
Lecture 15: Linear Programming
Solvers

Sam McCauley

November 1, 2024

Williams College



Admin

• Assignment 2 over!

• Homework 4 back; great job!

• Homework 5 out. Last “homework” (one more assignment next week; then
final project)

• Preregistration until Monday. Two particularly relevant courses:

• Algorithmic Game Theory

• Parallel Programming

• Questions?



In honor of last “leaderboard”



Linear Programming

A linear program consists of:

• a linear objective function, and

• a set of linear constraints.

Goal: achieve the best possible objective function value while satisfying the
constraints



Solving Problems with Linear
Programming



Example 3 (hard): Group Grading

• The CS TAs at Williams have decided that all TAs will help do the grading for
all assignments due in a given week.

• Problem setup: they have n hour-long time slots during the week. Some time
slots have more TAs available than others. Assignments will arrive as the
week goes on.

• Assignments don’t all take the same time to grade! In particular, there are m
courses. It takes a certain amount of TA hours to grade a particular
submission from a given course, and a given due date may have different
numbers of arriving assignments.

• Goal: assign how many TAs should work on what course during a given hour

• Objective: minimize the average time it took to grade each assignment



Example 3 (hard): Group Grading

Inputs to the problem:

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of hj TA hours
worth of time

• wi,j is the number of assignments from course j that arrive at time slot i

• Question: for each time slot i , how many (fractional) TAs should work on each
course j to minimize the average time it takes each submission to be graded?



Example 3 (hard): Group Grading

How should we make our variables? (In other words, what does our solution look
like?)

Let xi,j be the number of TAs working on course j in time slot i .

(It seems like we should also have variables for cost. We’ll come back to that.)

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• Question: for each time slot i, how many TAs should work on each course j to
minimize the average time it takes each submission to be graded?



Example 3 (hard): Group Grading

Can we constrain xi,j? What are the limits to how we can assign TAs?

Can’t assign more TAs at time i than available: for all i ,
∑

j xi,j ≤ ti

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded



Example 3 (hard): Group Grading

How do we keep track of the work the TAs are doing? When wi,j arrives, if we have
assignment xi,j , how does that affect the final grading time?

First try: xi,j = wi,j · hj .

Issue: This requires all work that arrives at slot i to be completed at time i . Might
not be possible!

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded



Example 3 (hard): Group Grading

What if we can’t finish all the work in a given timeslot? We need to keep track of
what spills over.

Let ri,j be the remaining work for course j after time slot i .

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded



Example 3 (hard): Group Grading

How much work is remaining? Well, during time slot i for course j , we assign xi,j

TAs. This means they can do a total of xi,j work from course j .

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

• ri,j : (variable) work remaining for course j after slot i



Example 3 (hard): Group Grading

Time slot i starts with ri−1,j work remaining for course j . The TAs can perform xi,j

work, and wi,jhj new work arrives. Therefore, ri,j = ri−1,j + wi,j · hj − xi,j .

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

• ri,j : (variable) work remaining for course j after slot i



Cost?

• We want to minimize the average time it takes each submission to be graded.

• The total time all submissions of course j wait is
∑

i ri,j/hj

• Each hj of work remaining at the end of time slot 1 increases the total amount of
time the assignments wait by 1.

• The total number of submissions is
∑

i
∑

j wi,j

• Need ri,j ≥ 0!

• Objective function: minimize
(∑

j
∑

i ri,j/hj

)
/
(∑

i
∑

j wi,j

)



Example 3: Final LP

Objective: min
(∑

j
∑

i ri,j/hj

)
/
(∑

j
∑

i wi,j

)
Constraints:

For all i :
∑

j xi,j ≤ ti

For all i and all j : ri,j ≥ ri−1,j + wi,j · hj − xi,j

Remember that
hj is a constant!

For all i and all j : xi,j ≥ 0 and ri,j ≥ 0

• What are the variables? What are the constants?

• Is this an LP? How many variables and constraints does it have?

• How can we go from a feasible LP solution to a real-world schedule?



Structure of Linear Programs



Canonical Form

• Without loss of generality, can always put all constants on the right; can
ensure variable appears once per line

• Our solver does require that variables all appear on the left and constants all
appear on the right.

• Some solvers need other constraints (like all ≤); ours doesn’t



Extreme Points

• Where can a solution lie?

• Can’t ever be inside the polytope of
feasible solutions

• In fact, don’t need to look along an
edge of the polytope either

• Theorem: any LP has an optimal
solution at an at extreme point

• Defn: does not lie on a line between
two other points in the polytope
(intuitively, a vertex of the polytope)



Solving Linear Programs



First Steps

• For small programs, draw them out
and solve them

• This is not a bad tactic for solving
these by hand



Some Theory on Solving LPs

• O(n) time for constant dimensions

• Also: polynomial time algorithm in general!

• “Ellipsoid method” (Khachiyan 1979)

• “Interior point methods” (Karmarkar 1984)

• Best known currently: Cohen, Lee, Song, Zhang 2019

• We’ll learn about an algorithm that’s slower in the worst case (not polynomial
time), but works extremely well in practice



LP Solving Using the Simplex Algorithm

Simplex algorithm:

• Invented by Dantzig in 1947

• Simple, most common in practice

• Works extremely well on real-world data

• Exponential time in the worst case

• We will just see just the basics of this algorithm



How do we search through extreme points?

• From one extreme point, we can
follow an edge to another

• Pros: local!

• Has a nice algebraic formulation

• But when do we know that we have
the best solution?



Going through extreme points

• One option: keep track of which
ones we’ve seen, stop once we’ve
seen all of them

• Takes up lots and lots of space!

• Not very efficient
• No opportunities for heuristics:

• even if we see the solution early,
need to search through all of them



Key Lemma

Lemma 1
An extreme point is an optimal solution if every adjacent extreme point has a
strictly worse objective value.

• That is to say: a local maximum is always a global maximum!

• Adjacent roughly means: connected by a line

• More formally (you don’t need to know this vocab): “adjacent” extreme points
can be determined by loosening one constraint and tightening another

• Called a “pivot”



The Simplex Algorithm

• Start at some extreme point

• While there is an adjacent extreme point with the same or better objective
function:

• Go to that extreme point

• Then: Return current extreme point



Does this work?

• By our lemma, if it finishes, the value it returns is correct.

• When might it not finish? What obstacles might it find?

• First: need to find the initial extreme point

• Significant area of research; usually easy in practice

• Can the algorithm loop infinitely?

• Yes. Also significant area of research, can generally be avoided in practice (and
can always be avoided in theory).



Simplex Algorithm

• This is what simplex does:

• Greedily searches through points

• Does not keep track of previous
points

• Very good at getting to the right
place quickly in practice



Where to pivot?

• Simplex performance depends on what extreme point we go
to next (“pivot rule”)

• How can we choose?

• One option: greedily choose best objective function

• Not bad, but not as good as you’d think

• 70 years of optimization have gotten us really effective rules

• Some work well for certain types of problems (i.e. network flows)



How fast is it?

We can’t get stuck in local minima; can’t get stuck in an infinite cycle. Does this
mean it’s fast in terms of the number of variables and constraints?

• Classic result: there exists an LP with n variables and n constraints such that
simplex can take Ω(2n) time (Klee Minty 1972)

• (But subexponential pivot rule by Hansen and Zwick in 2015!)

• Can be exponential even if all constants are in {1,2,3,4}

• Good news: bad cases are very very carefully crafted, extremely rare in
practice



Using an LP Solver



LP Solver in this course

• GLPK: open source solver

• Can be called from C, or from python, or used as a standalone program
• We’ll be using as a standalone program
• Arguably easier. (Downside: can’t program the generation of the LP. Have to

write it out by hand.)
• If you really want to use the C or python version you can but I think it’s ultimately

harder for these problems and I don’t recommend it

• Industrial solvers may have better performance than GLPK, especially for
specific types of LPs. They can be very expensive.



What does GLPK do

• Best effort to solve the problem (uses very optimized simplex, plus some
other stuff)

• Gives you the best solution it found, tells you whether or not it’s optimal.

• Remember that simplex knows when it arrives at an optimal solution

• (More advanced techniques can also be used)

• So far: basically solves everything I’ve tried instantly, optimally

• Full disclosure: I’ve used this program a few times but I don’t know it in and
out, especially corner cases



Formatting LP in this class

• We’ll be using the CPLEX format

• Pretty much looks like writing the LP in text

• Note: any inequalities may be written as strict inequalities: you can write <

rather than <=. But <= is always meant!!



CPLEX LP format summary: objective function

• (Must) start with objective function

• write maximize or minimize

• Then just write the function! (Can name it if you want with name:)

• Example: minimize obj: - y1 + 2 bananas - 3.5 y3

• Or: minimize obj: -y1 + 2bananas - 3.5y3

• Number next to the variable means multiplying



CPLEX LP format summary: Constraints

• Must write subject to

• Then, one constraint per line (again, can name)

• Must have one constant on right side of equation

Subject To

one: y1 + 3 a1 - a2 - b >= 1.5

y2 + 2 a3 + 2 a4 - b >= -1.5

two : y4 + 3 a1 + 4 a5 - b <= +1

.20y5 + 5 a2 - b = 0



CPLEX LP format summary: bounding variables

• Special section to give bounds on individual variables

• Useful! (and optional; variables are positive by default)

• Write bounds then a sequence of bounds (one per variable)

• +inf and -inf for infinity; free for unbounded variable

bounds

-inf <= a1 <= 100

200 <= a2 <= 300

-100 <= a3

bananas <= 100

x2 = +123.456

x3 free



CPLEX LP format summary: finishing it up

• Starting next week: another section for specifying integer variables

• Don’t need that section for now!

• Then write end keyword

• Can comment single lines like so:
\* This is a comment *\



Running the LP Solver

• glpsol --cpxlp [LP file] -o [desired output file]

• glpsol --cpxlp mylp.lp -o mylp.out

• Outputs solution to output file (text format!! Despite the extension)

• Also outputs a bunch of information to the command line

• Let’s look at an example!



GLPK Example Usage

Example 1: Diet

• You need to eat 46 grams of protein and 130 grams of carbs every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit your diet goals? First, let’s formulate the LP
together on the board



GLPK Example

Now let’s make the file

• Start with objective function

• Then subject to, then constraints

• Finally, bounds followed by bounds

• Then end



Tips

• Last year feedback: easiest homework conceptually, but most tedious
• I did simplify some parts considerably, but there’s a cost to using tools this

powerful—they’re harder to set up and may not be as user-friendly

• Use a good text editor! A chance to use things like find and replace (regex?),
multiple cursors/vertical selections, etc.

• Use helper variables to keep things simple. If you’re going to write 2 x + 2 y

+ 2 z a lot, might want to set sum = 2 x + 2 y + 2 z and use sum instead

• You can write little python programs that output text for your LP file. Could
help considerably if used properly!

• Debugging outputs from GLPK are almost useless. Try different pieces of the
line (or file) to narrow down where the issue is


	Solving Problems with Linear Programming
	Structure of Linear Programs
	Solving Linear Programs
	Using an LP Solver

