
Lecture 13: Code Review and
SIMD Instructions 2

Sam McCauley

October 25, 2024

Williams College

Admin

• Apply to be a TA! (Especially for Algorithms). Due today

• Start Assignment 2!

• Remember that this is an assignment so you should do the work on your
own/with class materials.

• Handout on the website to help you with Assignment 2!!!

• Homework 3/Assignment 1 back. Homework 4 soon

• Questions?

Assignment 1 Discussion

Problems 1–2

• Most people had the right intuition for this problem, but few people got it
entirely right

• Let’s review the problems, then go over the solution on the board

Homework 3 Discussion

Homework 3

• Everyone did great! Good job.

• One trick for accessing slots I saw that makes life a little nicer

• Slots are 8 bits. So we can access them as 8-bit variables rather than using
bit tricks

• (Similar to what we saw yesterday with casting a chunk of a string as an
integer)

Homework 3 Excerpt

Functions and Code Organization

• A lot of you did this well, but I want to emphasize

• The best way to write effective, understandable code is by organizing it

• One of the best ways to organize is via functions

• Let’s look at some example student code

Get and set in bin

Bin Insert

Cuckoo

One takeaway

• Writing more modular code is often the best way to make your code easier to
work with

• Superior to comments; can even be superior to simplifying expressions with
intermediate variables.

MinHash Notes

How MinHash Works

First we generate a random permutation P.

• For every element x , take the first k entries of P that are in x (remember that
x is a set)

• Concatenate them together to form a signature

• We want to compare every pair of elements with the same signature. So for
each item, we hash the signature to index into a hash table of n bins.

• We all-compare all within each bin. If we find a close item we are done!
Otherwise we start over from the beginning (with a new permutation)

MurmurHash

Two functions you can call (either work for this use case):

void MurmurHash3_x86_32(const void* key , int len , uint32_t

seed , void* out);

• Hashes len bytes starting at key using random seed seed. Stores the output
(32 bits) in out

void MurmurHash3_x64_128(const void* key , int len , uint32_t

seed , void* out);

• Hashes len bytes starting at key using random seed seed. Stores the output
(128 bits) in out.

• Make sure you pass 128 bits! Something like uint64_t out[2] = {0 ,0};

works.

Why is 32 bits enough for Assignment 2?

SIMD instructions

Redux of String Checking

• Students seemed to be a bit uncomfortable with this code excerpt

• Why do these give different results?

1 char* str = "abcd";

2 uint64_t test =

3 *((uint64_t *) str);

1 uint64_t test = *str;

SIMD

• SIMD: Single Instruction Multiple Data

• A single CPU instruction does an identical operation to multiple pieces of data

• Specialized circuits operate on each piece of data individually

• Can do bitwise operations, adding, multiplying, some others

• Also some operations to help load and read data

• Introduced on Intel processors in 1999, but fairly significantly expanded
recently

SIMD Examples

What is SIMD good for?

• Lots of identical operations on a set of elements; these operations are costly

• Elements are in nicely-sized chunks
• Can always used specialized code to handle other cases

Example 1: Adding two arrays

• Let’s add two arrays of 16 32-bit integers with one SIMD operation

• simdtests512.c

Assembly of the add operation

• In assembly, the data is moved around, and there is a single (special) add
operation

Usual Breakdown of a SIMD Function

• Can get these functions from the Intel website; I’ll give you all functions you
need for Assignment 2 between here, the assignment, and simdtests512.c

• (Don’t need entire execution to be SIMD on Assgn. 2! I want you to get some
parallelism using the functions I’ve given you.)

• Example: m512i mm512 add epi32 (m512i a, m512i b):

• m512i is the return type (a 512 bit variable)

• mm512 means that this is a 512 bit operation

• add is the operation

• epi32 means that we are operating on 32-bit words (as opposed to packing, say,
64 8-bit words into the 512 bits)

Example 2: Adding single value to array

• Let’s add one value (10) to each entry of an array.

• Do we need to declare a new array to do this?

• No! SIMD operations give us a single function that fills a variable with copies of
a single value

Speed comparison

• How much time does SIMD add (in total in our implementation) take
compared to normal add?

• It’s a bit faster

Example 3: Searching for Particular Value in Array

• Can do vector comparisons, but get a 512-bit vector out

• Need a way to make that vector into something useful for us. Let’s look at the
code.

• mmask16 mm512 cmp epi32 mask(mm512i arg1, mm512i arg2,

MM COMPINT ENUM type): does 16 comparisons at once, stores results of all
(bit by bit) in a 16 bit integer

• type is one of: MM CMPINT EQ MM CMPINT LT MM CMPINT LE

MM CMPINT FALSE MM CMPINT NE MM CMPINT NLT MM CMPINT NLE

MM CMPINT TRUE

Optimization comparison?

• What happens when we change to -O3?

• Everything gets faster!

• In previous tests: for adding and popcount, SIMD is suddenly slightly slower
than without; SIMD is still best at finding 0 element

• Guesses as to why? ...Let’s take a look at the assembly

• gcc is vectorizing the operations by itself and doing it very slightly better

• gcc only uses 256 bit operations by default, even if larger ones are available

SIMD Discussion

Tradeoffs

What are some downsides of using an SIMD instruction?

• SIMD instructions may be a little slower on a per-operation basis (folklore is a
factor of ≈ 2 even for the operation itself, but it seems modern
implementations are much better)

• Cost to gather items in new location

• SIMD is not always faster

How much can we save using SIMD? Let’s say we’re using 512 bit registers, and
operating on 32 bit data.

• Factor of 512/32 = 16 at absolute best

• Realistically is going to be quite a bit lower in practice

Tradeoffs

• Bear in mind Amdahl’s law when considering SIMD

• Only worth using on the most costly operations, and only when they work very
well with SIMD

One Question

• What’s a problem we’ve seen this semester that is particularly suited for SIMD
speedup?

• Hint: I’m not referring to any of the assignment problems

• Matrix multiplication: lots of time doing multiplications on successive matrix
elements

• (SIMD works for some other problems too; I just wanted to highlight this as
one of the classic examples.)

Compiler?

• A lot of the examples we saw were super simple

• Can the compiler use these operations automatically?

• As we just saw: yes it can
• --ftree-vectorize

• --ftree-loop-vectorize (turned on with O3)
• Lots of extra option to tune gcc parameters for how it vectorizes

• But, as always, only is going to work in “obvious” situations.

Automatic Vectorization Example

We can see the paddd SIMD instruction
(on xmm1 and xmm0) when compiling

with -O3.

	Assignment 1 Discussion
	Homework 3 Discussion
	MinHash Notes
	SIMD instructions
	SIMD Examples
	SIMD Discussion

