we are

• Lempel-Ziv: Fairly technical method to take advantage of common
substrings/correlations between sequences characters

• zip uses a combination of Lempel-Ziv and Huffman coding

• What we’ve seen: move-to-front and Huffman to take advantage of
consecutive characters

• What we’d like: a simple, reversible preprocessing method that makes
common subsequences into common characters.

• We have MTF: so turning common subsequences into nearby repetitions of
the same character is enough

Burrows-Wheeler Transform (BWT)

• Invented around 1995

• Turns common subsequences into sequences of nearby characters

• (This is a super weird thing to be able to do. We’ll look at a few examples to
try to get some intuition about it.)

• Reversible!

BWT Game Plan

To compress a string s:

1. Use BWT to obtain a string sb = BWT (s). sb has the property that common
subsequences of s correspond to nearby characters of sb

2. Use MTF to obtain a string sm = MTF (sb). sm has the property that nearby
characters of sb (and therefore common subsequences of s) correspond to
common characters in sm

3. Use Huffman coding on sm to obtain a final compressed string sh. Common
characters in sm require few bits to output.

All of the above is reversible, so this is a method for lossless compression.

• Believe it or not: this method outperforms fancier state of the art compression
methods in some circumstances

• This is exactly what bzip2 does.

What does Burrows-Wheeler Transform do?

Let’s talk about performing BWT on a string s of length n. Let’s assume that s
ends with a special character $ (this will be helpful for us)

• Goal: take the context of each character into account

• How many other characters should we look at? 1? 2?

• Silly point: we’ll do best if we consider the entire n − 1 characters surrounding
each character

• What does it even mean to take the n − 1-character context of a string into
account?

BWT: Looking at the context of a character

b a n a n a $
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b

• Take all n circular suffixes of the
string (wrap around from beginning)

• The “context” of each character is
the n − 1 characters following it

What does this give us?

a $ b a n a n

• For each character of the string: we look at all characters that follow it

• What can we glean from the characters after a given character?

• If a substring appears a lot, it will result in a lot of similar (how?) sequences of
n characters

• Example: in English text, almost every q will be followed by a u.

• In banana, almost every a is followed by an n; every n is followed by an a

• Recall: group characters with similar contexts together. So let’s sort the
characters using the n − 1 characters that follow them

First, an observation

b a n a n a $
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b

• The context of a character (the
n− 1 characters following it) are the
contents of the row that the
character ends

• So: let’s look at the last column of
this table

The Burrows-Wheeler Transform

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

• First, sort the rotated strings
lexicographically

• Take the last character of each
rotation

• This is the BWT of the string

• BWT(banana) = annb$aa

OK What’s going on here?

• This is efficient!?

• This is reversible!?

What we do have:

• Characters will wind up next to each other if they are followed by
lexicographically similar (n − 1-character) strings

• So: if all qs are followed by a u, then EVERY q will wind up in the portion of
the BWT corresponding to suffixes beginning with u. Unclear how good this
is. . .

One board example

• What is the BWT of dogwood?

• Hopefully we got: do$oodwg

• More interesting example: what if we take the BWT of the first line of
chromosome1.txt (human DNA)

Still to show: reversible and efficient

Let’s start with reversible

• On the board: let’s say we have a BWT transformed string; the result is
e$elplepa

• What do we know based on how the BWT works? Can I recover ANYTHING
about the original string? Can I recover anything about the original table?

• Result:

• appellee$

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first column of the table

• This gives us all pairs of characters. If we sort THOSE, the second character
of the result gives the second column of the table

• So on until the table is recovered

• Our string: row ending with $

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first column of the table

a
n
n
b
$
a
a

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first column of the table

$ a
a n
a n
a b
b $
n a
n a

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first column of the table

• This gives us all pairs of characters. If we sort THOSE, the second character
of the result gives the second column of the table

$ b a
a $ n
a n b
a n n
b a $
n a a
n a a

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first column of the table

• This gives us all pairs of characters. If we sort THOSE, the second character
of the result gives the second column of the table

• So on until the table is recovered

• Our string: row ending with $

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

Efficiency

How much time and space does encoding take for a string of length n? First,
encoding:

• Filling out the table: O(n2) time and space.

• Sorting the table?

• O(n) time to compare two items

• O(n log n) comparisons

• Total: O(n2 log n) time.

Efficiency

How much time and space does this method take now for a string of length n?
Now, decoding:

• Recover one column at a time

• To recover a column: sort (last column) appended to current columns we have

• O(n) time to compare two items

• O(n log n) comparisons

• This means O(n2 log n) time per column

• O(n3 log n) time overall

This is terrible! But there’s a ton of redundancy here. Can we do better?

Efficient BWT Encoding

• Using a clever method, can get much faster time BWT encoding

• Need another data structure: suffix array

Suffix Array

Any string of length n has a suffix array A of n indices:

• A[i] contains the index of the i th suffix of s in sorted order.

• Example: suffix array for banana$ is:

• 6 5 3 1 0 4 2

• Very similar to what we want for BWT. (We’ll talk about that in a second). How
fast do you think one can compute this?

• Answer: can do this in O(n) time for constant-size alphabet. (Faster than
sorting.)

• We’ll talk about how to get O(n log n) time for this next Tuesday

Suffix Array Applications

• Far wider use than just creating BWT
• In short: a suffix array is compressed, but allows trie-like operations

Suffix Array to BWT

• Let’s say you are given the suffix array for the string.

• How can you get the BWT?

• Let’s do it one character at a time.

• The i th character of the string is the last column character corresponding to
the i th suffix in sorted order

• So: BWT[i] = s[j], where j = SA[i]− 1. (Watch out for negative indices)

• Linear time method to calculate the BWT!

• Any practical problems with this methdology?

• Very cache-inefficient if our string is large enough for that to be an issue

Where we are

• If you’re given a suffix array, can calculate the BWT in a simple linear scan.
No extra space (beyond the original string and the suffix array)

• Now: can we reverse the BWT quickly as well?

• Let’s fill out the BWT in reverse order. What characters can we fill in?

• Last character must be $ (easy)

• Previous character is the first character in the row containing $

• Key observation: let’s say we just wrote a character in the last column. We
want to find the character before that in the original string. If we can find that
character in the first column, we know the next character to write (as it’s the
corresponding last-column-character).

Quickly inverting the BWT

Lemma
Consider a character c in the last column of the BWT table. The order of all
occurrences of c in the last column is the same as the order of all occurrences of c
in the first column of the table.

Proof: Let’s say the i th instance of c is followed by a (circular) suffix si in the
original string s. Then row i of the BWT table consists of si concatenated with c.
Therefore, the order of all instances of c in the last column of the table is exactly
the same as the lexicographic order of the si .

Quickly inverting the BWT

Lemma
Consider a character c in the last column of the BWT table. The order of all
occurrences of c in the last column is the same as the order of all occurrences of c
in the first column of the table.

Proof (contd):

Now let’s look at the first column. Since the first row is sorted lexicographically, all
instances of c in the first column are adjacent rows in the BWT table. Furthermore,
the row beginning with the i th instance of c consists of c concatenated with si . But
then, the order of the instances is the same as the lexicographic order of the si .

So the orders are the same!

Diagram of proof

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

Diagram of proof

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

Quickly inverting the BWT

Let’s start deducing the original string from back to front. Let’s use the example
do$oodwg.

• What’s the last character? What’s the second to last character?

• Idea: keep a pointer to the index in the BWT we just wrote. How can we use
that to deduce the next index we’re writing?

• Rephrase: how can we deduce the next character we’re writing? As: how can
we deduce what row it is in in the first column ?

• Let’s say we just wrote the i th character in the first column of the BWT table
• Its previous character is the i th character in the last column—in other words, the

i th character in the BWT

Quickly Inverting the BWT

• When we write a character, goal is: find out where it was in the first column. If
we get that we’re done

• Idea:

• We just wrote the j th character in BWT; let’s say it’s character c

• Let’s say there are ` occurrences of c earlier in the BWT

• Then we’re looking for the `th c in the first column

• Example: invert e$elplepa using this method.

Data structures for inversion

How can we quickly answer: “I’m at index j of the BWT; I see character c. How
many instances of c are there at indices j and earlier in the BWT?”

• Precompute with a linear scan!

• Keep track of how many of each character seen so far. Write the value for
each character of the BWT. Call this array rank .

Data structures for inversion (contd.)

How can we quickly answer: “In the first column of the BWT table, in what row
does the i th occurrence of character c occur?”

• The cs are all clustered together in the first row. Enough to tell where the
grouping begins.

• For each character c, keep track of how many characters before c (in
lexicographic order) occur in the entire string s

• Linear time preprocessing: first, get counts of each character in the string.
Then, sum successive entries to get the count of all entries before the
character. Call this array C

Algorithm for Inversion

First, write $ in the last slot. Find the index of $ in the BWT; call this index. Then,
do the following for n − 1 iterations:

• Find the row r in the BWT whose first column contains the character c we just
wrote:

• Calculate how many instances of this character occur earlier in the BWT; this is
rank [index]

• Find the location where we begin writing character c in the first column: this is
C[c]

• Therefore, we are looking for r = rank [index] + C[c].

• Prepend BWT[r] to s.

• Update index = r

Our final compression approach

• First, BWT the string using the above (causes characters that appear in
similar contexts to be grouped together)

• Then use MTF on the result (causes characters that are grouped together to
result in a large number of low-value characters)

• Then use Huffman coding on the result of that (characters that appear often
can be written with a very small number of bits).

Practical considerations

• This is still pretty slow: why?

• Cache-inefficient! Each encode/decode step requires random array access.
On large enough strings this is an L3 miss for EACH characterwe
encode/decode

• How can we avoid this?

• In practice: break into decent-sized blocks that fit into L3 cache! BWT each
individually

	Part 4: Strings
	Burrows-Wheeler Transform

