
Lecture 12: Code Review and
SIMD Instructions

Sam McCauley

October 22, 2024

Williams College

Admin

• Apply to be a TA! (Especially for Algorithms)

• Assignment 2 out; get started early!

• Remember that this is an assignment so you should do the work on your
own/with class materials.

• Questions?

Wrapping up Minhash Discussion

So many Permutations!

• OK, so kR repetitions is a LOT of preprocessing, and a lot of random number
generation

• And most of this won’t ever be used! Most of the time, when we hash, we
don’t make it more than a few indices into the permutation.

• Idea: Instead of taking just the first hash item that appears in the permutation,
take the first (say) 3. Concatenate them together. Then we just need k/3
permutations per hash table to get similar bounds.

• So let’s say we have A = {black, red, green, blue, orange}, and we’re looking
at a permutation P = {purple, red, white, orange, yellow, blue, green, black}.

• Then A hashes to redorangeblue

Reducing Permutations

• If you take the k̂ first items when hashing, rather than just taking the first one,
we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no longer independent!

• But this works fine in practice (and is used all the time)

• We will do this on the Assignment; in fact I recommend using k̂ = k . That
means that each repetition has only one permutation.

• I think it makes life very significantly easier. In the real world you want a
smaller value of k̂

• I do think this hurts performance a little if you’re trying to optimize

Assignment Parameters

• 128 bit integers (stored as a struct of two unsigned 64 bit ints; called an
Item)

• It may be possible to store these as 128-bit SIMD variables; I haven’t
experimented with this

• Universe: {0, . . . ,127}. (You can pretend that these are images, each of
which is labelled with a subset of 128 possible tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the Item we’re hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each index in order of
the permutation, and check to see if that bit is set (say by calculating x & (1

<< index) —but remember that these are 128 bits. An implementation of this
function is included in the starter code)

Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings! Otherwise hashing
to 12 and then 1 will look the same as hashing to 1 and then 21. (012 and 001
instead)

• This option work well but is slow

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits. Store the hash as a
sequence of k 8-bit chunks.

Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Having a large number of buckets and/or repetitions leads to bad
constants.

• Repetitions mean hashing which is expensive (≈ 50 cycles). But comparing to a
few more items just takes a few extra comparisons

• Smaller k means fewer buckets, fewer repetitions (but bigger buckets and
more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller values if you want
better performance

Repetitions?

• You’re guaranteed that there exists a close pair in the dataset

• My implementation just keeps repeating until the pair is found (no maximum
number of repetitions)

• The discussion of repetitions in the lecture is for two reasons: 1. analysis, 2.
give intuition for the tradeoff by varying k

How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to figure out what
hashes where so that we can compare elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to n − 1. We’re
instead concatenating indices

• How to keep track of buckets?

• Similar to Assignment 1. Cache efficiency is still important if you care about
performance (but is not required this time)

Homework 2 Optimizations

Homework 2

• Lots of cool ideas!

• Some seem very nice but don’t speed things up much.

Assignment 2: Some ideas that seemed to work

• Large base case
• Why is this good? (Hint: why was Hirshberg’s a good idea in the first place?)

• 300, 2048 both used

• Both small enough that len1 * len2 fits in cache

• Iterative version!

• Recursive calls have overhead; can skip them

• To be honest this seems like it should be a lower-order term to me

• Don’t reverse strings?
• Just doing the DP backwards might be faster(?)

• Space-inefficient DP

Code from best last time (calculating costs)

Code from best last time (iterative Hirschberg’s)

Fastest Code This Time

• Simple backtracking implementation

• Nothing fancy/obviously fast

• Did use -O3 flag (helped a lot!)

• Let’s take a look at it

Fastest Code This Time

• Min does use an if, but it’s very obviously a min

• No “if” to figure out if adding 1

Fastest Code Assembly

No jumps or branches! Just “compare-and-move” operations. (Thanks gcc!)

Assignment 1 Discussion

Hard part: Buckets

• Each item hashes to a bucket

• Want to make sure that buckets can be scanned efficiently when calling with
naive 3SUM method

• Giant arrays

• Vectors

• Linked list and copy to an array

• Does this hurt cache-efficiency?

• Not asymptotically! Need a cache miss to hash anyway

• Just sort; scan for bucket size! (On board)

Modern Instructions and Intrinsics

Main idea

• Processors aren’t getting much faster

• So: modern processors comes with tools that help you do common
computations more quickly

• Let’s talk about a few of these tools specifically

• Note: need to use lab computers for access to many of these

• Most processors have some kind of equivalent tools, but I can only guarantee for
Intel

• Need the right kind of processor

Count leading (trailing) zeroes

1 unsigned int v;

2 unsigned int c = 32;

3 v &= -signed(v);

4 if (v) c--;

5 if (v & 0x0000FFFF) c -= 16;

6 if (v & 0x00FF00FF) c -= 8;

7 if (v & 0x0F0F0F0F) c -= 4;

8 if (v & 0x33333333) c -= 2;

9 if (v & 0x55555555) c -= 1;

• Count the number of zeroes
at the beginning (or end) of a
number

• Can do using a few bit tricks

• But nowadays...single CPU
operation (usually)

Telling gcc to use these operations

• Intrinsics!

• Library functions built into the compiler itself (gcc in our case)

• Usually: will use the best compiler option if it exists; will do a very high-quality
subroutine if not

• For example: their version of manually counting the trailing zeroes will almost
definitely be faster than your for loop

• (And even a version using bit tricks)
• And you don’t need to worry about debugging it!

• Need to compile with -march=native to use

Example intrinsic for counting zeroes

• int builtin ctzl (unsigned long)

• Note that you have to use a type like unsigned long (not uint64 t)

• If you want to count leading zeroes in an int, instead use int builtin ctz

(unsigned int x)

• Let’s look at some simple code using this: trailingZeroes.c

Other intrinsics

• Lots and lots of them

• Get num 1s, get parity of num 1s, reverse the bytes in the word, raise number
to power

• There are limits; not always going to have a CPU instruction

Compiler making decisions for you

• Generally you need to call these manually

• (The compiler doesn’t know that you’re calculating the number of trailing 0s;
so it can’t make that substitution)

• But, of course, it will do its best when it can.

• The compiler does do good work for you: when you call (say) int
builtin ctzl (unsigned long), it chooses the best way to do the

operation to count the number of leading zeroes on your processor

SIMD instructions

Intro: a touch of parallelism

• Something we’ve occasionally touched on in this class: word-level parallelism

• Idea: we can do computations on single 64 bit numbers very quickly (say 1
clock cycle)

• So: If our data is much less than 64 bits, can get extra computation done
more quickly.

World level parallelism example

• Can you test if a string (array of chars) starts with “abcd” in O(1) time?

• Calculate a uint64 t corresponding to the correct integer

• Eight bytes, where the first byte is the character ‘a’, second is ‘b’, then ‘c’

and ‘d’

• Cast the data to a uint64 t, then can do a single comparison

Watch for endianness

• I’d strongly recommend avoiding tricky back-end issues by storing data the
same way you access it rather than manually

• Both actually work on any machine in the following example; C requires
strings be stored in-order. But it’s nice to not have to know that...

1 char* str = "abcd";

2 uint64_t test =

3 *((uint64_t *) str);

1 uint64_t test = ’a’;

2 test = test << 8 + ’b’;

3 test = test << 8 + ’c’;

4 test = test << 8 + ’d’;

Let’s look at simultaneously testing first four characters of a
string

1 bool starts_with_abcd(char* str){

2 char* beginning = "abcd";

3 uint64_t test = *((uint64_t *) beginning);

4 uint64_t str_beg = *((uint64_t *) str);

5 return test == str_beg;

6 }

• Is this faster? Sometimes...we’d have to run some tests.

In general...

• Words of 64 bits allow us to do lots of computations in one (or a few) clock
cycles

• Example: taking the bitwise OR of two 64 bit numbers is basically doing 64
computations at once

• This is literally parallelism: the circuits in the chip do these operations
simultaneously

• Harder to do simultaneous operations like add (really hard to multiply): why?

• Carries (etc.) mess us up!

• We’d have to leave ”space” between pieces of data; lots of setup means it’s
probably not worth it

Lots of known tricks

• Whole books on the topic

• Very important for the last level of
optimization

• Writing clear code is almost always
better until the very end of
optimizing; always test any tricks
you use to make sure they’re
actually faster

One last fun(?) example

https://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits

https://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits

Word-level paralellism

• Good part: takes advantage of how computers are built to speed up
computation

• Bad parts?

• Only works for a few operations (can’t even really add)

• Only works on really small pieces of data

Extending it forward

• Having fast operations on 64 bit data can speed up operations on 1-bit or 8-bit
data

• ...but often we want to operate on 32 or 64 bit data. It would be nice if we
could do the same!

• Honestly it’d be nice if we could do something better like adding and
multiplying rather than just taking OR or doing weird string comparisons...

• This is the purpose of SIMD!

SIMD

• SIMD: Single Instruction Multiple Data

• A single CPU instruction does an identical operation to multiple pieces of data

• Specialized circuits operate on each piece of data individually

• Can do bitwise operations, adding, multiplying, some others

• Also some operations to help load and read data

• Introduced on Intel processors in 1999, but fairly significantly expanded
recently

Other Names

• Sometimes called “vector”
instructions

• And/or referred to using instruction
sets: SSE, AVX, AVX2, AVX-512
(these are extensions to x86).

SIMD Discussion

• Dipping our toes into parallelism

• Uniprocessor kind of parallelism

• GPU computation uses similar ideas

• Scaled up significantly (much more speedup potential)

• More restricted

SIMD on lab computers

• We have SSE, AVX, AVX2, AVX-512 instruction sets

• 32(?) “ZMM” registers; each 512 bits

• (Older processors may only have 128 bit “XMM” or 256 bit “YMM” registers.)

• Need to include #include <immintrin.h> and compile with -march=native

SIMD Examples

What is SIMD good for?

• Lots of identical operations on a set of elements; these operations are costly

• Elements are in nicely-sized chunks
• Can always used specialized code to handle other cases

Example 1: Adding two arrays

• Let’s add two arrays of 16 32-bit integers with one SIMD operation

• simdtests512.c

Assembly of the add operation

• In assembly, the data is moved around, and there is a single (special) add
operation

Usual Breakdown of a SIMD Function

• Can get these functions from the Intel website; I’ll give you all functions you
need for Assignment 2

• m512i mm512 add epi32 (m512i a, m512i b):

• m512i is the return type (a 512 bit variable)

• mm512 means that this is a 512 bit operation

• add is the operation

• epi32 means that we are operating on 32-bit words (as opposed to packing, say,
64 8-bit words into the 512 bits)

Example 2: Adding single value to array

• Let’s add one value (10) to each entry of an array.

• Do we need to declare a new array to do this?

• No! SIMD operations give us a single function that fills a variable with copies of
a single value

Speed comparison

• How much time does SIMD add (in total in our implementation) take
compared to normal add?

• It’s a bit faster

Example 3: Searching for Particular Value in Array

• Can do vector comparisons, but get a 512-bit vector out

• Need a way to make that vector into something useful for us. Let’s look at the
code.

• mmask16 mm512 cmp epi32 mask(mm512i arg1, mm512i arg2,

MM COMPINT ENUM type): does 16 comparisons at once, stores results of all
(bit by bit) in a 16 bit integer

• type is one of: MM CMPINT EQ MM CMPINT LT MM CMPINT LE

MM CMPINT FALSE MM CMPINT NE MM CMPINT NLT MM CMPINT NLE

MM CMPINT TRUE

Optimization comparison?

• What happens when we change to O3?

• Everything gets faster!

• In previous tests: for adding and popcount, SIMD is suddenly slightly slower
than without; SIMD is still best at finding 0 element

• Guesses as to why? ...Let’s take a look at the assembly

• gcc is vectorizing the operations by itself and doing it very slightly better

• gcc only uses 256 bit operations by default, even if larger ones are available

SIMD Discussion

Tradeoffs

What are some downsides of using an SIMD instruction?

• SIMD instructions may be a little slower on a per-operation basis (folklore is a
factor of ≈ 2 even for the operation itself, but it seems modern
implementations are much better)

• Cost to gather items in new location

• SIMD is not always faster

How much can we save using SIMD? Let’s say we’re using 512 bit registers, and
operating on 32 bit data.

• Factor of 512/32 = 16 at absolute best

• Realistically is going to be quite a bit lower in practice

Tradeoffs

• Bear in mind Amdahl’s law when considering SIMD

• Only worth using on the most costly operations, and only when they work very
well with SIMD

One Question

• What’s a problem we’ve seen this semester that is particularly suited for SIMD
speedup?

• Hint: I’m not referring to any of the assignment problems

• Matrix multiplication: lots of time doing multiplications on successive matrix
elements

• (SIMD works for some other problems too; I just wanted to highlight this as
one of the classic examples.)

Compiler?

• A lot of the examples we saw were super simple

• Can the compiler use these operations automatically?

• As we just saw: yes it can
• --ftree-vectorize

• --ftree-loop-vectorize (turned on with O3)
• Lots of extra option to tune gcc parameters for how it vectorizes

• But, as always, only is going to work in “obvious” situations.

Automatic Vectorization Example

We can see the paddd SIMD instruction
(on xmm1 and xmm0) when compiling

with -O3.

Memory Alignment

Storing Items in Memory

• We’ve mentioned that our computer moves data around in cache lines of 64
bytes

• Sometimes the hardware does better at taking in chunks of memory when
they are lined up properly

• SIMD has different operations depending on if you’re aligned or unaligned;
affects performance

• load vs loadu (u for “unaligned”)

• Can use special commands when allocating to make sure the beginning of
the allocated memory is aligned with a certain boundary

• Performance gain is quite small, but it’s also really easy to set up

	Wrapping up Minhash Discussion
	Homework 2 Optimizations
	Assignment 1 Discussion
	Modern Instructions and Intrinsics
	SIMD instructions
	SIMD Examples
	SIMD Discussion
	Memory Alignment

