
Lecture 16: Integer Linear
Programming

Sam McCauley

November 5, 2024

Williams College

Admin

• Slightly updated wording posted for Homework 5

• Assignment 3 will be out Thursday; will look like Homework 5 but will have
integer-constrained problems

• I’ll try to grade Homework 5 very quickly so that you have time to get feedback
before submitting

• Friday: lots of MIP examples; some from me and some in group work

• Questions?

Homework 5 Comments

• I released some updated wording for Problem 3 in Homework 5. No big
changes!

• A “week” is a 7-day period in the n days. In part (b), when you actually make the
LP, there is only one week

• When I say that half of the `j hours worked must be by employees who can work
the cash register, I mean half the hours (not half the employees—I don’t think
you could encode that using an LP)

• Half of the `j extra hours, and all of the original 8 hours, must be done by cash
register employees.

Outside resources

• (ChatGPT etc. is not allowed on these assignments; it’s only allowed for
code.)

• Sometimes I get the impression that it’s very tempting to use ChatGPT

• For what it’s worth: it seems very bad at giving LPs and ILPs

• It will give you a very good-looking one, and write beautiful language about
why it’s correct, but it will make no sense

• It “makes no sense” in a very unique way; I don’t think it’s very good at
generating a first draft (or a mediocre answer) like it often can be for simple
code

Plan for Today

• Wrap up last lecture

• What is an integer linear program?

• Lots of examples!

• Some information about how integer linear program solvers work

One more LP

• Let’s solve a difficult optimization problem with our LP solver

• Idea: a middle school closed. Students from 6 different areas need to be
assigned to the three other existing middle schools in the area. How can we
do that?

• Need to assign all students; make sure students are reasonably
well-balanced; minimized cost of transportation

Setting up school problem

• Three schools with capacities 900, 1100, 1000

• Grades 6, 7, and 8

• # students from each grade assigned to a school must consist of between
30% and 36% of the school’s total enrollment.

• Let’s look at numbers in terms of what students are from each area, and how
much it costs to get students from an area to a school. Then we’ll create the
LP on the board, and finally input it into an LP solver.

School Problem Numbers

Area 6th 7th 8th School 1 School 2 School 3

1 144 171 135 $300 0 $700
2 222 168 210 - $400 $500
3 165 176 209 $600 $300 $200
4 98 140 112 $200 $500 -
5 195 170 135 0 - $400
6 153 126 171 $500 $300 0

• Three schools with capacities 900, 1100, 1000
• # students from each grade assigned to a school must consist of between

30% and 36% of the school’s total enrollment.
• (Can’t give one school all eighth graders.)

• minimize total cost

Looking at the Solution

• Let’s look at the solution

• Can use grep to help process the text

• Powerful tool for searching in files

• Usage: grep [expression] [file or files]

• Returns all lines in the files containing the expression

• The expression can just be a string, or can be a regular expression

Our solution is fractional!

• What can we do?

• Round up or down; make sure constraints are still met

• How much can this affect our cost?

• Each school will probably end up with ≈ 1 student away from optimal. Unlikely
to be more than $1000 or so off.

• Is this strategy a good idea for other problems?

• Works well when rounding has a small impact on solution quality

• Not so well when it has a large impact

• Often cannot guarantee any optimality (we’re suddenly getting a decent-looking
solution rather than the best solution)

Integer Linear Programming

Definitions

• Integer Linear Program (ILP): has linear constraints and objectives, but all
variables are required to be integers

• Mixed Integer Linear Program (MIP): linear constraints and objectives. Some
variables are required to be integers, some variables are continuous

Why it’s Useful

• Benefits from some structure (not as much as LP)

• Efficient solvers in practice

• Extremely widely applicable

Some good and bad news

• Solving an ILP or an MIP is NP-hard

• Bad news: this means that we can’t give a guarantee to solve an ILP
efficiently

• Good news: if an ILP solver tends to be efficient in practice, we can use it to
solve real-life NP hard problems

• Can guarantee optimal solutions!

• It just may take a long time to get them...

Travelling Salesman

This is an optimal TSP instance with tens of thousands of points.

(Literally) Packaging Items

• Real-world example of something you may way to solve with an MIP:

• Pack items onto pallets (bins)

• Items are 3 dimensional, can be rotated

• Items may not have integral sizes

• Constraints for what goes on top of what

Packaging Items

From Elhedhli, Gzara, and Yildiz 2019:

Visualization of an ILP

(Figure from L. Vandenberghe)

• Still a polytope given by inequalities

• But now, we’re restricted to integer
grid points

ILP and MIP Examples

Simple MIP

Diet problem from last lecture, but peanuts and rice only come in 100g bags.
Chicken we may order as many grams as we want.

Objective: min1.61p + .79r + .7c

25.8p + 2.5r + 13.5c ≥ 46

16.1p + 28.7r ≥ 130

p ≥ 0, r ≥ 0, c ≥ 0

p, r ∈ Z

This means
p and r are

integers.

Using GLPK for ILP and MIP

• after “bounds” section (or after “constraints” section if no bounds)

• can write general, integer, or binary

• Then list variables of that type. (Binary variables must be 0 or 1, general are
just normal LP variables)

• Default: general

• Let’s look at the diet problem as an ILP

Two Towers!

• Get a list of heights (let’s forget about taking square roots—it’s OK if the
heights are not integers) h1, . . .hn

• Want to divide into two towers T1 and T2 to minimize |
∑

i∈T1
hi −

∑
j∈T2

hj |.

• How can we do this using an ILP?

Two Towers as an ILP

• Idea: build the smaller tower, make it as large as possible (but less than half
total height)

• Variables x1, . . . , xn. We have xi ∈ {0,1} for all i . Goal: xi = 1 if i is in the
smaller tower

• Objective: max
∑n

i=1 xihi

• Constraints:

n∑
i=1

xihi ≤
1
2

n∑
i=1

hi

xi ∈ {0,1} for all i = 1, . . . ,n

Why does this work?

• Every xi is 0 or 1

• The total height of all items i with xi = 1 is less than half the height (so it’s the
smaller tower), and is as large as possible

• So every assignment of 0 and 1 to xi corresponds to a two tower solution. The
ILP solution picks the best one.

First attempt: rounding

• Can we solve this as an LP and then round the solution?

• (That gave a “pretty good” solution for the middle schools problem.)

• No! LP is trivially solvable with all but one variable being an integer.

How does GLPK do on two towers?

• It seems to give wrong answers for larger inputs (suboptimal, or even over the
threshold)

• Appear to be some precision issues.

• Might not come up if we call GLPK from C rather than using the CPLEX format?

• Probably an interesting final project to look into it more and figure out the
tradeoffs

• Are there inputs it works on? Is it ever better than meet in the middle?

• Does the extra control calling it from C help?

Doctor Assignments

• Let’s say we have n doctors and n hospitals

• Want to match doctors to hospitals

• Doctor i lives distance di,j from hospital j

• Goal: match doctors with hospitals to minimize total driving distance

• Other methods?

• Yes, but this one generalizes easily to allow for further constraints

• Random example: two doctors are in a relationship and they need to be
matched to hospitals that are within a certain distance of each other.

Doctor Assignments: ILP

• What should our variables be?

• xi,j = 1 if doctor i is assigned to hospital j , xi,j = 0 otherwise

• Constraints?

• xi,j ∈ {0,1}

• For all i :
∑n

j=1 xi,j = 1 (every doctor has one hospital)

• For all j :
∑n

i=1 xi,j = 1 (every hospital has one doctor)

Doctor Assignments: ILP

Constraints:

• xi,j ∈ {0,1}

• For all i :
∑n

j=1 xi,j = 1

• For all j :
∑n

i=1 xi,j = 1

Objective? (Recall: goal is minimize total distance)

• min
∑n

i=1
∑n

j=1 xi,jdi,j

Solving ILPs and MIPs

First thought: Can we Round?

• LP relaxation: just remove the integer constraints

• ei,j ∈ {0,1} becomes ei,j ≥ 0 and ei,j ≤ 1.

• How badly can this do?

Rounding MIPs

From Google OR Tools Documentation

• Can do arbitrarily badly, even for
simple ILPs

• May work effectively if the problem
has a special structure that makes
rounding effective

• Example: the diet problem is
probably solved fairly well by
rounding (will only be off by 1 unit
of each food)

Second Method: Cutting ILPs

• Cut the LP without removing integer
solutions

• After enough cuts, can round and
get a good solution!

• Not always possible, but
surprisingly effective methods in
practice for some types of problem

• Many MIP solvers find these cuts
for you

Third Method: Prove the LP has integral soln

• Broad class of LPs are guaranteed
to give optimal solutions

• We won’t go over in this class
except on this slide!

• Example for linear algebra people:
if your constraint matrix is totally
unimodular then there exists an
optimal integer solution

Third Method: Prove the LP has integral soln

• Broad class of LPs are guaranteed
to give optimal solutions

• We won’t go over in this class
except on this slide!

• Example for flow-reduction-lovers:
if you write a flow problems as an
LP where all constraints are
integers, there exists an optimal
integer solution

Main MIP Solving Method: Branch
and Bound

Branch and Bound

• Two towers: really wanted to “rule out” some of the search space

• Maintain worst-case guarantees

• Branch and bound: a less-problem-specific way to do the same thing

• This is a large class of algorithms; I’m giving a high level description of the
idea

Branching

• First, we divide the problem into
several subproblems

• Visualization is useful: just partition
the feasible region into several
pieces

• So far, still need to search through
all of them (same as brute force)

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

• Partition region

• Find best solution in
orange piece

• When can we avoid
searching in purple?

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

• Upper bound best solution
in purple

• If best possible soln in
purple is worse than best
soln in orange, can safely
skip it

Branching and Bounding

x1

x2
max x2

−3x1 + 4x2 = 4

3x1 + 2x2 = 11

2x1 − x2 = 5

(0,1)

(0,0)

(3,1)

(2.5,0)

(2,2.5)

Safe to skip: always still gives
an optimal solution.

But, can’t skip anything in worst
case.

What do we need?

• Way to get a good solution in orange region: recurse!

• Base case: can just do a simple greedy method if the region is small enough.

• Way to upper bound best solution in purple region??

• Relax to an LP! Might not give a good upper bound, but will give an upper bound
(Recall: LPs are relatively fast to solve)

• Duality can help (we won’t talk about in this class)

Branch and Bound Intuition

• Branch: split feasible region into pieces; Bound: bound the solution quality on
each so we can rule out searching in some pieces

• Let us rule out big parts of the search space

• “Everything in here has a bad objective function, so we can skip it.” (This is
the bound part)

• Many practical problems have large parts that are easy to skip. (If we’re
stacking groceries on pallets, no need to spend time looking at solutions with
bread on the bottom.)

• The more we branch (find good solutions), the more we can bound (rule out
parts of the search space whose solutions are suboptimal)

Branch and Bound in Practice

• Advanced methods to figure out how to split into pieces; how much to search
each piece before doing more bound calculations

• The better your choices, the more you can rule out

• Other methods (greedy, LP cuts, duality, heuristic search, etc.) can be
integrated into this method

Branch and Bound in Practice

• Solvers are sometimes optimized for a given problem

• Dedicated solvers for TSP, Knapsack, that make branching decisions and use
bounding methods particularly effective for that problem

• This is how you get the optimal, giant TSP tours

• Also some general-purpose solvers

Branch and Bound Summary

• Always gives an optimal solution eventually

• May not find it quickly on tricky problems

• Can be very fast even on reasonably hard, reasonably large instances.

Solvers

These solvers have both LP and MIP solvers (using different algorithms):

• GLPK (simplex, branch and bound). Open source. Standalone program is
fairly easy to use; can also access from C.

• CPLEX - IBM software for MIPs. Old but reliable. Proprietary. Effective, but
can be difficult to work with

• COIN-OR - open source solver

• Google OR tools - wrapper for COIN-OR. Has a really nice TSP and
Knapsack solvers. More user friendly

	Integer Linear Programming
	ILP and MIP Examples
	Solving ILPs and MIPs
	Main MIP Solving Method: Branch and Bound

