Lecture 14: Linear Programming
and Optimization

Sam McCauley
October 29, 2024

Williams College

Admin

* How is Assignment 2 going?

Reminder: I'm only giving extensions if absolutely necessary this week. Start
now!

Homework 4 back tomorrow

» Questions?

What is an algorithmic problem?

e Constraints

» Objective

» What if we had a single tool that could solve any problem with certain kinds of
constraints and objectives?

Next section of the course

» Frameworks to phrase algorithmic problems
* Allow practical solutions for a wide variety of otherwise-intractable problems
* “Optimization” problems that come up frequently in practice

* This topic is much older and much much broader than anything else we’ve
covered

* Focus for this class: using linear programming and integer linear
programming (and their solvers) to obtain optimal solutions to difficult
problems. (Won’t be focusing on structure, mathematical properties.)

Context

€ € ! have a strong interest in the question of where mathematical ideas come
from, and a strong conviction that they always result from a fairly sys-
tematic process—and that the opposite impression, that some ideas are
incredible bolts from the blue that require “genius” or “sudden inspiration”

to find, is an illusion. ’)
Timothy Gowers

History

« Starts with a legend

George Dantzig

+ Father of Linear Programming

» Worked for military during World
War 2

* Invented the simplex algorithm

Linear Programming

A linear program consists of:

* a linear objective function, and

» a set of linear constraints.

* (We’'ll discuss what we mean by linear in a moment.)

Goal: achieve the best possible objective function value while satisfying the
constraints

Why linear programming

» Black-box tools to solve important optimization problems that would be
otherwise intractable

 Probably the most powerful tool you'll learn about to solve difficult algorithmic
problems

» More powerful (in a sense) than dynamic programming
« Strictly generalizes network flows

» Essentially gives a free method to solve continuous optimization problems—as
well as some others

» 2004 survey: 85% of fortune 500 companies report using linear programming

What do | mean by “linear”?

 Let’'s say our variables are xi, ... xp.

A linear function is the sum of a subset of these variables, each (possibly)
multiplied by a constant.

* Linear inequality: this can be set >, <, or = a final constant.

Example: 4x; — 3xo < 7 is linear

Example 2: 4xyx> + x; = 3 is not

Example 3: |\/X3 — x7| > 5 is not

Linear Programming

A linear program consists of:

a linear objective function, (min or max) and

* a set of constraints, which are linear inequalities.

» Goal: achieve the best possible objective function value while satisfying all of
the constraints

* Note that variables need not be integer or positive

Example of a Linear Program

Objective:
max 3Xq + 4xo

Subject to:
2x1 + X <120
Xy +3x <180
Xy + X2 <80
X1 >0
X2 >0

Feasibility

e An LP is feasible if there exists an
assignment of variables that
satisfies the constraints

» Nontrivial result: feasibility is not
trivial to determine. In the worst
case, it is as difficult as solving the
entire LP.

Matrix Representation

SiaEe » Can represent with a matrix and
[3-4] vector
Subiject to:
2 1] [120 | - Useful!
0 3 « 180
0 1 [‘] < | 80
1 0 X2 0 « I don’t plan to use this
0 —1 0 representation again in this class

Visual representation

» We can plot these inequalities

« Works best for instances with 2 or 3 variables

» We’'ll use extensively as it gives good intuition

Plotting an LP

Objective:

max 3Xy + 4xo

Subject to:

2X1
X1
X1
X4

+ X2
+ 3x2
+ Xo

X2

<120
<180
< 80
>0
>0

T2

x; =0

29 =0

Why are we looking at this?

Let’s say | gave you a tool that could solve any linear program

» Guarantees correct, optimal solutions!

Frequently very fast in practice

» Our goal: use this tool to solve computational problems

Why are we looking at this?

Many problems can be phrased as a linear program

« We'll start with some slightly contrived problems to build intuition, and eventually
get to problems with more real-world importance.

+ Linear programs can be solved efficiently

For today: take as a given that efficient solving is possible. How can we use
linear programming to solve these problems?

Essentially a reduction: similar to using Network Flow to solve problems

Solving Problems with Linear
Programming

Optimization Problems

Example 1: Diet

* You need to eat 46 grams of protein and 130 grams of carbs every day
* Available foods:

« 1009 Peanuts: 25.8g of protein, 16.1g carbs, $1.61
« 100g Rice: 2.5¢g protein, 28.7g carbs, $.79

« 100g Chicken: 13.5g protein, 0g carbs, $.70

What is the cheapest way you can hit your diet goals?

Diet Problem

How can we phrase this as a linear program? (I'll write the problem on the board;
you should think about how you would do it.)

Let p be the amount of peanuts, r be the amount of rice, and ¢ be the amount
of chicken you buy.

Then what is our objective function?

Answer: The price is 1.61p+ .79r + .7¢
e Do we want to maximize or minimize this?

* min1.61p+.79r 4 .7¢

Diet Problem Constraints

min1.61p+.79r + .7¢

* Protein: 25.8p +2.5r + 13.5¢ > 46
» Carbs: 16.1p+28.7r > 130
* Anything else?

*p>0,r>0,c>0

Reminder:

* You need to eat 46 grams of protein and 130 grams of carbs every day
« 100g Peanuts: 25.8g of protein, 16.1g carbs, $1.61

« 100g Rice: 2.5¢g protein, 28.7g carbs, $.79

« 100g Chicken: 13.5¢g protein, 0g carbs, $.70

Diet Problem Solution

min1.61p +.79r 4 .7¢

* Protein: 25.8p + 2.5r + 13.5¢c > 46

» Carbs: 16.1p+28.7r > 130

*p>0,r>0,c>0

Solution: p =0, r =2.9216..., ¢ = 2.86636...
So we want to buy about 293g of rice, and 2879 of chicken, for total cost $4.32

Diet Problem Solution

min1.61p +.79r +.7¢
* Protein: 25.8p + 2.5r + 13.5¢c > 46
» Carbs: 16.1p+28.7r > 130
*p>0,r>0,c>0

Solution: p = 0, r = 2.9216..., ¢ =
2.86636...

So we want to buy about 293g of rice,
and 287g of chicken, for total cost $4.32

Example 2: Extending the Diet

* What if | wanted to limit the amount of rice | eat to 100g?

» Add a constraint: r < 1

« What if | wanted a balanced diet—the amount of any pair of foods is within 50
grams of each other?

« First: how would we write these constraints if we don’t require that they are
linear?

s |r—cl< .5, |lc—p|<.5|r—p <5
« Then: how can we use a sequence of constraints to achieve this?
« iflx—y|<cthenx—y<candy— x < c. So:

cr—c<b5c—-p<b5r—-p<b5c—-r<b5p—-c<b5p-r<b

Example 3: Facility Location (Harder Problem)

+ Given coordinates for n roommates (x1, y1), (X2, ¥2), - - ., (Xn, ¥n)

Goal: find location for a router that minimizes the average distance to each
roommate

Distance from (x, y) to (x;, y;) is |x — xi| + |y — Vil

» Cannot have distance more than 10 from any roommate

Example 3: Facility Location

Objective:
Constraints:

(x=3)+(y—4
(—x+3)+(y—4

~— ~— ~— —

Can’t make

objective
function. ldea:
add new
variables!

Given roommates at (3,4) and
(13,5)

Goal: find location for a router that
minimizes the average distance to
each roommate

Distance from (x, y) to (x;, y;) is

Ix — x| + |y — il

Cannot have distance > 10 from
any roommate

Example 3: Facility Location

Objective: mind; + db
Constraints:

(x=3)+(y—4) <d
(—x+3)+ (y —4) <
(—x+3)+ (—y+4)<d
(x=3)+(-y+4)<d
(x=13)+(y-5) <
(—x+13)+(y—5) < db
(—x+13)+(-y+5) <>
(x—=13)+(-y+5)<d

dy <10
d <10

+ Given roommates at (3,4) and
(13,5)

» Goal: find location for a router that
minimizes the average distance to
each roommate

« Distance from (x, y) to (xj, y;) is
X — x| + |y — il

» Cannot have distance > 10 from
any roommate

Example 3: Facility Location

Objective: mind; + db
Constraints:
+ Given roommates at (3,4) and

X+y—d <7 (13,5)
—Xx+y—d <1 « Goal: find location for a router that
—X—y—0d <-7 minimizes the average distance to

X—y—d <-—1 each roommate

X+y—db<18 « Distance from (x, y) to (x;, y;) is
—X+y—db< -8 X = Xi| + |y — yil

e Cannot have distance > 10 from
any roommate

—X—y—0><-18
X—y—adr<8

Proving Correctness

« How can we show that the above LP works?

* Idea: an LP is feasible if and only if it corresponds to a correct router
placement

* 1st: if there exists a feasible LP solution has values d, d», x, y then there
exists a router placement at (x, y) with distance at most dy and ds from
roommates 1 and 2, with dy <10and db < 10

+ 2nd: any placement of a router at location (x, y), with distance dy < 10 and
d> < 10 from the first and second roommate respectively corresponds to a
feasible LP solution with variables dy, db, x, y

+ If we can prove these claims then solving this LP solves the router placement
problem: we get the min total distance placement

Proving Correctness

Lemma 1

If there exists a feasible LP solution with variables dy, do, x, y then a router at (x, y)
has distance at most dy and d> from roommates 1 and 2, withd; < 10 and d> < 10

Proof: Router at (x, y) has distance d; = |x — 3| + |y — 4| from roommate 1.
Because the LP soln is feasible, we have:

(x—=3)+(y—4) <d (—x+3)+(y—4) < d
(—x+3)+(—y+4)<d (x=3)+(-y+4)<d

Since dj is equal to the left side of one of these equations, d; < d;. Furthermore,
since the LP solution is feasible, d; < 10, so d; < 10.

Same argument works for roommate 2

Proving Correctness

Lemma 2

Any placement of a router at location (x, y), with distance d; < 10 and d> < 10
from the first and second roommate respectively corresponds to a feasible LP
solution with variables dy, do, X, y

Proof summary: We have dy, d> < 10 by definition. We need to show the
roommate constraints are satisfied. Let’s focus on d;. We have
di = |x 3+ |y —4|.

For any x, y we have:
x—3<|x-3| —Xx+3 < |x -3
y—4<ly—4 —y+4<|y-4

Substituting, all equations for d; are satisfied.

Proving Correctness

* Therefore, the best LP solution
gives the best router placement!

» So we can solve this problem by
solving an LP

Router Example Discussion

¢ Can we add new roommates?

* Yes!

* New constraints? (E.g. can’t have the router in a certain portion of the house,
or can’t be too close to one of the roommates)

* Yes—if they’re linear

Taking a step back

» Useful: can generalize (weighting, additional constraints, additional
dimensions)

» Some intuition: what can you encode with an LP?

» Continuous: cannot explicitly require integer values
» AND: can add new constraints. But not OR: can’t just select one to satisfy

» (Example: distance absolute value worked because d; > 3 — x AND d; > x — 3.
Cannot do something like d > 50R d < 3.)

Examples of problems that are harder or impossible to generalize to an LP:

» Peanuts come in packs; can only buy an integer number

» Buying two routers for the house. (Each roommate needs to connect to one
OR the other)

Taking a step back

Things to note

» Can (and often want to) create new variables when making an LP

 Each instance of the problem may require a new LP

« Example: for a general roommate at (x1, y1) instead of (3, 4): | would have
X+y—dy < x4+ y,ratherthan x+y —dy <7,

Variables vs Constants in an LP

LPs must be linear functions of the variables

* In other words, must be linear in the things we are solving for!
» What were the variables in the diet problem? In the router problem?

* In general: the parameters of the specific instance are constanis as far as the
LP is concerned (x; and y; are “constants” in the above)

* You may multiply these constants, do precomputations on them—whatever
you want so long as you get a final correct LP for the given instance

Variables vs Constants in an LP

Reminder of what we’re doing

* A linear program is a recipe

 Let’s say you have roommates and you actually want to figure out the best
place to put the router. What will you do?

Find the aciual values of x4, y4, etc.

+ Set up the system of equations above for your actual roommates

Use an LP solver to find the best x and y

» Takeaway: when you are using the LP solver for a specific instance, the only
variables here are x and y.

What can you solve with LP?

* Clasically: optimization problems (resource allocation, network flow like
problems)

* Magic wand if your problem is continuous and has linear constraints and
objective

 Also odd things like shortest path, even things like sorting

Back to router example

* Let’s say we used Euclidean distance with the router. Can we use an LP
then?

d((%,), (x1.31)) = /(X = x1)2 + (¥ — y1)2)

Don’t need the square root to minimize...

But still doesn’t seem possible

Example 3 (hard): Group Grading

» The CS TAs at Williams have decided that all TAs will help do the grading for
all assignments due in a given week.

» Problem setup: they have n hour-long time slots during the week. Some time
slots have more TAs available than others. Assignments will arrive as the
week goes on.

» Assignments don'’t all take the same time to grade! In particular, there are m
courses. It takes a certain amount of TA hours to grade a particular
submission from a given course, and a given due date may have different
numbers of arriving assignments.

» Goal: assign how many TAs should work on what course during a given hour

» Objective: minimize the average time it took to grade each assignment

Example 3 (hard): Group Grading

Let’s create variables for the problem:

Time slot / has t; TAs available for grading

+ Grading a single assignment from course j requires a total of h; TA hours
worth of time

* w;; is the number of assignments from course j that arrive at time slot i

Question: for each time slot i/, how many (fractional) TAs should work on each
course j to minimize the average time it takes each submission to be graded?

Example 3 (hard): Group Grading

How should we make our variables? (In other words, what does our solution look
like?)

Let x; ; be the number of TAs working on course j in time slot /.

Problem (Reminder)
* tj: TAs available at time i

* h;: TA hours req. to grade an assgn. from course |
* w; ;. number assignments from course j that arrive at time slot i

* Question: for each time slot i, how many TAs should work on each course | to
minimize the average time it takes each submission to be graded?

Example 3 (hard): Group Grading

Can we constrain x;;? What are the limits to how we can assign TAs?

Yep, > Xij < i

Problem (Reminder)
* tj: TAs available at time i

* h;: TA hours req. to grade an assgn. from course |
* w; ;. number assignments from course j that arrive at time slot i

* Xx;j. (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

Example 3 (hard): Group Grading

How do we keep track of the work the TAs are doing? When w;; arrives, if we have
assignment x; ;, how does that affect the final grading time?

Firsttry: x;; = w;; - h;.

Issue This requires all work that arrives at slot / to be completed at time /. Might
not be possible!

Problem (Reminder)
* t;: TAs available at time i

* h;: TA hours req. to grade an assgn. from course |
* w; ;. number assignments from course j that arrive at time slot i

* Xx;j. (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

Example 3 (hard): Group Grading

What if we can’t finish all the work in a given timeslot? We need to keep track of
what spills over.

Let r; ; be the remaining work for course j after time slot /.

Problem (Reminder)
* tj: TAs available at time i

* h;: TA hours req. to grade an assgn. from course |
* w; ;. number assignments from course j that arrive at time slot i

* Xx;j. (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

Example 3 (hard): Group Grading

How much work is remaining? Well, during time slot / for course j, we assign X; ;
TAs, so they can grade a total of x; ;/h; assignments.

Problem (Reminder)
* tj: TAs available at time i

* h;: TA hours req. to grade an assgn. from course |
* w; ;. number assignments from course j that arrive at time slot i

* Xx;j. (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

* 1;j: (variable) work remaining for course j after slot i

Example 3 (hard): Group Grading

Time slot / starts with r,_4 ; assignments remaining for course j. The TAs can
i—1,

grade x; ;j/ h; assignments, and w; ; new assignments are turned in. Therefore,

fij 2 fie1j+ Wij = Xij/hj.

Problem (Reminder)
* t;: TAs available at time i

* h;: TA hours req. to grade an assgn. from course |
* w; ;. number assignments from course j that arrive at time slot i

* Xx;j. (variable) for each time slot i, number TAs working on each course j to
minimize the average time it takes each submission to be graded

* 1;j: (variable) work remaining for course j after slot i

Cost?

+ We want to minimize the average time it takes each submission to be graded.

The total time all submissions of course j waitis), r;

The total number of submissions is 3, >~ w;

Need r;; > 0!

Objective function: minimize (ZI-Z, r,-7j> / (Z,Zj w,-J-)

Example 3: Final LP

Remember that
Objective: min (Z,-Z,- r,,,-) / (zj)9} /1 is a constant!
Constraints:
For all /: Zj Xij <t
Forall iand all j: rjj > ri_qj+ w;j — X; ;/h;
Foralliandallj: x;; >0and r;; > 0
* What are the variables? What are the constants?

* Is this an LP? What is its size? How many dimensions?

* How can we go from a feasible LP solution to a real-world schedule?

Structure of Linear Programs

Canonical Form

» Without loss of generality, can always put all constants on the right
+ All constraints are = without loss of generality

« Use auxiliary variables to achieve < or >
e 3x — 3> 0becomes: 3x — gy = 3 forsome gy >0

* Xx—3+y—4<d becomes: x+ y — di + a; =7 for some a; > 0

» Necessary for some LP solvers. | believe we won’t need this for our solver.

Extreme Points

* Where can a solution lie?

» Can'’t ever be inside the polytope

* In fact, don’t need to look along a
line either

» Without loss of generality, all
solutions are at an extreme point

» Defn: does not lie on a line between
two other points in the polytope

Solving Linear Programs

First Steps

» For small programs, draw them out
and solve them

* This is not a bad tactic for solving
these by hand

x; =0

Some theory

« O(n) time for constant dimensions
» Polynomial time algorithm in general!
+ “Ellipsoid method” (Khachiyan 1979)
* “Interior point methods” (Karmarkar 1984)
» Best known currently: Cohen, Lee, Song, Zhang 2019

+ “Strongly” polynomial still open

Simplex Algorithm

Invented by Dantzig in 1947

+ Simple, most common in practice

» Works extremely well on real-world data

Exponential time in the worst case

We will just see a tiny piece of this algorithm

How do we search through extreme points?

From one extreme point, we can
follow an edge to another

Pros: local!
» Has a nice algebraic formulation

* But when do we know that we have
the best solution?

Going through extreme points

» One option: keep track of which
ones we’ve seen, stop once we've
seen all of them

This takes up lots and lots of space!

* Not very efficient
» No opportunities for heuristics:

+ even if we see the solution early,
need to search through all of them

Key Lemma

Lemma 3
An extreme point is an optimal solution if every adjacent extreme point has a
strictly worse objective value.

That is to say: a local maximum is always a global maximum!

Adjacent means connected by a line

» More formally: “adjacent” extreme points can be determined by loosening one
constraint and tightening another

Called a “pivot”

Simplex: searching through extreme points

- Start at some extreme point

» While there is an adjacent extreme point with the same or better objective
function:

+ Go to that extreme point

» Return current extreme point

Does this work?

» By our lemma, if it finishes, the value it returns is correct.

* When might it not finish?

First: need to find the initial extreme point

« Significant area of research; usually easy in practice

Can the algorithm loop infinitely?

* Yes. Also significant area of research, can generally be avoided in practice.

Simplex Algorithm

» This is what simplex does:

Greedily searches through points

Does not keep track of previous
points

» Very good at getting to the right
place quickly in practice

Where to pivot?

« Simplex performance depends on what extreme point we go to next (“pivot
rule”)

* How can we choose?
» One option: greedily choose best objective function

* Not bad, but not as good as you’'d think

70 years of optimization have gotten us really effective rules

» Some work well for certain types of problems (i.e. network flows)

How fast is it?

e Classic result: there exists an LP with n variables and n constraints such that
simplex can take Q(2") time (Klee Minty 1972)

 (But subexponential pivot rule by Hansen and Zwick in 2015!)

» Even if all constants are in {1,2,3,4}

» Good news: bad cases are very very carefully crafted, extremely rare in
practice

Conclusion/Summary

What Takeaways do | want?

 What is an LP?

» How to take a problem and phrase it as a linear program?

» How does the simplex algorithm work?

	Solving Problems with Linear Programming
	Structure of Linear Programs
	Solving Linear Programs
	Conclusion/Summary

