
Lecture 14: Linear Programming
and Optimization

Sam McCauley

October 29, 2024

Williams College



Admin

• How is Assignment 2 going?

• Reminder: I’m only giving extensions if absolutely necessary this week. Start
now!

• Homework 4 back tomorrow

• Questions?



What is an algorithmic problem?

• Constraints

• Objective

• What if we had a single tool that could solve any problem with certain kinds of
constraints and objectives?



Next section of the course

• Frameworks to phrase algorithmic problems

• Allow practical solutions for a wide variety of otherwise-intractable problems

• “Optimization” problems that come up frequently in practice

• This topic is much older and much much broader than anything else we’ve
covered

• Focus for this class: using linear programming and integer linear
programming (and their solvers) to obtain optimal solutions to difficult
problems. (Won’t be focusing on structure, mathematical properties.)



Context

“ I have a strong interest in the question of where mathematical ideas come
from, and a strong conviction that they always result from a fairly sys-
tematic process—and that the opposite impression, that some ideas are
incredible bolts from the blue that require “genius” or “sudden inspiration”
to find, is an illusion.

Timothy Gowers”



History

• Starts with a legend



George Dantzig

• Father of Linear Programming

• Worked for military during World
War 2

• Invented the simplex algorithm



Linear Programming

A linear program consists of:

• a linear objective function, and

• a set of linear constraints.

• (We’ll discuss what we mean by linear in a moment.)

Goal: achieve the best possible objective function value while satisfying the
constraints



Why linear programming

• Black-box tools to solve important optimization problems that would be
otherwise intractable

• Probably the most powerful tool you’ll learn about to solve difficult algorithmic
problems

• More powerful (in a sense) than dynamic programming

• Strictly generalizes network flows

• Essentially gives a free method to solve continuous optimization problems—as
well as some others

• 2004 survey: 85% of fortune 500 companies report using linear programming



What do I mean by “linear”?

• Let’s say our variables are x1, . . . xn.

• A linear function is the sum of a subset of these variables, each (possibly)
multiplied by a constant.

• Linear inequality: this can be set ≥,≤, or = a final constant.

• Example: 4x1 − 3x2 ≤ 7 is linear

• Example 2: 4x1x2 + x1 = 3 is not

• Example 3: |√x3 − x7| ≥ 5 is not



Linear Programming

A linear program consists of:

• a linear objective function, (min or max) and

• a set of constraints, which are linear inequalities.

• Goal: achieve the best possible objective function value while satisfying all of
the constraints

• Note that variables need not be integer or positive



Example of a Linear Program

Objective:
max 3x1 + 4x2

Subject to:
2x1 + x2 ≤ 120
x1 + 3x2 ≤ 180
x1 + x2 ≤ 80
x1 ≥ 0

x2 ≥ 0



Feasibility

• An LP is feasible if there exists an
assignment of variables that
satisfies the constraints

• Nontrivial result: feasibility is not
trivial to determine. In the worst
case, it is as difficult as solving the
entire LP.



Matrix Representation

Objective:
[3 4]

Subject to:
2 1
0 3
0 1
−1 0
0 −1


[

x1

x2

]
≤


120
180
80
0
0



• Can represent with a matrix and
vector

• Useful!

• I don’t plan to use this
representation again in this class



Visual representation

• We can plot these inequalities

• Works best for instances with 2 or 3 variables

• We’ll use extensively as it gives good intuition



Plotting an LP

Objective:

max 3x1 + 4x2

Subject to:

2x1 + x2 ≤ 120
x1 + 3x2 ≤ 180
x1 + x2 ≤ 80
x1 ≥ 0

x2 ≥ 0



Why are we looking at this?

• Let’s say I gave you a tool that could solve any linear program

• Guarantees correct, optimal solutions!

• Frequently very fast in practice

• Our goal: use this tool to solve computational problems



Why are we looking at this?

• Many problems can be phrased as a linear program
• We’ll start with some slightly contrived problems to build intuition, and eventually

get to problems with more real-world importance.

• Linear programs can be solved efficiently

• For today: take as a given that efficient solving is possible. How can we use
linear programming to solve these problems?

• Essentially a reduction: similar to using Network Flow to solve problems



Solving Problems with Linear
Programming



Optimization Problems

Example 1: Diet

• You need to eat 46 grams of protein and 130 grams of carbs every day

• Available foods:

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit your diet goals?



Diet Problem

How can we phrase this as a linear program? (I’ll write the problem on the board;
you should think about how you would do it.)

• Let p be the amount of peanuts, r be the amount of rice, and c be the amount
of chicken you buy.

• Then what is our objective function?

• Answer: The price is 1.61p + .79r + .7c

• Do we want to maximize or minimize this?

• min 1.61p + .79r + .7c



Diet Problem Constraints

min 1.61p + .79r + .7c

• Protein: 25.8p + 2.5r + 13.5c ≥ 46

• Carbs: 16.1p + 28.7r ≥ 130

• Anything else?

• p ≥ 0, r ≥ 0, c ≥ 0

Reminder:

• You need to eat 46 grams of protein and 130 grams of carbs every day

• 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

• 100g Rice: 2.5g protein, 28.7g carbs, $.79

• 100g Chicken: 13.5g protein, 0g carbs, $.70



Diet Problem Solution

min 1.61p + .79r + .7c

• Protein: 25.8p + 2.5r + 13.5c ≥ 46

• Carbs: 16.1p + 28.7r ≥ 130

• p ≥ 0, r ≥ 0, c ≥ 0

Solution: p = 0, r = 2.9216..., c = 2.86636...

So we want to buy about 293g of rice, and 287g of chicken, for total cost $4.32



Diet Problem Solution

min 1.61p + .79r + .7c

• Protein: 25.8p + 2.5r + 13.5c ≥ 46

• Carbs: 16.1p + 28.7r ≥ 130

• p ≥ 0, r ≥ 0, c ≥ 0

Solution: p = 0, r = 2.9216..., c =

2.86636...

So we want to buy about 293g of rice,
and 287g of chicken, for total cost $4.32



Example 2: Extending the Diet

• What if I wanted to limit the amount of rice I eat to 100g?

• Add a constraint: r ≤ 1

• What if I wanted a balanced diet—the amount of any pair of foods is within 50
grams of each other?

• First: how would we write these constraints if we don’t require that they are
linear?

• |r − c| < .5, |c − p| < .5, |r − p| < .5

• Then: how can we use a sequence of constraints to achieve this?

• if |x − y | < c then x − y < c and y − x < c. So:

• r − c < .5, c − p < .5, r − p < .5, c − r < .5, p − c < .5, p − r < .5



Example 3: Facility Location (Harder Problem)

• Given coordinates for n roommates (x1, y1), (x2, y2), . . . , (xn, yn)

• Goal: find location for a router that minimizes the average distance to each
roommate

• Distance from (x , y) to (xi , yi) is |x − xi |+ |y − yi |

• Cannot have distance more than 10 from any roommate



Example 3: Facility Location

Objective:
Constraints:

(x − 3) + (y − 4) ≤ 10

(−x + 3) + (y − 4) ≤ 10

(−x + 3) + (−y + 4) ≤ 10

(x − 3) + (−y + 4) ≤ 10

(x − 13) + (y − 5) ≤ 10

(−x + 13) + (y − 5) ≤ 10

(−x + 13) + (−y + 5) ≤ 10

(x − 13) + (−y + 5) ≤ 10

Can’t make
objective

function. Idea:
add new
variables!

• Given roommates at (3,4) and
(13,5)

• Goal: find location for a router that
minimizes the average distance to
each roommate

• Distance from (x , y) to (xi , yi) is
|x − xi |+ |y − yi |

• Cannot have distance > 10 from
any roommate



Example 3: Facility Location
Objective: min d1 + d2

Constraints:

(x − 3) + (y − 4) ≤ d1

(−x + 3) + (y − 4) ≤ d1

(−x + 3) + (−y + 4) ≤ d1

(x − 3) + (−y + 4) ≤ d1

(x − 13) + (y − 5) ≤ d2

(−x + 13) + (y − 5) ≤ d2

(−x + 13) + (−y + 5) ≤ d2

(x − 13) + (−y + 5) ≤ d2

d1 ≤ 10

d2 ≤ 10

• Given roommates at (3,4) and
(13,5)

• Goal: find location for a router that
minimizes the average distance to
each roommate

• Distance from (x , y) to (xi , yi) is
|x − xi |+ |y − yi |

• Cannot have distance > 10 from
any roommate



Example 3: Facility Location

Objective: min d1 + d2

Constraints:

x + y − d1 ≤ 7

−x + y − d1 ≤ 1

−x − y − d1 ≤ −7

x − y − d1 ≤ −1

x + y − d2 ≤ 18

−x + y − d2 ≤ −8

−x − y − d2 ≤ −18

x − y − d2 ≤ 8

• Given roommates at (3,4) and
(13,5)

• Goal: find location for a router that
minimizes the average distance to
each roommate

• Distance from (x , y) to (xi , yi) is
|x − xi |+ |y − yi |

• Cannot have distance > 10 from
any roommate



Proving Correctness

• How can we show that the above LP works?

• Idea: an LP is feasible if and only if it corresponds to a correct router
placement

• 1st: if there exists a feasible LP solution has values d1,d2, x , y then there
exists a router placement at (x , y) with distance at most d1 and d2 from
roommates 1 and 2, with d1 ≤ 10 and d2 ≤ 10

• 2nd: any placement of a router at location (x , y), with distance d1 ≤ 10 and
d2 ≤ 10 from the first and second roommate respectively corresponds to a
feasible LP solution with variables d1,d2, x , y

• If we can prove these claims then solving this LP solves the router placement
problem: we get the min total distance placement



Proving Correctness

Lemma 1

If there exists a feasible LP solution with variables d1,d2, x , y then a router at (x , y)

has distance at most d1 and d2 from roommates 1 and 2, with d1 ≤ 10 and d2 ≤ 10

Proof: Router at (x , y) has distance d̂1 = |x − 3|+ |y − 4| from roommate 1.
Because the LP soln is feasible, we have:

(x − 3) + (y − 4) ≤ d1 (−x + 3) + (y − 4) ≤ d1

(−x + 3) + (−y + 4) ≤ d1 (x − 3) + (−y + 4) ≤ d1

Since d̂1 is equal to the left side of one of these equations, d̂1 ≤ d1. Furthermore,
since the LP solution is feasible, d1 ≤ 10, so d̂1 ≤ 10.

Same argument works for roommate 2



Proving Correctness

Lemma 2

Any placement of a router at location (x , y), with distance d1 ≤ 10 and d2 ≤ 10
from the first and second roommate respectively corresponds to a feasible LP
solution with variables d1,d2, x , y

Proof summary: We have d1,d2 ≤ 10 by definition. We need to show the
roommate constraints are satisfied. Let’s focus on d1. We have
d1 = |x − 3|+ |y − 4|.

For any x , y we have:

x − 3 ≤ |x − 3| −x + 3 ≤ |x − 3|
y − 4 ≤ |y − 4| −y + 4 ≤ |y − 4|

Substituting, all equations for d1 are satisfied.



Proving Correctness

• Therefore, the best LP solution
gives the best router placement!

• So we can solve this problem by
solving an LP



Router Example Discussion

• Can we add new roommates?

• Yes!

• New constraints? (E.g. can’t have the router in a certain portion of the house,
or can’t be too close to one of the roommates)

• Yes—if they’re linear



Taking a step back

• Useful: can generalize (weighting, additional constraints, additional
dimensions)

• Some intuition: what can you encode with an LP?

• Continuous: cannot explicitly require integer values

• AND: can add new constraints. But not OR: can’t just select one to satisfy

• (Example: distance absolute value worked because d1 ≥ 3− x AND d1 > x − 3.
Cannot do something like d > 5 OR d < 3.)

Examples of problems that are harder or impossible to generalize to an LP:

• Peanuts come in packs; can only buy an integer number

• Buying two routers for the house. (Each roommate needs to connect to one
OR the other)



Taking a step back

Things to note

• Can (and often want to) create new variables when making an LP

• Each instance of the problem may require a new LP

• Example: for a general roommate at (x1, y1) instead of (3,4): I would have
x + y − d1 ≤ x1 + y1, rather than x + y − d1 ≤ 7,



Variables vs Constants in an LP

• LPs must be linear functions of the variables

• In other words, must be linear in the things we are solving for!

• What were the variables in the diet problem? In the router problem?

• In general: the parameters of the specific instance are constants as far as the
LP is concerned (x1 and y1 are “constants” in the above)

• You may multiply these constants, do precomputations on them—whatever
you want so long as you get a final correct LP for the given instance



Variables vs Constants in an LP

Reminder of what we’re doing

• A linear program is a recipe

• Let’s say you have roommates and you actually want to figure out the best
place to put the router. What will you do?

• Find the actual values of x1, y1, etc.

• Set up the system of equations above for your actual roommates

• Use an LP solver to find the best x and y

• Takeaway: when you are using the LP solver for a specific instance, the only
variables here are x and y .



What can you solve with LP?

• Clasically: optimization problems (resource allocation, network flow like
problems)

• Magic wand if your problem is continuous and has linear constraints and
objective

• Also odd things like shortest path, even things like sorting



Back to router example

• Let’s say we used Euclidean distance with the router. Can we use an LP
then?

•
d((x , y), (x1, y1)) =

√
(x − x1)2 + (y − y1)2)

• Don’t need the square root to minimize...

• But still doesn’t seem possible



Example 3 (hard): Group Grading

• The CS TAs at Williams have decided that all TAs will help do the grading for
all assignments due in a given week.

• Problem setup: they have n hour-long time slots during the week. Some time
slots have more TAs available than others. Assignments will arrive as the
week goes on.

• Assignments don’t all take the same time to grade! In particular, there are m
courses. It takes a certain amount of TA hours to grade a particular
submission from a given course, and a given due date may have different
numbers of arriving assignments.

• Goal: assign how many TAs should work on what course during a given hour

• Objective: minimize the average time it took to grade each assignment



Example 3 (hard): Group Grading

Let’s create variables for the problem:

• Time slot i has ti TAs available for grading

• Grading a single assignment from course j requires a total of hj TA hours
worth of time

• wi,j is the number of assignments from course j that arrive at time slot i

• Question: for each time slot i , how many (fractional) TAs should work on each
course j to minimize the average time it takes each submission to be graded?



Example 3 (hard): Group Grading

How should we make our variables? (In other words, what does our solution look
like?)

Let xi,j be the number of TAs working on course j in time slot i .

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• Question: for each time slot i, how many TAs should work on each course j to
minimize the average time it takes each submission to be graded?



Example 3 (hard): Group Grading

Can we constrain xi,j? What are the limits to how we can assign TAs?

Yep,
∑

j xi,j ≤ ti

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded



Example 3 (hard): Group Grading

How do we keep track of the work the TAs are doing? When wi,j arrives, if we have
assignment xi,j , how does that affect the final grading time?

First try: xi,j = wi,j · hj .

Issue This requires all work that arrives at slot i to be completed at time i . Might
not be possible!

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded



Example 3 (hard): Group Grading

What if we can’t finish all the work in a given timeslot? We need to keep track of
what spills over.

Let ri,j be the remaining work for course j after time slot i .

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded



Example 3 (hard): Group Grading

How much work is remaining? Well, during time slot i for course j , we assign xi,j

TAs, so they can grade a total of xi,j/hj assignments.

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

• ri,j : (variable) work remaining for course j after slot i



Example 3 (hard): Group Grading

Time slot i starts with ri−1,j assignments remaining for course j . The TAs can
grade xi,j/hj assignments, and wi,j new assignments are turned in. Therefore,
ri,j ≥ ri−1,j + wi,j − xi,j/hj .

Problem (Reminder)
• ti : TAs available at time i

• hj : TA hours req. to grade an assgn. from course j

• wi,j : number assignments from course j that arrive at time slot i

• xi,j : (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

• ri,j : (variable) work remaining for course j after slot i



Cost?

• We want to minimize the average time it takes each submission to be graded.

• The total time all submissions of course j wait is
∑

i ri,j

• The total number of submissions is
∑

i
∑

j wi,j

• Need ri,j ≥ 0!

• Objective function: minimize
(∑

j
∑

i ri,j

)
/
(∑

i
∑

j wi,j

)



Example 3: Final LP

Objective: min
(∑

j
∑

i ri,j

)
/
(∑

j
∑

i wi,j

)
Constraints:

For all i :
∑

j xi,j ≤ ti

For all i and all j : ri,j ≥ ri−1,j + wi,j − xi,j/hj

Remember that
hj is a constant!

For all i and all j : xi,j ≥ 0 and ri,j ≥ 0

• What are the variables? What are the constants?

• Is this an LP? What is its size? How many dimensions?

• How can we go from a feasible LP solution to a real-world schedule?



Structure of Linear Programs



Canonical Form

• Without loss of generality, can always put all constants on the right

• All constraints are = without loss of generality

• Use auxiliary variables to achieve ≤ or ≥

• 3x − 3 ≥ 0 becomes: 3x − a0 = 3 for some a0 ≥ 0

• x − 3 + y − 4 ≤ d1 becomes: x + y − d1 + a1 = 7 for some a1 ≥ 0

• Necessary for some LP solvers. I believe we won’t need this for our solver.



Extreme Points

• Where can a solution lie?

• Can’t ever be inside the polytope

• In fact, don’t need to look along a
line either

• Without loss of generality, all
solutions are at an extreme point

• Defn: does not lie on a line between
two other points in the polytope



Solving Linear Programs



First Steps

• For small programs, draw them out
and solve them

• This is not a bad tactic for solving
these by hand



Some theory

• O(n) time for constant dimensions

• Polynomial time algorithm in general!

• “Ellipsoid method” (Khachiyan 1979)

• “Interior point methods” (Karmarkar 1984)

• Best known currently: Cohen, Lee, Song, Zhang 2019

• “Strongly” polynomial still open



Simplex Algorithm

• Invented by Dantzig in 1947

• Simple, most common in practice

• Works extremely well on real-world data

• Exponential time in the worst case

• We will just see a tiny piece of this algorithm



How do we search through extreme points?

• From one extreme point, we can
follow an edge to another

• Pros: local!

• Has a nice algebraic formulation

• But when do we know that we have
the best solution?



Going through extreme points

• One option: keep track of which
ones we’ve seen, stop once we’ve
seen all of them

• This takes up lots and lots of space!

• Not very efficient
• No opportunities for heuristics:

• even if we see the solution early,
need to search through all of them



Key Lemma

Lemma 3
An extreme point is an optimal solution if every adjacent extreme point has a
strictly worse objective value.

• That is to say: a local maximum is always a global maximum!

• Adjacent means connected by a line

• More formally: “adjacent” extreme points can be determined by loosening one
constraint and tightening another

• Called a “pivot”



Simplex: searching through extreme points

• Start at some extreme point

• While there is an adjacent extreme point with the same or better objective
function:

• Go to that extreme point

• Return current extreme point



Does this work?

• By our lemma, if it finishes, the value it returns is correct.

• When might it not finish?

• First: need to find the initial extreme point

• Significant area of research; usually easy in practice

• Can the algorithm loop infinitely?

• Yes. Also significant area of research, can generally be avoided in practice.



Simplex Algorithm

• This is what simplex does:

• Greedily searches through points

• Does not keep track of previous
points

• Very good at getting to the right
place quickly in practice



Where to pivot?

• Simplex performance depends on what extreme point we go to next (“pivot
rule”)

• How can we choose?

• One option: greedily choose best objective function

• Not bad, but not as good as you’d think

• 70 years of optimization have gotten us really effective rules

• Some work well for certain types of problems (i.e. network flows)



How fast is it?

• Classic result: there exists an LP with n variables and n constraints such that
simplex can take Ω(2n) time (Klee Minty 1972)

• (But subexponential pivot rule by Hansen and Zwick in 2015!)

• Even if all constants are in {1,2,3,4}

• Good news: bad cases are very very carefully crafted, extremely rare in
practice



Conclusion/Summary



What Takeaways do I want?

• What is an LP?

• How to take a problem and phrase it as a linear program?

• How does the simplex algorithm work?


	Solving Problems with Linear Programming
	Structure of Linear Programs
	Solving Linear Programs
	Conclusion/Summary

