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Admin

• Assignment 2 over!

• Homework 4 back; great job!

• Homework 5 out. Last “homework” (one more assignment next week; then
final project)

• Preregistration until Monday. Two particularly relevant courses:

• Algorithmic Game Theory

• Parallel Programming

• Questions?



In honor of last “leaderboard”



Linear Programming

A linear program consists of:

• a linear objective function, and

• a set of linear constraints.

Goal: achieve the best possible objective function value while satisfying the
constraints



Solving Problems with Linear
Programming



Example 3 (hard): Group Grading

• The CS TAs at Williams have decided that all TAs will help do the grading for
all assignments due in a given week.

• Problem setup: they have n hour-long time slots during the week. Some time
slots have more TAs available than others. Assignments will arrive as the
week goes on.

• Assignments don’t all take the same time to grade! In particular, there are m
courses. It takes a certain amount of TA hours to grade a particular
submission from a given course, and a given due date may have different
numbers of arriving assignments.

• Goal: assign how many TAs should work on what course during a given hour

• Objective: minimize the average time it took to grade each assignment



Example 3 (hard): Group Grading

Inputs to the problem:

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of hj TA hours
worth of time

• wi,j is the number of assignments from course j that arrive at time slot i

• Question: for each time slot i , how many (fractional) TAs should work on each
course j to minimize the average time it takes each submission to be graded?



Example 3 (hard): Group Grading

How should we make our variables? (In other words, what does our solution look
like?)

Let xi,j be the number of TAs working on course j in time slot i .

(It seems like we should also have variables for cost. We’ll come back to that.)

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• Question: for each time slot i, how many TAs should work on each course j to
minimize the average time it takes each submission to be graded?



Example 3 (hard): Group Grading

Can we constrain xi,j? What are the limits to how we can assign TAs?

Can’t assign more TAs at time i than available: for all i ,
∑

j xi,j ≤ ti

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded



Example 3 (hard): Group Grading

How do we keep track of the work the TAs are doing? When wi,j arrives, if we have
assignment xi,j , how does that affect the final grading time?

First try: xi,j = wi,j · hj .

Issue: This requires all work that arrives at slot i to be completed at time i . Might
not be possible!

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded



Example 3 (hard): Group Grading

What if we can’t finish all the work in a given timeslot? We need to keep track of
what spills over.

Let ri,j be the remaining work for course j after time slot i .

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded



Example 3 (hard): Group Grading

How much work is remaining? Well, during time slot i for course j , we assign xi,j

TAs. This means they can do a total of xi,j work from course j .

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

• ri,j : (variable) work remaining for course j after slot i



Example 3 (hard): Group Grading

Time slot i starts with ri−1,j work remaining for course j . The TAs can perform xi,j

work, and wi,jhj new work arrives. Therefore, ri,j = ri−1,j + wi,j · hj − xi,j .

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

• ri,j : (variable) work remaining for course j after slot i



Cost?

• We want to minimize the average time it takes each submission to be graded.

• The total time all submissions of course j wait is
∑

i ri,j/hj

• Each hj of work remaining at the end of time slot 1 increases the total amount of
time the assignments wait by 1.

• The total number of submissions is
∑

i
∑

j wi,j

• Need ri,j ≥ 0!

• Objective function: minimize
(∑

j
∑

i ri,j/hj

)
/
(∑

i
∑

j wi,j

)



Example 3: Final LP

Objective: min
(∑

j
∑

i ri,j/hj

)
/
(∑

j
∑

i wi,j

)
Constraints:

For all i :
∑

j xi,j ≤ ti

For all i and all j : ri,j ≥ ri−1,j + wi,j · hj − xi,j

Remember that
hj is a constant!

For all i and all j : xi,j ≥ 0 and ri,j ≥ 0

• What are the variables? What are the constants?

• Is this an LP? How many variables and constraints does it have?

• How can we go from a feasible LP solution to a real-world schedule?



Structure of Linear Programs



Canonical Form

• Without loss of generality, can always put all constants on the right; can
ensure variable appears once per line

• Our solver does require that variables all appear on the left and constants all
appear on the right.

• Some solvers need other constraints (like all ≤); ours doesn’t



Extreme Points

• Where can a solution lie?

• Can’t ever be inside the polytope of
feasible solutions

• In fact, don’t need to look along an
edge of the polytope either

• Theorem: any LP has an optimal
solution at an at extreme point

• Defn: does not lie on a line between
two other points in the polytope
(intuitively, a vertex of the polytope)



Solving Linear Programs



First Steps

• For small programs, draw them out
and solve them

• This is not a bad tactic for solving
these by hand



Some Theory on Solving LPs

• O(n) time for constant dimensions

• Also: polynomial time algorithm in general!

• “Ellipsoid method” (Khachiyan 1979)

• “Interior point methods” (Karmarkar 1984)

• Best known currently: Cohen, Lee, Song, Zhang 2019

• We’ll learn about an algorithm that’s slower in the worst case (not polynomial
time), but works extremely well in practice



LP Solving Using the Simplex Algorithm

Simplex algorithm:

• Invented by Dantzig in 1947

• Simple, most common in practice

• Works extremely well on real-world data

• Exponential time in the worst case

• We will just see just the basics of this algorithm



How do we search through extreme points?

• From one extreme point, we can
follow an edge to another

• Pros: local!

• Has a nice algebraic formulation

• But when do we know that we have
the best solution?



Going through extreme points

• One option: keep track of which
ones we’ve seen, stop once we’ve
seen all of them

• Takes up lots and lots of space!

• Not very efficient
• No opportunities for heuristics:

• even if we see the solution early,
need to search through all of them



Key Lemma

Lemma 1
An extreme point is an optimal solution if every adjacent extreme point has a
strictly worse objective value.

• That is to say: a local maximum is always a global maximum!

• Adjacent roughly means: connected by a line

• More formally (you don’t need to know this vocab): “adjacent” extreme points
can be determined by loosening one constraint and tightening another

• Called a “pivot”



The Simplex Algorithm

• Start at some extreme point

• While there is an adjacent extreme point with the same or better objective
function:

• Go to that extreme point

• Then: Return current extreme point



Does this work?

• By our lemma, if it finishes, the value it returns is correct.

• When might it not finish? What obstacles might it find?

• First: need to find the initial extreme point

• Significant area of research; usually easy in practice

• Can the algorithm loop infinitely?

• Yes. Also significant area of research, can generally be avoided in practice (and
can always be avoided in theory).



Simplex Algorithm

• This is what simplex does:

• Greedily searches through points

• Does not keep track of previous
points

• Very good at getting to the right
place quickly in practice



Where to pivot?

• Simplex performance depends on what extreme point we go
to next (“pivot rule”)

• How can we choose?

• One option: greedily choose best objective function

• Not bad, but not as good as you’d think

• 70 years of optimization have gotten us really effective rules

• Some work well for certain types of problems (i.e. network flows)



How fast is it?

We can’t get stuck in local minima; can’t get stuck in an infinite cycle. Does this
mean it’s fast in terms of the number of variables and constraints?

• Classic result: there exists an LP with n variables and n constraints such that
simplex can take Ω(2n) time (Klee Minty 1972)

• (But subexponential pivot rule by Hansen and Zwick in 2015!)

• Can be exponential even if all constants are in {1,2,3,4}

• Good news: bad cases are very very carefully crafted, extremely rare in
practice



Using an LP Solver



LP Solver in this course

• GLPK: open source solver

• Can be called from C, or from python, or used as a standalone program
• We’ll be using as a standalone program
• Arguably easier. (Downside: can’t program the generation of the LP. Have to

write it out by hand.)
• If you really want to use the C or python version you can but I think it’s ultimately

harder for these problems and I don’t recommend it

• Industrial solvers may have better performance than GLPK, especially for
specific types of LPs. They can be very expensive.



What does GLPK do

• Best effort to solve the problem (uses very optimized simplex, plus some
other stuff)

• Gives you the best solution it found, tells you whether or not it’s optimal.

• Remember that simplex knows when it arrives at an optimal solution

• (More advanced techniques can also be used)

• So far: basically solves everything I’ve tried instantly, optimally

• Full disclosure: I’ve used this program a few times but I don’t know it in and
out, especially corner cases



Formatting LP in this class

• We’ll be using the CPLEX format

• Pretty much looks like writing the LP in text

• Note: any inequalities may be written as strict inequalities: you can write <

rather than <=. But <= is always meant!!



CPLEX LP format summary: objective function

• (Must) start with objective function

• write maximize or minimize

• Then just write the function! (Can name it if you want with name:)

• Example: minimize obj: - y1 + 2 bananas - 3.5 y3

• Or: minimize obj: -y1 + 2bananas - 3.5y3

• Number next to the variable means multiplying



CPLEX LP format summary: Constraints

• Must write subject to

• Then, one constraint per line (again, can name)

• Must have one constant on right side of equation

Subject To

one: y1 + 3 a1 - a2 - b >= 1.5

y2 + 2 a3 + 2 a4 - b >= -1.5

two : y4 + 3 a1 + 4 a5 - b <= +1

.20y5 + 5 a2 - b = 0



CPLEX LP format summary: bounding variables

• Special section to give bounds on individual variables

• Useful! (and optional; variables are positive by default)

• Write bounds then a sequence of bounds (one per variable)

• +inf and -inf for infinity; free for unbounded variable

bounds

-inf <= a1 <= 100

200 <= a2 <= 300

-100 <= a3

bananas <= 100

x2 = +123.456

x3 free



CPLEX LP format summary: finishing it up

• Starting next week: another section for specifying integer variables

• Don’t need that section for now!

• Then write end keyword

• Can comment single lines like so:
\* This is a comment *\



Running the LP Solver

• glpsol --cpxlp [LP file] -o [desired output file]

• glpsol --cpxlp mylp.lp -o mylp.out

• Outputs solution to output file (text format!! Despite the extension)

• Also outputs a bunch of information to the command line

• Let’s look at an example!



GLPK Example Usage

Example 1: Diet

• You need to eat 46 grams of protein and 130 grams of carbs every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit your diet goals? First, let’s formulate the LP
together on the board



GLPK Example

Now let’s make the file

• Start with objective function

• Then subject to, then constraints

• Finally, bounds followed by bounds

• Then end



Tips

• Last year feedback: easiest homework conceptually, but most tedious
• I did simplify some parts considerably, but there’s a cost to using tools this

powerful—they’re harder to set up and may not be as user-friendly

• Use a good text editor! A chance to use things like find and replace (regex?),
multiple cursors/vertical selections, etc.

• Use helper variables to keep things simple. If you’re going to write 2 x + 2 y

+ 2 z a lot, might want to set sum = 2 x + 2 y + 2 z and use sum instead

• You can write little python programs that output text for your LP file. Could
help considerably if used properly!

• Debugging outputs from GLPK are almost useless. Try different pieces of the
line (or file) to narrow down where the issue is
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