
Lecture 17: Integer Linear
Programming Continued

Sam McCauley

November 8, 2024

Williams College

Admin

• Assignment 3 out; due Saturday the 16th (basically: built-in 2 day extension
for everyone)

• Some difficult problems; it’s OK if you don’t get all of them completely correct.
Just write what you know.

• Questions?

Survey

• Assignment 3 is your last assignment/homework, we’ll just work on the project
afterwards

• We’ll have some classes for going over previous solutions/doing short project
presentations, but there are a few more extra slots

• Two options:

• The extra class slots will basically be extra office hours where you can work on
the project and discuss it with me

• Normal lectures going over a few cool topics (Burrows-Wheeler Transform,
Suffix Trees, Van Emde Boas trees)

• Core question is really: If we have normal lectures on cool (but not easy)
topics that are not ever tested, are you interested/will you attend?

Solving ILPs and MIPs

First thought: Can we Use LP Methods?

• LP relaxation: just remove the integer constraints

• ei,j ∈ {0,1} becomes ei,j ≥ 0 and ei,j ≤ 1.

• How badly can this do?

First thought: Can we Use LP Methods?

• LP relaxation: just remove the integer constraints

• ei,j ∈ {0,1} becomes ei,j ≥ 0 and ei,j ≤ 1.

• How badly can this do?

First thought: Can we Use LP Methods?

• LP relaxation: just remove the integer constraints

• ei,j ∈ {0,1} becomes ei,j ≥ 0 and ei,j ≤ 1.

• How badly can this do?

Rounding MIPs

From Google OR Tools Documentation

• Can do arbitrarily badly, even for
simple ILPs

• May work effectively if the problem
has a special structure that makes
rounding effective

• Example: the diet problem is
probably solved fairly well by
rounding (will only be off by 1 unit
of each food)

Rounding MIPs

From Google OR Tools Documentation

• Can do arbitrarily badly, even for
simple ILPs

• May work effectively if the problem
has a special structure that makes
rounding effective

• Example: the diet problem is
probably solved fairly well by
rounding (will only be off by 1 unit
of each food)

Rounding MIPs

From Google OR Tools Documentation

• Can do arbitrarily badly, even for
simple ILPs

• May work effectively if the problem
has a special structure that makes
rounding effective

• Example: the diet problem is
probably solved fairly well by
rounding (will only be off by 1 unit
of each food)

Second Method: Cutting ILPs

• We won’t cover in this class

• Cut the LP without removing integer
solutions

• After enough cuts, can round and
get a good solution!

• Not always possible, but
surprisingly effective methods in
practice for some types of problem

• Many MIP solvers find these cuts
for you

Third Method: Prove the LP has integral soln

• Broad class of LPs are guaranteed
to give optimal solutions

• We won’t cover in this class

• Example for linear algebra people:
if your constraint matrix is totally
unimodular then there exists an
optimal integer solution

Third Method: Prove the LP has integral soln

• Broad class of LPs are guaranteed
to give optimal solutions

• We won’t cover in this class

• Example for flow-reduction-lovers:
if you write a flow problems as an
LP where all constraints are
integers, there exists an optimal
integer solution

Main MIP Solving Method: Branch
and Bound

Branch and Bound

• Two towers: meet-in-the-middle was faster since we could “rule out” some of
the search space

• Maintain worst-case guarantees

• Branch and bound: a less-problem-specific way to do the same thing

• This is a large class of algorithms; I’m giving a high level description of the
idea

• (There is a question about this on Assignment 3.)

Branch and Bound

• Two towers: meet-in-the-middle was faster since we could “rule out” some of
the search space

• Maintain worst-case guarantees

• Branch and bound: a less-problem-specific way to do the same thing

• This is a large class of algorithms; I’m giving a high level description of the
idea

• (There is a question about this on Assignment 3.)

Branch and Bound

• Two towers: meet-in-the-middle was faster since we could “rule out” some of
the search space

• Maintain worst-case guarantees

• Branch and bound: a less-problem-specific way to do the same thing

• This is a large class of algorithms; I’m giving a high level description of the
idea

• (There is a question about this on Assignment 3.)

Branch and Bound

• Two towers: meet-in-the-middle was faster since we could “rule out” some of
the search space

• Maintain worst-case guarantees

• Branch and bound: a less-problem-specific way to do the same thing

• This is a large class of algorithms; I’m giving a high level description of the
idea

• (There is a question about this on Assignment 3.)

Branch and Bound

• Two towers: meet-in-the-middle was faster since we could “rule out” some of
the search space

• Maintain worst-case guarantees

• Branch and bound: a less-problem-specific way to do the same thing

• This is a large class of algorithms; I’m giving a high level description of the
idea

• (There is a question about this on Assignment 3.)

Branching

• First, we divide the problem into
several subproblems

• Visualization is useful: just partition
the feasible region into several
pieces

• So far, still need to search through
all of them (same as brute force)

Branching

• First, we divide the problem into
several subproblems

• Visualization is useful: just partition
the feasible region into several
pieces

• So far, still need to search through
all of them (same as brute force)

Branching

• First, we divide the problem into
several subproblems

• Visualization is useful: just partition
the feasible region into several
pieces

• So far, still need to search through
all of them (same as brute force)

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

• Partition region

• Find best solution in
orange piece

• When can we avoid
searching in purple?

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

• Partition region

• Find best solution in
orange piece

• When can we avoid
searching in purple?

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

• Partition region

• Find best solution in
orange piece

• When can we avoid
searching in purple?

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

• Upper bound best solution
in purple

• If best possible soln in
purple is worse than best
soln in orange, can safely
skip it

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

• Upper bound best solution
in purple

• If best possible soln in
purple is worse than best
soln in orange, can safely
skip it

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 = 4

3x1 + 2x2 = 11

2x1 − x2 = 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

Safe to skip: always still gives
an optimal solution.

But, can’t skip anything in worst
case.

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 = 4

3x1 + 2x2 = 11

2x1 − x2 = 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

Safe to skip: always still gives
an optimal solution.

But, can’t skip anything in worst
case.

What do we need?

• Way to get a good solution in orange region: recurse!

• Base case: can just do a simple greedy method if the region is small enough.

• Way to upper bound best solution in purple region??

• Relax to an LP! Might not give a good upper bound, but will give an upper bound
(Recall: LPs are relatively fast to solve)

• Duality can help (we won’t talk about in this class)

What do we need?

• Way to get a good solution in orange region: recurse!

• Base case: can just do a simple greedy method if the region is small enough.

• Way to upper bound best solution in purple region??

• Relax to an LP! Might not give a good upper bound, but will give an upper bound
(Recall: LPs are relatively fast to solve)

• Duality can help (we won’t talk about in this class)

What do we need?

• Way to get a good solution in orange region: recurse!

• Base case: can just do a simple greedy method if the region is small enough.

• Way to upper bound best solution in purple region??

• Relax to an LP! Might not give a good upper bound, but will give an upper bound
(Recall: LPs are relatively fast to solve)

• Duality can help (we won’t talk about in this class)

What do we need?

• Way to get a good solution in orange region: recurse!

• Base case: can just do a simple greedy method if the region is small enough.

• Way to upper bound best solution in purple region??

• Relax to an LP! Might not give a good upper bound, but will give an upper bound
(Recall: LPs are relatively fast to solve)

• Duality can help (we won’t talk about in this class)

What do we need?

• Way to get a good solution in orange region: recurse!

• Base case: can just do a simple greedy method if the region is small enough.

• Way to upper bound best solution in purple region??

• Relax to an LP! Might not give a good upper bound, but will give an upper bound
(Recall: LPs are relatively fast to solve)

• Duality can help (we won’t talk about in this class)

Branch and Bound Intuition

• Branch: split feasible region into pieces; Bound: bound the solution quality on
each so we can rule out searching in some pieces

• Let us rule out big parts of the search space

• “Everything in here has a bad objective function, so we can skip it.” (This is
the bound part)

• Many practical problems have large parts that are easy to skip. (If we’re
stacking groceries on pallets, no need to spend time looking at solutions with
bread on the bottom.)

• The more we branch (find good solutions), the more we can bound (rule out
parts of the search space whose solutions are suboptimal)

Branch and Bound Intuition

• Branch: split feasible region into pieces; Bound: bound the solution quality on
each so we can rule out searching in some pieces

• Let us rule out big parts of the search space

• “Everything in here has a bad objective function, so we can skip it.” (This is
the bound part)

• Many practical problems have large parts that are easy to skip. (If we’re
stacking groceries on pallets, no need to spend time looking at solutions with
bread on the bottom.)

• The more we branch (find good solutions), the more we can bound (rule out
parts of the search space whose solutions are suboptimal)

Branch and Bound Intuition

• Branch: split feasible region into pieces; Bound: bound the solution quality on
each so we can rule out searching in some pieces

• Let us rule out big parts of the search space

• “Everything in here has a bad objective function, so we can skip it.” (This is
the bound part)

• Many practical problems have large parts that are easy to skip. (If we’re
stacking groceries on pallets, no need to spend time looking at solutions with
bread on the bottom.)

• The more we branch (find good solutions), the more we can bound (rule out
parts of the search space whose solutions are suboptimal)

Branch and Bound Intuition

• Branch: split feasible region into pieces; Bound: bound the solution quality on
each so we can rule out searching in some pieces

• Let us rule out big parts of the search space

• “Everything in here has a bad objective function, so we can skip it.” (This is
the bound part)

• Many practical problems have large parts that are easy to skip. (If we’re
stacking groceries on pallets, no need to spend time looking at solutions with
bread on the bottom.)

• The more we branch (find good solutions), the more we can bound (rule out
parts of the search space whose solutions are suboptimal)

Branch and Bound Intuition

• Branch: split feasible region into pieces; Bound: bound the solution quality on
each so we can rule out searching in some pieces

• Let us rule out big parts of the search space

• “Everything in here has a bad objective function, so we can skip it.” (This is
the bound part)

• Many practical problems have large parts that are easy to skip. (If we’re
stacking groceries on pallets, no need to spend time looking at solutions with
bread on the bottom.)

• The more we branch (find good solutions), the more we can bound (rule out
parts of the search space whose solutions are suboptimal)

Branch and Bound in Practice

• Advanced methods to figure out how to split into pieces; how much to search
each piece before doing more bound calculations

• The better your choices, the more you can rule out

• Other methods (greedy, LP cuts, duality, heuristic search, etc.) can be
integrated into this method

Branch and Bound in Practice

• Advanced methods to figure out how to split into pieces; how much to search
each piece before doing more bound calculations

• The better your choices, the more you can rule out

• Other methods (greedy, LP cuts, duality, heuristic search, etc.) can be
integrated into this method

Branch and Bound in Practice

• Advanced methods to figure out how to split into pieces; how much to search
each piece before doing more bound calculations

• The better your choices, the more you can rule out

• Other methods (greedy, LP cuts, duality, heuristic search, etc.) can be
integrated into this method

Branch and Bound in Practice

• Solvers are sometimes optimized for a given problem

• Dedicated solvers for TSP, Knapsack, that make branching decisions and use
bounding methods particularly effective for that problem

• This is how you get the optimal, giant TSP tours

• Also some general-purpose solvers

Branch and Bound in Practice

• Solvers are sometimes optimized for a given problem

• Dedicated solvers for TSP, Knapsack, that make branching decisions and use
bounding methods particularly effective for that problem

• This is how you get the optimal, giant TSP tours

• Also some general-purpose solvers

Branch and Bound in Practice

• Solvers are sometimes optimized for a given problem

• Dedicated solvers for TSP, Knapsack, that make branching decisions and use
bounding methods particularly effective for that problem

• This is how you get the optimal, giant TSP tours

• Also some general-purpose solvers

Branch and Bound in Practice

• Solvers are sometimes optimized for a given problem

• Dedicated solvers for TSP, Knapsack, that make branching decisions and use
bounding methods particularly effective for that problem

• This is how you get the optimal, giant TSP tours

• Also some general-purpose solvers

Branch and Bound Summary

• Always gives an optimal solution eventually

• May not find it quickly on tricky problems

• Can be very fast even on reasonably hard, reasonably large instances.

Branch and Bound Summary

• Always gives an optimal solution eventually

• May not find it quickly on tricky problems

• Can be very fast even on reasonably hard, reasonably large instances.

Branch and Bound Summary

• Always gives an optimal solution eventually

• May not find it quickly on tricky problems

• Can be very fast even on reasonably hard, reasonably large instances.

Solvers

These solvers have both LP and MIP solvers (using different algorithms):

• GLPK (simplex, branch and bound). Open source. Standalone program is
fairly easy to use; can also access from C.

• CPLEX - IBM software for MIPs. Old but reliable. Proprietary. Effective, but
can be difficult to work with

• COIN-OR - open source solver

• Google OR tools - wrapper for COIN-OR. Has a really nice TSP and
Knapsack solvers. More user friendly

More ILP and MIP Examples

Scheduling

• (Aside: scheduling is a major application of ILPs. Lots of different techniques;
this is just one example.)

• Assign n unit-cost jobs to machines.

• Each job ji has a type ti . Two jobs of the same type cannot be assigned to the
same machine.

• How can we schedule the jobs with the minimum number of machines?

Scheduling

• (Aside: scheduling is a major application of ILPs. Lots of different techniques;
this is just one example.)

• Assign n unit-cost jobs to machines.

• Each job ji has a type ti . Two jobs of the same type cannot be assigned to the
same machine.

• How can we schedule the jobs with the minimum number of machines?

Scheduling

• (Aside: scheduling is a major application of ILPs. Lots of different techniques;
this is just one example.)

• Assign n unit-cost jobs to machines.

• Each job ji has a type ti . Two jobs of the same type cannot be assigned to the
same machine.

• How can we schedule the jobs with the minimum number of machines?

Scheduling

• (Aside: scheduling is a major application of ILPs. Lots of different techniques;
this is just one example.)

• Assign n unit-cost jobs to machines.

• Each job ji has a type ti . Two jobs of the same type cannot be assigned to the
same machine.

• How can we schedule the jobs with the minimum number of machines?

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• What variables do we want?

• Probably: keep track of what job is
assigned to what machine

• si,m = 1 if job i is assigned to
machine m

• How many machines do we need?

• At most n. So have n2 variables:
si,m ∈ {0,1}, for 1 ≤ i ≤ n and
1 ≤ m ≤ n.

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• What variables do we want?

• Probably: keep track of what job is
assigned to what machine

• si,m = 1 if job i is assigned to
machine m

• How many machines do we need?

• At most n. So have n2 variables:
si,m ∈ {0,1}, for 1 ≤ i ≤ n and
1 ≤ m ≤ n.

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• What variables do we want?

• Probably: keep track of what job is
assigned to what machine

• si,m = 1 if job i is assigned to
machine m

• How many machines do we need?

• At most n. So have n2 variables:
si,m ∈ {0,1}, for 1 ≤ i ≤ n and
1 ≤ m ≤ n.

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• What variables do we want?

• Probably: keep track of what job is
assigned to what machine

• si,m = 1 if job i is assigned to
machine m

• How many machines do we need?

• At most n. So have n2 variables:
si,m ∈ {0,1}, for 1 ≤ i ≤ n and
1 ≤ m ≤ n.

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• What variables do we want?

• Probably: keep track of what job is
assigned to what machine

• si,m = 1 if job i is assigned to
machine m

• How many machines do we need?

• At most n. So have n2 variables:
si,m ∈ {0,1}, for 1 ≤ i ≤ n and
1 ≤ m ≤ n.

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Constraints?

• Want every job assigned to exactly
one machine

• For all 1 ≤ i ≤ n,
∑n

m=1 si,m = 1

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Constraints?

• Want every job assigned to exactly
one machine

• For all 1 ≤ i ≤ n,
∑n

m=1 si,m = 1

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Constraints?

• Want every job assigned to exactly
one machine

• For all 1 ≤ i ≤ n,
∑n

m=1 si,m = 1

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Constraints?

• Two jobs of the same type can’t be
assigned to the same machine

• Rephrased: for every machine m,
no two jobs of the same type can
be assigned to m

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Constraints?

• Two jobs of the same type can’t be
assigned to the same machine

• Rephrased: for every machine m,
no two jobs of the same type can
be assigned to m

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Constraints?

• Two jobs of the same type can’t be
assigned to the same machine

• Rephrased: for every machine m,
no two jobs of the same type can
be assigned to m

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Constraints?

• For every machine i , no two jobs of
the same type can be assigned to i

• For all 1 ≤ m ≤ n,for all jobs i1 and
i2 with the same type ti1 = ti2 ,
si1,m + si2,m ≤ 1

• (Up to n3 constraints. Also:
constraints depend on the input.)

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Constraints?

• For every machine i , no two jobs of
the same type can be assigned to i

• For all 1 ≤ m ≤ n,for all jobs i1 and
i2 with the same type ti1 = ti2 ,
si1,m + si2,m ≤ 1

• (Up to n3 constraints. Also:
constraints depend on the input.)

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Constraints?

• For every machine i , no two jobs of
the same type can be assigned to i

• For all 1 ≤ m ≤ n,for all jobs i1 and
i2 with the same type ti1 = ti2 ,
si1,m + si2,m ≤ 1

• (Up to n3 constraints. Also:
constraints depend on the input.)

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Objective?

• Let cm be the cost of machine m.
Want cm = 1 if there is a job
assigned to machine i , cm = 0
otherwise.

• min
∑n

m=1 cm

• Constraint for cm?

• For all jobs i and all machines m,
cm ≥ si,m

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Objective?

• Let cm be the cost of machine m.
Want cm = 1 if there is a job
assigned to machine i , cm = 0
otherwise.

• min
∑n

m=1 cm

• Constraint for cm?

• For all jobs i and all machines m,
cm ≥ si,m

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Objective?

• Let cm be the cost of machine m.
Want cm = 1 if there is a job
assigned to machine i , cm = 0
otherwise.

• min
∑n

m=1 cm

• Constraint for cm?

• For all jobs i and all machines m,
cm ≥ si,m

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Objective?

• Let cm be the cost of machine m.
Want cm = 1 if there is a job
assigned to machine i , cm = 0
otherwise.

• min
∑n

m=1 cm

• Constraint for cm?

• For all jobs i and all machines m,
cm ≥ si,m

Scheduling Jobs with Types

• n jobs, job i has type ti
• Two jobs of same type cannot be

assigned to the same machine

• Min number of machines

• si,m = 1 if job i assigned to
machine m

• Objective?

• Let cm be the cost of machine m.
Want cm = 1 if there is a job
assigned to machine i , cm = 0
otherwise.

• min
∑n

m=1 cm

• Constraint for cm?

• For all jobs i and all machines m,
cm ≥ si,m

Size and Computation Time for an ILP/MIP

• The size of an ILP/MIP is the number of variables times the number of
constraints

• We will usually want this to be polynomial in the size of the original problem
input

• The computation time is the time it takes to go from an ILP/MIP recipe to a
.lp file

• In other words: the time to calculate all the constants!

• We also want this to be polynomial in the size of the original problem input

• I will not ask you to calculate these values. I am going over this because any
ILP/MIP you give should have polynomial size and polynomial computation
time.

Size and Computation Time for an ILP/MIP

• The size of an ILP/MIP is the number of variables times the number of
constraints

• We will usually want this to be polynomial in the size of the original problem
input

• The computation time is the time it takes to go from an ILP/MIP recipe to a
.lp file

• In other words: the time to calculate all the constants!

• We also want this to be polynomial in the size of the original problem input

• I will not ask you to calculate these values. I am going over this because any
ILP/MIP you give should have polynomial size and polynomial computation
time.

Size and Computation Time for an ILP/MIP

• The size of an ILP/MIP is the number of variables times the number of
constraints

• We will usually want this to be polynomial in the size of the original problem
input

• The computation time is the time it takes to go from an ILP/MIP recipe to a
.lp file

• In other words: the time to calculate all the constants!

• We also want this to be polynomial in the size of the original problem input

• I will not ask you to calculate these values. I am going over this because any
ILP/MIP you give should have polynomial size and polynomial computation
time.

Size and Computation Time for an ILP/MIP

• The size of an ILP/MIP is the number of variables times the number of
constraints

• We will usually want this to be polynomial in the size of the original problem
input

• The computation time is the time it takes to go from an ILP/MIP recipe to a
.lp file

• In other words: the time to calculate all the constants!

• We also want this to be polynomial in the size of the original problem input

• I will not ask you to calculate these values. I am going over this because any
ILP/MIP you give should have polynomial size and polynomial computation
time.

Size and Computation Time for an ILP/MIP

• The size of an ILP/MIP is the number of variables times the number of
constraints

• We will usually want this to be polynomial in the size of the original problem
input

• The computation time is the time it takes to go from an ILP/MIP recipe to a
.lp file

• In other words: the time to calculate all the constants!

• We also want this to be polynomial in the size of the original problem input

• I will not ask you to calculate these values. I am going over this because any
ILP/MIP you give should have polynomial size and polynomial computation
time.

Size and Computation Time for an ILP/MIP

• The size of an ILP/MIP is the number of variables times the number of
constraints

• We will usually want this to be polynomial in the size of the original problem
input

• The computation time is the time it takes to go from an ILP/MIP recipe to a
.lp file

• In other words: the time to calculate all the constants!

• We also want this to be polynomial in the size of the original problem input

• I will not ask you to calculate these values. I am going over this because any
ILP/MIP you give should have polynomial size and polynomial computation
time.

Scheduling Jobs with Types

Objective: min
∑n

m=1 cm

Constraints:

For all 1 ≤ m ≤ n and 1 ≤ i ≤ n, cm ≥ si,m

For all 1 ≤ m ≤ n, for all jobs i1 and i2 with the same type ti1 = ti2 , si1,m + si2,m ≤ 1

For all 1 ≤ i ≤ n,
∑n

m=1 si,m = 1

si,m ∈ {0,1} for all 1 ≤ i ≤ n, 1 ≤ m ≤ n.

What is the size of this ILP?

n + n2 = O(n2) variables, at most n2 + n3 + n = O(n3) constraints. Multiplying,
total size is O(n5)

So the size is polynomial in n.

Scheduling Jobs with Types

Objective: min
∑n

m=1 cm

Constraints:

For all 1 ≤ m ≤ n and 1 ≤ i ≤ n, cm ≥ si,m

For all 1 ≤ m ≤ n, for all jobs i1 and i2 with the same type ti1 = ti2 , si1,m + si2,m ≤ 1

For all 1 ≤ i ≤ n,
∑n

m=1 si,m = 1

si,m ∈ {0,1} for all 1 ≤ i ≤ n, 1 ≤ m ≤ n.

What is the size of this ILP?

n + n2 = O(n2) variables, at most n2 + n3 + n = O(n3) constraints. Multiplying,
total size is O(n5)

So the size is polynomial in n.

Scheduling Jobs with Types

Objective: min
∑n

m=1 cm

Constraints:

For all 1 ≤ m ≤ n and 1 ≤ i ≤ n, cm ≥ si,m

For all 1 ≤ m ≤ n, for all jobs i1 and i2 with the same type ti1 = ti2 , si1,m + si2,m ≤ 1

For all 1 ≤ i ≤ n,
∑n

m=1 si,m = 1

si,m ∈ {0,1} for all 1 ≤ i ≤ n, 1 ≤ m ≤ n.

Computation time?

Polynomial. (All the constants can be calculated in O(1) time.)

More specifically, this can be caluclated in O(n5) time.

Scheduling Jobs with Types

Objective: min
∑n

m=1 cm

Constraints:

For all 1 ≤ m ≤ n and 1 ≤ i ≤ n, cm ≥ si,m

For all 1 ≤ m ≤ n, for all jobs i1 and i2 with the same type ti1 = ti2 , si1,m + si2,m ≤ 1

For all 1 ≤ i ≤ n,
∑n

m=1 si,m = 1

si,m ∈ {0,1} for all 1 ≤ i ≤ n, 1 ≤ m ≤ n.

Computation time?

Polynomial. (All the constants can be calculated in O(1) time.)

More specifically, this can be caluclated in O(n5) time.

Travelling Salesman

• Find minimum-length cycle through
vertices such that each is visited
exactly once

• Given: set of n points, for each pair
of points i and j the cost ci,j to get
from i to j . Have cj,i = ci,j

Travelling Salesman

• Find minimum-length cycle through
vertices such that each is visited
exactly once

• Given: set of n points, for each pair
of points i and j the cost ci,j to get
from i to j . Have cj,i = ci,j

First Attempt: A Solution that Works but is Too Big and Slow

• We want to find the minimum length cycle. Let’s create a variable for every
cycle!

• Let’s use variables Ci , and our idea will be that Ci = 1 if we use cycle i , Ci = 0
otherwise.

• Require: Ci ∈ {0,1} and
∑

i Ci = 1.

• Objective: mindiCi where di is the total length of cycle Ci .

Does this work? How big is the LP? How long does it take to calculate?

It does work! But the number of variables may be exponential in the number of
vertices n, and calculating all the dis also takes (in sum) exponential time.

First Attempt: A Solution that Works but is Too Big and Slow

• We want to find the minimum length cycle. Let’s create a variable for every
cycle!

• Let’s use variables Ci , and our idea will be that Ci = 1 if we use cycle i , Ci = 0
otherwise.

• Require: Ci ∈ {0,1} and
∑

i Ci = 1.

• Objective: mindiCi where di is the total length of cycle Ci .

Does this work? How big is the LP? How long does it take to calculate?

It does work! But the number of variables may be exponential in the number of
vertices n, and calculating all the dis also takes (in sum) exponential time.

First Attempt: A Solution that Works but is Too Big and Slow

• We want to find the minimum length cycle. Let’s create a variable for every
cycle!

• Let’s use variables Ci , and our idea will be that Ci = 1 if we use cycle i , Ci = 0
otherwise.

• Require: Ci ∈ {0,1} and
∑

i Ci = 1.

• Objective: mindiCi where di is the total length of cycle Ci .

Does this work? How big is the LP? How long does it take to calculate?

It does work! But the number of variables may be exponential in the number of
vertices n, and calculating all the dis also takes (in sum) exponential time.

First Attempt: A Solution that Works but is Too Big and Slow

• We want to find the minimum length cycle. Let’s create a variable for every
cycle!

• Let’s use variables Ci , and our idea will be that Ci = 1 if we use cycle i , Ci = 0
otherwise.

• Require: Ci ∈ {0,1} and
∑

i Ci = 1.

• Objective: mindiCi where di is the total length of cycle Ci .

Does this work? How big is the LP? How long does it take to calculate?

It does work! But the number of variables may be exponential in the number of
vertices n, and calculating all the dis also takes (in sum) exponential time.

First Attempt: A Solution that Works but is Too Big and Slow

• We want to find the minimum length cycle. Let’s create a variable for every
cycle!

• Let’s use variables Ci , and our idea will be that Ci = 1 if we use cycle i , Ci = 0
otherwise.

• Require: Ci ∈ {0,1} and
∑

i Ci = 1.

• Objective: mindiCi where di is the total length of cycle Ci .

Does this work? How big is the LP? How long does it take to calculate?

It does work! But the number of variables may be exponential in the number of
vertices n, and calculating all the dis also takes (in sum) exponential time.

Travelling Salesman: Polynomial Size Solution

• Variables?

• ei,j = 1 if the TSP tour has an edge from point i to point j

• ei,j ∈ {0,1} for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

• Objective?

•
∑n

i=1
∑n

j=1 ei,jci,j

Travelling Salesman: Polynomial Size Solution

• Variables?

• ei,j = 1 if the TSP tour has an edge from point i to point j

• ei,j ∈ {0,1} for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

• Objective?

•
∑n

i=1
∑n

j=1 ei,jci,j

Travelling Salesman: Polynomial Size Solution

• Variables?

• ei,j = 1 if the TSP tour has an edge from point i to point j

• ei,j ∈ {0,1} for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

• Objective?

•
∑n

i=1
∑n

j=1 ei,jci,j

Travelling Salesman: Polynomial Size Solution

• Variables?

• ei,j = 1 if the TSP tour has an edge from point i to point j

• ei,j ∈ {0,1} for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

• Objective?

•
∑n

i=1
∑n

j=1 ei,jci,j

Travelling Salesman: Polynomial Size Solution

• Variables?

• ei,j = 1 if the TSP tour has an edge from point i to point j

• ei,j ∈ {0,1} for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

• Objective?

•
∑n

i=1
∑n

j=1 ei,jci,j

Travelling Salesman

• Constraints?

• Need to ensure that the edges with ei,j = 1 form a cycle through all points

• Observation: in a cycle, all points have one edge coming in, and one edge
going out

• For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

• Is this sufficient?

Travelling Salesman

• Constraints?

• Need to ensure that the edges with ei,j = 1 form a cycle through all points

• Observation: in a cycle, all points have one edge coming in, and one edge
going out

• For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

• Is this sufficient?

Travelling Salesman

• Constraints?

• Need to ensure that the edges with ei,j = 1 form a cycle through all points

• Observation: in a cycle, all points have one edge coming in, and one edge
going out

• For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

• Is this sufficient?

Travelling Salesman

• Constraints?

• Need to ensure that the edges with ei,j = 1 form a cycle through all points

• Observation: in a cycle, all points have one edge coming in, and one edge
going out

• For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

• Is this sufficient?

Travelling Salesman

• Constraints?

• Need to ensure that the edges with ei,j = 1 form a cycle through all points

• Observation: in a cycle, all points have one edge coming in, and one edge
going out

• For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

• Is this sufficient?

Travelling Salesman

• Unfortunately, no—one in/one out
just means a set of cycles.

• Can we give another constraint to
fix this?

• Somewhat brilliant idea:

• Add n − 1 new variables ui (for
i = 2, . . . ,n)

• ui − uj + nei,j ≤ n − 1 for
2 ≤ i 6= j ≤ n, and

• 1 ≤ ui ≤ n − 1 for 2 ≤ i ≤ n

Travelling Salesman

• Unfortunately, no—one in/one out
just means a set of cycles.

• Can we give another constraint to
fix this?

• Somewhat brilliant idea:

• Add n − 1 new variables ui (for
i = 2, . . . ,n)

• ui − uj + nei,j ≤ n − 1 for
2 ≤ i 6= j ≤ n, and

• 1 ≤ ui ≤ n − 1 for 2 ≤ i ≤ n

Travelling Salesman

• Unfortunately, no—one in/one out
just means a set of cycles.

• Can we give another constraint to
fix this?

• Somewhat brilliant idea:

• Add n − 1 new variables ui (for
i = 2, . . . ,n)

• ui − uj + nei,j ≤ n − 1 for
2 ≤ i 6= j ≤ n, and

• 1 ≤ ui ≤ n − 1 for 2 ≤ i ≤ n

Travelling Salesman

• Unfortunately, no—one in/one out
just means a set of cycles.

• Can we give another constraint to
fix this?

• Somewhat brilliant idea:

• Add n − 1 new variables ui (for
i = 2, . . . ,n)

• ui − uj + nei,j ≤ n − 1 for
2 ≤ i 6= j ≤ n, and

• 1 ≤ ui ≤ n − 1 for 2 ≤ i ≤ n

Travelling Salesman

• Unfortunately, no—one in/one out
just means a set of cycles.

• Can we give another constraint to
fix this?

• Somewhat brilliant idea:

• Add n − 1 new variables ui (for
i = 2, . . . ,n)

• ui − uj + nei,j ≤ n − 1 for
2 ≤ i 6= j ≤ n, and

• 1 ≤ ui ≤ n − 1 for 2 ≤ i ≤ n

Travelling Salesman

• Unfortunately, no—one in/one out
just means a set of cycles.

• Can we give another constraint to
fix this?

• Somewhat brilliant idea:

• Add n − 1 new variables ui (for
i = 2, . . . ,n)

• ui − uj + nei,j ≤ n − 1 for
2 ≤ i 6= j ≤ n, and

• 1 ≤ ui ≤ n − 1 for 2 ≤ i ≤ n

Travelling Salesman LP

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Let’s prove that this is correct!

• (Not trivial this time since we have these funny u variables.)

• Then we’ll talk a little bit about intuition.

Travelling Salesman LP

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Let’s prove that this is correct!

• (Not trivial this time since we have these funny u variables.)

• Then we’ll talk a little bit about intuition.

Travelling Salesman LP

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Let’s prove that this is correct!

• (Not trivial this time since we have these funny u variables.)

• Then we’ll talk a little bit about intuition.

Travelling Salesman

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• First let’s show that if there is a TSP solution C, then there is an LP solution

• If we have a simple cycle visiting every vertex, can we create an assignment
that satisfies the constraints?

• Set ei,j = 1 if (i , j) ∈ C.

• If i is the k th city in C, set ui = k

• Cost of LP equals cost of C

Travelling Salesman

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• First let’s show that if there is a TSP solution C, then there is an LP solution

• If we have a simple cycle visiting every vertex, can we create an assignment
that satisfies the constraints?

• Set ei,j = 1 if (i , j) ∈ C.

• If i is the k th city in C, set ui = k

• Cost of LP equals cost of C

Travelling Salesman

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• First let’s show that if there is a TSP solution C, then there is an LP solution

• If we have a simple cycle visiting every vertex, can we create an assignment
that satisfies the constraints?

• Set ei,j = 1 if (i , j) ∈ C.

• If i is the k th city in C, set ui = k

• Cost of LP equals cost of C

Travelling Salesman

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• First let’s show that if there is a TSP solution C, then there is an LP solution

• If we have a simple cycle visiting every vertex, can we create an assignment
that satisfies the constraints?

• Set ei,j = 1 if (i , j) ∈ C.

• If i is the k th city in C, set ui = k

• Cost of LP equals cost of C

Travelling Salesman (High Level Proof Idea)

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Let’s say there is an LP solution. How can we show that it leads to a single
cycle?

• Step 1: The first set of constraints means that all edges are a part of some
cycle (we’ll skip)

• Step 2: Use the second constraint to show that any cycle C′ contains city 1:.

• Assume by contradiction that C′ doesn’t contain city 1. Then we’ll sum all the
constraints for edges in C′

• All the ui and uj cancel, and we get n ≤ n − 1. Since this is impossible, one of
the original constraints must not have been satisfied.

Travelling Salesman (High Level Proof Idea)

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Let’s say there is an LP solution. How can we show that it leads to a single
cycle?

• Step 1: The first set of constraints means that all edges are a part of some
cycle (we’ll skip)

• Step 2: Use the second constraint to show that any cycle C′ contains city 1:.

• Assume by contradiction that C′ doesn’t contain city 1. Then we’ll sum all the
constraints for edges in C′

• All the ui and uj cancel, and we get n ≤ n − 1. Since this is impossible, one of
the original constraints must not have been satisfied.

Travelling Salesman (High Level Proof Idea)

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Let’s say there is an LP solution. How can we show that it leads to a single
cycle?

• Step 1: The first set of constraints means that all edges are a part of some
cycle (we’ll skip)

• Step 2: Use the second constraint to show that any cycle C′ contains city 1:.

• Assume by contradiction that C′ doesn’t contain city 1. Then we’ll sum all the
constraints for edges in C′

• All the ui and uj cancel, and we get n ≤ n − 1. Since this is impossible, one of
the original constraints must not have been satisfied.

Travelling Salesman (High Level Proof Idea)

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Let’s say there is an LP solution. How can we show that it leads to a single
cycle?

• Step 1: The first set of constraints means that all edges are a part of some
cycle (we’ll skip)

• Step 2: Use the second constraint to show that any cycle C′ contains city 1:.

• Assume by contradiction that C′ doesn’t contain city 1. Then we’ll sum all the
constraints for edges in C′

• All the ui and uj cancel, and we get n ≤ n − 1. Since this is impossible, one of
the original constraints must not have been satisfied.

Travelling Salesman (High Level Proof Idea)

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Let’s say there is an LP solution. How can we show that it leads to a single
cycle?

• Step 1: The first set of constraints means that all edges are a part of some
cycle (we’ll skip)

• Step 2: Use the second constraint to show that any cycle C′ contains city 1:.

• Assume by contradiction that C′ doesn’t contain city 1. Then we’ll sum all the
constraints for edges in C′

• All the ui and uj cancel, and we get n ≤ n − 1. Since this is impossible, one of
the original constraints must not have been satisfied.

Travelling Salesman (High Level Proof Idea)

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Size of the ILP?

• At most n + n2 variables; 2n + n2 constraints. Total size O(n4); polynomial!

• Can we calculate the ILP for an instance in polynomial time?

• Yes, just need to look up the costs ci,j .

Travelling Salesman (High Level Proof Idea)

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Size of the ILP?

• At most n + n2 variables; 2n + n2 constraints. Total size O(n4); polynomial!

• Can we calculate the ILP for an instance in polynomial time?

• Yes, just need to look up the costs ci,j .

Travelling Salesman (High Level Proof Idea)

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Size of the ILP?

• At most n + n2 variables; 2n + n2 constraints. Total size O(n4); polynomial!

• Can we calculate the ILP for an instance in polynomial time?

• Yes, just need to look up the costs ci,j .

Travelling Salesman (High Level Proof Idea)

minimize
∑n

i=1
∑n

j=1 ei,jci,j

For all i ,
∑

j 6=i ei,j = 1 and
∑

` 6=i e`,i = 1

For all 2 ≤ i 6= j ≤ n, ui − uj + nei,j ≤ n − 1

• Size of the ILP?

• At most n + n2 variables; 2n + n2 constraints. Total size O(n4); polynomial!

• Can we calculate the ILP for an instance in polynomial time?

• Yes, just need to look up the costs ci,j .

One last example

• Idea here: we talked about how LPs can only really “AND” constraints

• With ILP and MIP, can do something much more like “OR”:
• One of these constraints must be satisfied, or
• Pick one of these items (in an assignment)

• Simple example: optimal eating while being able to choose your diet

One last example

• Idea here: we talked about how LPs can only really “AND” constraints

• With ILP and MIP, can do something much more like “OR”:
• One of these constraints must be satisfied, or
• Pick one of these items (in an assignment)

• Simple example: optimal eating while being able to choose your diet

One last example

• Idea here: we talked about how LPs can only really “AND” constraints

• With ILP and MIP, can do something much more like “OR”:
• One of these constraints must be satisfied, or
• Pick one of these items (in an assignment)

• Simple example: optimal eating while being able to choose your diet

Food Pyramid

Choice of diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit one of these diet goals?

Choice of diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit one of these diet goals?

Choice of diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit one of these diet goals?

Choice of diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit one of these diet goals?

MIP for Choice of Diet

• How to encode which diet I choose?

• x1 = 1 if I choose the first diet; x2 = 1 if I choosed the second diet; x3 = 1 if I
choose the third diet

• Make sure I choose exactly one diet?

• xi ∈ {0,1}

• x1 + x2 + x3 = 1

MIP for Choice of Diet

• How to encode which diet I choose?

• x1 = 1 if I choose the first diet; x2 = 1 if I choosed the second diet; x3 = 1 if I
choose the third diet

• Make sure I choose exactly one diet?

• xi ∈ {0,1}

• x1 + x2 + x3 = 1

MIP for Choice of Diet

• How to encode which diet I choose?

• x1 = 1 if I choose the first diet; x2 = 1 if I choosed the second diet; x3 = 1 if I
choose the third diet

• Make sure I choose exactly one diet?

• xi ∈ {0,1}

• x1 + x2 + x3 = 1

MIP for Choice of Diet

• How to encode which diet I choose?

• x1 = 1 if I choose the first diet; x2 = 1 if I choosed the second diet; x3 = 1 if I
choose the third diet

• Make sure I choose exactly one diet?

• xi ∈ {0,1}

• x1 + x2 + x3 = 1

MIP for Choice of Diet

• How to encode which diet I choose?

• x1 = 1 if I choose the first diet; x2 = 1 if I choosed the second diet; x3 = 1 if I
choose the third diet

• Make sure I choose exactly one diet?

• xi ∈ {0,1}

• x1 + x2 + x3 = 1

MIP for Choice of Diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• How can I encode this?

• Previously: 25.8p + 2.5r + 13.5c ≥ 46 . . .

• Hint: if x1 = 0, I want to do something to these constraint so that they’re
always satisfied

• 25.8p + 2.5r + 13.5c + 46(1− x1) ≥ 46

MIP for Choice of Diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• How can I encode this?

• Previously: 25.8p + 2.5r + 13.5c ≥ 46 . . .

• Hint: if x1 = 0, I want to do something to these constraint so that they’re
always satisfied

• 25.8p + 2.5r + 13.5c + 46(1− x1) ≥ 46

MIP for Choice of Diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• How can I encode this?

• Previously: 25.8p + 2.5r + 13.5c ≥ 46 . . .

• Hint: if x1 = 0, I want to do something to these constraint so that they’re
always satisfied

• 25.8p + 2.5r + 13.5c + 46(1− x1) ≥ 46

MIP for Choice of Diet

• You need to satisfy one of the three following diet goals:
• 46 grams of protein and 130 grams of carbs every day; or
• 20 grams of protein and 200 grams of carbs every day; or
• 100 grams of protein and 30 grams of carbs every day

• How can I encode this?

• Previously: 25.8p + 2.5r + 13.5c ≥ 46 . . .

• Hint: if x1 = 0, I want to do something to these constraint so that they’re
always satisfied

• 25.8p + 2.5r + 13.5c + 46(1− x1) ≥ 46

Choice of diet LP

• Diet options:
• 46 g protein; 130 g carbs; or
• 20 g protein; 200 g carbs; or
• 100 g protein; 30 g carbs

• 100g Peanuts: 25.8g protein,
16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g
carbs, $.79

• 100g Chicken: 13.5g protein, 0g
carbs, $.70

min 1.61p + .79r + .7c

• 25.8p + 2.5r + 13.5c + 46(1− x1) ≥ 46;

• 16.1p + 28.7r + 130(1− x1) ≥ 130

• 25.8p + 2.5r + 13.5c + 20(1− x2) ≥ 20;

• 16.1p + 28.7r + 200(1− x2) ≥ 200

• 25.8p+2.5r +13.5c +100(1−x3) ≥ 100;

• 16.1p + 28.7r + 30(1− x2) ≥ 30

• x1 + x2 + x3 = 1

• p, r , c ≥ 0; p, r ∈ Z; xi ∈ {0, 1}

Technique summary

• When want to choose one of several constraints to satisfy:

• Multiply the indicator variable for whether or not you choose by a large
enough constant to make the constraint trivial

• Need to be able to bound the constraint to do this!

• What happens with rounding when you use this technique?

Technique summary

• When want to choose one of several constraints to satisfy:

• Multiply the indicator variable for whether or not you choose by a large
enough constant to make the constraint trivial

• Need to be able to bound the constraint to do this!

• What happens with rounding when you use this technique?

Technique summary

• When want to choose one of several constraints to satisfy:

• Multiply the indicator variable for whether or not you choose by a large
enough constant to make the constraint trivial

• Need to be able to bound the constraint to do this!

• What happens with rounding when you use this technique?

Technique summary

• When want to choose one of several constraints to satisfy:

• Multiply the indicator variable for whether or not you choose by a large
enough constant to make the constraint trivial

• Need to be able to bound the constraint to do this!

• What happens with rounding when you use this technique?

That’s all for today

• Tuesday: A couple more practice problems; might end early

• Friday: talk about the final project, review solutions

That’s all for today

• Tuesday: A couple more practice problems; might end early

• Friday: talk about the final project, review solutions

	Solving ILPs and MIPs
	Main MIP Solving Method: Branch and Bound
	More ILP and MIP Examples

