Lecture 13: Code Review and
SIMD Instructions 2

Sam McCauley
October 25, 2024

Williams College

Admin

Apply to be a TA! (Especially for Algorithms). Due today

Start Assignment 2!

* Remember that this is an assignment so you should do the work on your
own/with class materials.

« Handout on the website to help you with Assignment 2!!!

Homework 3/Assignment 1 back. Homework 4 soon

Questions?

Assignment 1 Discussion

Problems 1-2

» Most people had the right intuition for this problem, but few people got it
entirely right

* Let’s review the problems, then go over the solution on the board

Homework 3 Discussion

Homework 3

Everyone did great! Good job.

One trick for accessing slots | saw that makes life a little nicer

Slots are 8 bits. So we can access them as 8-bit variables rather than using
bit tricks

(Similar to what we saw yesterday with casting a chunk of a string as an
integer)

Homework 3 Excerpt

uint32_t* bin = filter—table + pos;

uint8_t* slot = (uint8_tx)(bin);

for (int i = 0; 1 < filter—binSize; ++i) {
if(*(slot + i) = 0){

*(slot + i) = fingerprint;
return;

}
}

Functions and Code Organization

* A lot of you did this well, but | want to emphasize

The best way to write effective, understandable code is by organizing it

One of the best ways to organize is via functions

Let’s look at some example student code

Get and set in bin

int binGet(Filterx filter, uint64_t h, int binNum) {
int bin = filter—>table[h];
int res = (bin >> (binNum * 8)) & ((1 << filter—>fingerprintLength) - 1);

// printf("binGet(filter, %ld, %d) = %x, bin = %x\n", h, binNum, res, bin);
return res;

}

void binSet(Filters filter, uint64_t h, int binNum, int f) {
// printf("binSet(filter, %ld, %d, %d)\n", h, binNum, f);

// resets bits binNumx8..binNum%8+7

filter—>table[h] & (-1 - (((1 << filter—>fingerprintLength) - 1) << (binNum % 8)))

// adds the bits from f to binNumx8..binNumx8+7
filter—>table[h] |= f << (binNum * 8);

Bin Insert

// tries to insert into a bin; returns @ if fails, 1 if succeeds
int binInsert(Filterx filter, uint64_t h, int f) {
for (int 1 = 0; i < filter—binSize; i++) {
if (!'binGet(filter, h, i)) {
binSet(filter, h, i, f);

return 1;
}
}
return 0;

Cuckoo

void cuckoo(Filterx filter, uint64_t h, int f, int depth) {
if (depth >= filter—maxIter) {
printf("MAX ITER REACHED. CUCKOO HAS FAILED.\n");
return;

int toCuckoo = filter—>toCuckool[h];
filter—>toCuckoo [h]++;
int evictedF = binGet(filter, h, toCuckoo);

uint64_t newBin = h ~ (hashFingerprint[evictedF - 1] % (filter—>numBins - 1) + 1);

binSet(filter, h, toCuckoo, f);

if (!binInsert(filter, newBin, evictedF)) {
cuckoo(filter, newBin, evictedF, depth + 1);
}

One takeaway

» Writing more modular code is often the best way to make your code easier to
work with

» Superior to comments; can even be superior to simplifying expressions with
intermediate variables.

MinHash Notes

How MinHash Works

First we generate a random permutation P.

+ For every element x, take the first k entries of P that are in x (remember that
X is a set)

Concatenate them together to form a signature

+ We want to compare every pair of elements with the same signature. So for
each item, we hash the signature to index into a hash table of n bins.

We all-compare all within each bin. If we find a close item we are done!
Otherwise we start over from the beginning (with a new permutation)

MurmurHash

Two functions you can call (either work for this use case):

void MurmurHash3_x86_32(const void* key, int len, uint32_t
seed, void* out);

» Hashes len bytes starting at key using random seed seed. Stores the output
(32 bits) in out

void MurmurHash3_x64_128(const void* key, int len, uint32_t
seed, void* out);

» Hashes len bytes starting at key using random seed seed. Stores the output
(128 bits) in out.

» Make sure you pass 128 bits! Something like uint64_t out[2] = {0 ,03};
works.

Why is 32 bits enough for Assignment 2?

SIMD instructions

Redux of String Checking

+ Students seemed to be a bit uncomfortable with this code excerpt

» Why do these give different results?

char* str = "abcd";
uint64_t test = uint64_t test = *str;
((uint64_t) str);

SIMD

SIMD: Single Instruction Multiple Data

A single CPU instruction does an identical operation to multiple pieces of data

Specialized circuits operate on each piece of data individually

Can do bitwise operations, adding, multiplying, some others

* Also some operations to help load and read data

Introduced on Intel processors in 1999, but fairly significantly expanded
recently

SIMD Examples

What is SIMD good for?

* Lots of identical operations on a set of elements; these operations are costly

» Elements are in nicely-sized chunks
» Can always used specialized code to handle other cases

Example 1: Adding two arrays

 Let’s add two arrays of 16 32-bit integers with one SIMD operation

* simdtests512.c

Assembly of the add operation

122 vpaddd %zmm@, %zmml, %zmm@ # _46, _45, _47
123 # simdtests512.c:19: __m512i ¢ = _mm512_add_epi32(a, b);

124 vmovdqga64 %zmm@, 256(%rsp) # D.26749, c

* In assembly, the data is moved around, and there is a single (special) add
operation

Usual Breakdown of a SIMD Function

« Can get these functions from the Intel website; I'll give you all functions you
need for Assignment 2 between here, the assignment, and simdtests512.c

 (Don’t need entire execution to be SIMD on Assgn. 2! | want you to get some
parallelism using the functions I've given you.)

* Example: _m512i mm512_add_epi32 (_mb512i a, -m512i b):
* _mb12i is the return type (a 512 bit variable)
+ mm512 means that this is a 512 bit operation
* add is the operation

* epi32 means that we are operating on 32-bit words (as opposed to packing, say,
64 8-bit words into the 512 bits)

Example 2: Adding single value to array

* Let’s add one value (10) to each entry of an array.

» Do we need to declare a new array to do this?

» No! SIMD operations give us a single function that fills a variable with copies of
a single value

Speed comparison

* How much time does SIMD add (in total in our implementation) take
compared to normal add?

* It's a bit faster

Example 3: Searching for Particular Value in Array

» Can do vector comparisons, but get a 512-bit vector out

* Need a way to make that vector into something useful for us. Let’s look at the
code.

* _mmask16 mm512 _cmp_epi32 mask(mm512i argl, mmb12i arg?2,
__MM_COMPINT ENUM type): does 16 comparisons at once, stores results of all
(bit by bit) in a 16 bit integer

* type isone of: MM _CMPINT_EQ MM CMPINT LT MM CMPINT_LE
_MM_CMPINT_FALSE _MM_CMPINT_NE _MM_CMPINT_NLT _MM_CMPINT_NLE
_MM_CMPINT_TRUE

Optimization comparison?

What happens when we change to -03?

Everything gets faster!

* In previous tests: for adding and popcount, SIMD is suddenly slightly slower
than without; SIMD is still best at finding 0 element

» Guesses as to why? ...Let’s take a look at the assembly

* gcc is vectorizing the operations by itself and doing it very slightly better

» gcc only uses 256 bit operations by default, even if larger ones are available

SIMD Discussion

Tradeoffs

What are some downsides of using an SIMD instruction?

» SIMD instructions may be a little slower on a per-operation basis (folklore is a
factor of ~ 2 even for the operation itself, but it seems modern
implementations are much better)

» Cost to gather items in new location

» SIMD is not always faster

How much can we save using SIMD? Let’s say we're using 512 bit registers, and
operating on 32 bit data.

» Factor of 512/32 = 16 at absolute best

+ Realistically is going to be quite a bit lower in practice

Tradeoffs

 Bear in mind Amdahl’s law when considering SIMD

» Only worth using on the most costly operations, and only when they work very
well with SIMD

One Question

» What's a problem we’ve seen this semester that is particularly suited for SIMD
speedup?
+ Hint: I'm not referring to any of the assignment problems

» Matrix multiplication: lots of time doing multiplications on successive matrix
elements

* (SIMD works for some other problems too; | just wanted to highlight this as
one of the classic examples.)

Compiler?

A lot of the examples we saw were super simple

» Can the compiler use these operations automatically?

* As we just saw: yes it can
e ——ftree-vectorize
» —-ftree-loop-vectorize (turned on with 03)
* Lots of extra option to tune gcc parameters for how it vectorizes

 But, as always, only is going to work in “obvious” situations.

Automatic Vectorization Example

void addArrays(intx A, intx B, int size){
for(int i = 0; i < size; i++) {
Ali]l += B[il;

int main() {

intx A
intx B

malloc(800xsizeof (xA));
malloc(800xsizeof (xB));

; 1< 800; i++) {

800 -i;

addArrays(A, B, 8)

autosimd.c:10: A[i] += BI[il;

.loc 1 10 8 is_stmt @ discriminator 3 view .LVU7
movdqu
movdqu

(%rdi,%rax), %xmm@ # MEM[base: A_12(D), ir
(%rsi,%rax), %xmml # MEM[base: B_13(D), i
paddd Sxmml, %xmm@ # tmpl54, vect_ 7.16
movups %xmm@, (%rdi,%rax) # vect_ 7.16, MEM[base]
.loc 1 9 27 is_stmt 1 discriminator 3 view .LVU8
.loc 1 9 17 discriminator 3 view .LVU9

addq $16, %rax #, ivtmp.30

We can see the paddd SIMD instruction
(on xmm1 and xmm0) when compiling
with -03.

	Assignment 1 Discussion
	Homework 3 Discussion
	MinHash Notes
	SIMD instructions
	SIMD Examples
	SIMD Discussion

