
Lecture 10: Streaming (Count
Min Sketch and HyperLogLog
Counting)

Sam McCauley

October 8, 2024

Williams College



Admin

• Questions about Homework 3?

• No leaderboard for Homework 3 or 4 (will come back for Homework 5)

• Interesting things to say about optimizing (say) filters, but for our use case does
not noticeably impact running time

• Mountain day Friday?

• Homework 4 will be released around then

• Homework 4 is not too long, especially for the code; a good time to catch up!



Really Large Data (as of 2021)

• Netflix sends (so far as I can tell)
about 500TB per minute on
average to its customers

• Google’s search index is over
100,000,000 GB

• Brazil Internet Exchange processes
7 trillion bits every second



Really Large Data

• Modern companies deal with
extremely large data

• Can’t even store all of it sometimes!

• If is possible to store, can be very
difficult to access particular pieces



Really Large Data

• Modern companies deal with
extremely large data

• Can’t even store all of it sometimes!

• If is possible to store, can be very
difficult to access particular pieces



Really Large Data

• Modern companies deal with
extremely large data

• Can’t even store all of it sometimes!

• If is possible to store, can be very
difficult to access particular pieces



A Shift in Focus (Streaming)

• Up until now: nice self-contained instances; might fit in L3 cache; might fit in
RAM

• In some situations: the data is too big and you can’t hope to do that

• The data is like a stream that’s constantly rushing past

• All you can do is sample pieces as they pass by



A Shift in Focus (Streaming)

• Up until now: nice self-contained instances; might fit in L3 cache; might fit in
RAM

• In some situations: the data is too big and you can’t hope to do that

• The data is like a stream that’s constantly rushing past

• All you can do is sample pieces as they pass by



A Shift in Focus (Streaming)

• Up until now: nice self-contained instances; might fit in L3 cache; might fit in
RAM

• In some situations: the data is too big and you can’t hope to do that

• The data is like a stream that’s constantly rushing past

• All you can do is sample pieces as they pass by



A Shift in Focus (Streaming)

• Up until now: nice self-contained instances; might fit in L3 cache; might fit in
RAM

• In some situations: the data is too big and you can’t hope to do that

• The data is like a stream that’s constantly rushing past

• All you can do is sample pieces as they pass by



Streaming Model

• You receive a stream of N items
one by one

• Stream is incredibly long; you can’t
store all of the items

• Can’t move forward or backward
either; just come in one at a time



Streaming Model

• You receive a stream of N items
one by one

• Stream is incredibly long; you can’t
store all of the items

• Can’t move forward or backward
either; just come in one at a time



Streaming Model

• You receive a stream of N items
one by one

• Stream is incredibly long; you can’t
store all of the items

• Can’t move forward or backward
either; just come in one at a time



Streaming Model

• Normally you’re used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even O(1)

• What can we do in this situation?

• Note: very active area of research

• Today we’ll look at two classic results



Streaming Model

• Normally you’re used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even O(1)

• What can we do in this situation?

• Note: very active area of research

• Today we’ll look at two classic results



Streaming Model

• Normally you’re used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even O(1)

• What can we do in this situation?

• Note: very active area of research

• Today we’ll look at two classic results



Streaming Model

• Normally you’re used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even O(1)

• What can we do in this situation?

• Note: very active area of research

• Today we’ll look at two classic results



Streaming Model

• Normally you’re used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even O(1)

• What can we do in this situation?

• Note: very active area of research

• Today we’ll look at two classic results



Streaming Model

• Normally you’re used to getting your data all at once, with the ability to store
all of it, and access random pieces whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of information
one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even O(1)

• What can we do in this situation?

• Note: very active area of research

• Today we’ll look at two classic results



What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good guarantees for counting
how many times a given element occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many unique items
appeared in the stream.



What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good guarantees for counting
how many times a given element occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many unique items
appeared in the stream.



What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good guarantees for counting
how many times a given element occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many unique items
appeared in the stream.



What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good guarantees for counting
how many times a given element occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many unique items
appeared in the stream.



What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good guarantees for counting
how many times a given element occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many unique items
appeared in the stream.



When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic, etc.

• Cache-efficiency! Streaming algorithms only require you to scan the data
once.

• N/B cache misses



When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic, etc.

• Cache-efficiency! Streaming algorithms only require you to scan the data
once.

• N/B cache misses



When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic, etc.

• Cache-efficiency! Streaming algorithms only require you to scan the data
once.

• N/B cache misses



Actual Applications

• DDOS attack: keep track of IP addresses that appear too often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

• Facebook uses HyperLogLog to estimate number of unique visitors to site.



Actual Applications

• DDOS attack: keep track of IP addresses that appear too often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

• Facebook uses HyperLogLog to estimate number of unique visitors to site.



Actual Applications

• DDOS attack: keep track of IP addresses that appear too often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

• Facebook uses HyperLogLog to estimate number of unique visitors to site.



Actual Applications

• DDOS attack: keep track of IP addresses that appear too often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

• Facebook uses HyperLogLog to estimate number of unique visitors to site.



Actual Applications

• DDOS attack: keep track of IP addresses that appear too often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

• Facebook uses HyperLogLog to estimate number of unique visitors to site.



HyperLogLog at Facebook

“Doing this with a traditional SQL query on a data set as massive as the ones we
use at Facebook would take days and terabytes of memory... With HLL, we can
perform the same calculation in 12 hours with less than 1 MB of memory.”



Count-Min Sketch



Count-Min Sketch

Goal:

• Maintain a data structure on a stream of items

• See the items one at a time; you have no control over how they are given to you

• Want to be extremely space efficient

• At any time, estimate how frequently a given item appeared



Count-Min Sketch

Goal:

• Maintain a data structure on a stream of items

• See the items one at a time; you have no control over how they are given to you

• Want to be extremely space efficient

• At any time, estimate how frequently a given item appeared



Count-Min Sketch

Goal:

• Maintain a data structure on a stream of items

• See the items one at a time; you have no control over how they are given to you

• Want to be extremely space efficient

• At any time, estimate how frequently a given item appeared



Count-Min Sketch

Goal:

• Maintain a data structure on a stream of items

• See the items one at a time; you have no control over how they are given to you

• Want to be extremely space efficient

• At any time, estimate how frequently a given item appeared



Example

You see the following items one by one:

adhesive



Example

You see the following items one by one:

flawless



Example

You see the following items one by one:

closed



Example

You see the following items one by one:

adhesive



Example

You see the following items one by one:

describe



Example

You see the following items one by one:

closed



Example

You see the following items one by one:

sea



Example

You see the following items one by one:

illustrious



Example

You see the following items one by one:

describe



Example

You see the following items one by one:

describe



Example

You see the following items one by one:

flawless



Example

You see the following items one by one:

street



Example

You see the following items one by one:

closed



Example

You see the following items one by one:

describe



Example

• Now, answer questions of the form: how many times did some item xi occur
in the stream?

• Example: how many times did adhesive appear? How about closed?
• (2 times and 3 times respectively)



Example

• Now, answer questions of the form: how many times did some item xi occur
in the stream?

• Example: how many times did adhesive appear? How about closed?

• (2 times and 3 times respectively)



Example

• Now, answer questions of the form: how many times did some item xi occur
in the stream?

• Example: how many times did adhesive appear? How about closed?
• (2 times and 3 times respectively)



Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈e
ε

⌉
dln(1/δ)e dlog2 Ne bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈e
ε

⌉
dln(1/δ)e dlog2 Ne bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈e
ε

⌉
dln(1/δ)e dlog2 Ne bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈e
ε

⌉
dln(1/δ)e dlog2 Ne bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element q ∈ U, estimate how many i exist with xi = q?

• Today: pretty decent guess using
⌈e
ε

⌉
dln(1/δ)e dlog2 Ne bits of space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can hash them.



How would you solve this problem with what you know right
now?

• Let’s come up with a
space-inefficient solution

• Keep a hash table with all elements

• Increment a counter each time you
see an element

• O(N) space, O(1) time per query

• Pretty efficient! But we want way
way less space.



How would you solve this problem with what you know right
now?

• Let’s come up with a
space-inefficient solution

• Keep a hash table with all elements

• Increment a counter each time you
see an element

• O(N) space, O(1) time per query

• Pretty efficient! But we want way
way less space.



How would you solve this problem with what you know right
now?

• Let’s come up with a
space-inefficient solution

• Keep a hash table with all elements

• Increment a counter each time you
see an element

• O(N) space, O(1) time per query

• Pretty efficient! But we want way
way less space.



How would you solve this problem with what you know right
now?

• Let’s come up with a
space-inefficient solution

• Keep a hash table with all elements

• Increment a counter each time you
see an element

• O(N) space, O(1) time per query

• Pretty efficient! But we want way
way less space.



How would you solve this problem with what you know right
now?

• Let’s come up with a
space-inefficient solution

• Keep a hash table with all elements

• Increment a counter each time you
see an element

• O(N) space, O(1) time per query

• Pretty efficient! But we want way
way less space.



Sketching: A first attempt

• Randomly sampling:

• Keep N/100 slots
• For each item, with probability

1/100, use the approach above

• If an item appears k times in the
stream, we record it k/100 times in
expectation.



Sketching: A first attempt

• Randomly sampling:
• Keep N/100 slots
• For each item, with probability

1/100, use the approach above

• If an item appears k times in the
stream, we record it k/100 times in
expectation.



Sketching: A first attempt

• Randomly sampling:
• Keep N/100 slots
• For each item, with probability

1/100, use the approach above

• If an item appears k times in the
stream, we record it k/100 times in
expectation.



Sketching: A first attempt

• If an item appears k times in the
stream, we see it k/100 times in
expectation.

• So, if we wrote an item down w
times, we can estimate that it
probably occurred 100w times in
the stream.



Sketching: A first attempt

What are some downsides to this ap-
proach?

• It’s pretty loose. If our counter is
just one off, that changes our
guess by +100

• Could have a fairly frequent item
that we never write down.

• Can’t guarantee much about our
estimate



Sketching: A first attempt

What are some downsides to this ap-
proach?

• It’s pretty loose. If our counter is
just one off, that changes our
guess by +100

• Could have a fairly frequent item
that we never write down.

• Can’t guarantee much about our
estimate



Sketching: A first attempt

What are some downsides to this ap-
proach?

• It’s pretty loose. If our counter is
just one off, that changes our
guess by +100

• Could have a fairly frequent item
that we never write down.

• Can’t guarantee much about our
estimate



Second attempt: hash counts

• Maintain a hash table A with 1/ε entries, each of at least dlogNe bits
• Has enough room to store a number in {0, . . . ,N − 1}.

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of
length dlogNe so

don’t overflow

• How can we query?



Second attempt: hash counts

• Maintain a hash table A with 1/ε entries, each of at least dlogNe bits
• Has enough room to store a number in {0, . . . ,N − 1}.

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of
length dlogNe so

don’t overflow

• How can we query?



Second attempt: hash counts

• Maintain a hash table A with 1/ε entries, each of at least dlogNe bits
• Has enough room to store a number in {0, . . . ,N − 1}.

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of
length dlogNe so

don’t overflow

• How can we query?



Second attempt: hash counts

• Maintain a hash table A with 1/ε entries, each of at least dlogNe bits
• Has enough room to store a number in {0, . . . ,N − 1}.

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of
length dlogNe so

don’t overflow

• How can we query?



Second attempt: hash counts

• Maintain a hash table A with 1/ε entries, each of at least dlogNe bits
• Has enough room to store a number in {0, . . . ,N − 1}.

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of
length dlogNe so

don’t overflow

• How can we query?



Second attempt: hash counts

• Maintain a hash table A with 1/ε entries, each of at least dlogNe bits
• Has enough room to store a number in {0, . . . ,N − 1}.

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of
length dlogNe so

don’t overflow

• How can we query?



Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always
increase this
counter when
we see xi = q

But, also increase
it when h(xi) =

h(q), but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε in expectation



Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always
increase this
counter when
we see xi = q

But, also increase
it when h(xi) =

h(q), but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε in expectation



Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always
increase this
counter when
we see xi = q

But, also increase
it when h(xi) =

h(q), but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε in expectation



Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always
increase this
counter when
we see xi = q

But, also increase
it when h(xi) =

h(q), but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε in expectation



Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always
increase this
counter when
we see xi = q

But, also increase
it when h(xi) =

h(q), but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε in expectation



Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always
increase this
counter when
we see xi = q

But, also increase
it when h(xi) =

h(q), but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε in expectation



Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always
increase this
counter when
we see xi = q

But, also increase
it when h(xi) =

h(q), but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε in expectation



Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always
increase this
counter when
we see xi = q

But, also increase
it when h(xi) =

h(q), but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε in expectation



Second attempt: hash counts (Analysis)

Expectation is not that great!

• Let’s say we have only two items;
A appears 100 times and B
appears 900

• What are the possibilities for what
happens when we query A?

• With probability 1− ε we get 100;
with probability ε we get 1000



Second attempt: hash counts (Analysis)

Expectation is not that great!

• Let’s say we have only two items;
A appears 100 times and B
appears 900

• What are the possibilities for what
happens when we query A?

• With probability 1− ε we get 100;
with probability ε we get 1000



Second attempt: hash counts (Analysis)

Expectation is not that great!

• Let’s say we have only two items;
A appears 100 times and B
appears 900

• What are the possibilities for what
happens when we query A?

• With probability 1− ε we get 100;
with probability ε we get 1000



Second attempt: hash counts (Analysis)

Expectation is not that great!

• Let’s say we have only two items;
A appears 100 times and B
appears 900

• What are the possibilities for what
happens when we query A?

• With probability 1− ε we get 100;
with probability ε we get 1000



What do we really want?

• To guarantee a high-quality answer, we want to say that the solution is likely to
be close to correct.

• We want concentration bounds!

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure we see a 6 at
least once. How can we do that?

• Of course: roll the die many times!



What do we really want?

• To guarantee a high-quality answer, we want to say that the solution is likely to
be close to correct.

• We want concentration bounds!

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure we see a 6 at
least once. How can we do that?

• Of course: roll the die many times!



What do we really want?

• To guarantee a high-quality answer, we want to say that the solution is likely to
be close to correct.

• We want concentration bounds!

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure we see a 6 at
least once. How can we do that?

• Of course: roll the die many times!



What do we really want?

• To guarantee a high-quality answer, we want to say that the solution is likely to
be close to correct.

• We want concentration bounds!

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure we see a 6 at
least once. How can we do that?

• Of course: roll the die many times!



Repetitions

• Rather than having one hash table A, let’s have a two-dimensional hash table
T

• T has dln(1/δ)e rows

We’ll come
back to δ later.

• Each row consists of de/εe slots

The e is im-
portant for

the analysis.

• Different hash function for each row



Repetitions

• Rather than having one hash table A, let’s have a two-dimensional hash table
T

• T has dln(1/δ)e rows

We’ll come
back to δ later.

• Each row consists of de/εe slots

The e is im-
portant for

the analysis.

• Different hash function for each row



Repetitions

• Rather than having one hash table A, let’s have a two-dimensional hash table
T

• T has dln(1/δ)e rows

We’ll come
back to δ later.

• Each row consists of de/εe slots

The e is im-
portant for

the analysis.

• Different hash function for each row



Repetitions

• Rather than having one hash table A, let’s have a two-dimensional hash table
T

• T has dln(1/δ)e rows

We’ll come
back to δ later.

• Each row consists of de/εe slots

The e is im-
portant for

the analysis.

• Different hash function for each row



Repetitions

• Rather than having one hash table A, let’s have a two-dimensional hash table
T

• T has dln(1/δ)e rows

We’ll come
back to δ later.

• Each row consists of de/εe slots

The e is im-
portant for

the analysis.

• Different hash function for each row



Repetitions

• Rather than having one hash table A, let’s have a two-dimensional hash table
T

• T has dln(1/δ)e rows

We’ll come
back to δ later.

• Each row consists of de/εe slots

The e is im-
portant for

the analysis.

• Different hash function for each row



Inserts

To insert xi :

• For j = 0 . . . dln(1/δ)e − 1:

• Increment T [j][hj(xi)]

We now have dln(1/δ)e counters for each item. How can we query?



Inserts

To insert xi :

• For j = 0 . . . dln(1/δ)e − 1:
• Increment T [j][hj(xi)]

We now have dln(1/δ)e counters for each item. How can we query?



Inserts

To insert xi :

• For j = 0 . . . dln(1/δ)e − 1:
• Increment T [j][hj(xi)]

We now have dln(1/δ)e counters for each item. How can we query?



Queries

Each entry is an overestimate.

• Find minj T [j][hj(xi)].



Queries

Each entry is an overestimate.

• Find minj T [j][hj(xi)].



Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : increment T [j][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j][hj(q)]



Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : increment T [j][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j][hj(q)]



Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : increment T [j][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j][hj(q)]



Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : increment T [j][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j][hj(q)]



Example Insert

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

x

h1(x) h2(x)h3(x) h4(x)



Example Insert

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

x

h1(x)

h2(x)h3(x) h4(x)



Example Insert

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

x

h1(x) h2(x)

h3(x) h4(x)



Example Insert

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

x

h1(x) h2(x)h3(x)

h4(x)



Example Insert

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 2 3 4 5 6 7

x

h1(x) h2(x)h3(x) h4(x)



Example Insert

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 2 3 4 5 6 7

y

h1(y)
h2(y)

h3(y)
h4(y)



Example Insert

1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)
h4(y)



Example Insert

1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 2 3 4 5 6 7

y

h1(y)
h2(y)

h3(y)
h4(y)



Example Insert

1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 2 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 2 3 4 5 6 7

y

h1(y)
h2(y)

h3(y)

h4(y)



Example Insert

1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 2 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 1 2 3 4 5 6 7

y

h1(y)
h2(y)

h3(y)
h4(y)



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)

h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q)

h4(q)

The estimated number of occurrences for q is 28.



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.



Example Query

28 10 78 9 26 69 39 28
85 40 52 70 11 84 65 99
56 82 34 75 99 35 14 55
10 20 17 80 92 89 71 13
0 1 2 3 4 5 6 7

q

h1(q)h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.



Count-Min Sketch Guarantee: Lower bound

• On query q, let’s say the filter returns that there were oq occurrences
• So oq = minj T [j][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.



Count-Min Sketch Guarantee: Lower bound

• On query q, let’s say the filter returns that there were oq occurrences
• So oq = minj T [j][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.



Count-Min Sketch Guarantee: Lower bound

• On query q, let’s say the filter returns that there were oq occurrences
• So oq = minj T [j][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.



Count-Min Sketch Guarantee: Upper bound

• On query q, let’s say the filter returns that there were oq occurrences; correct
answer is ôq.

• We know that for any j , E
[
T [j][hj(q)]

]
≤ ôq + εN

e

• That is to say: guess is off by εN
e in expectation

• On Assignment 4, you’ll prove that for any positive random variable X ,
Pr[X ≥ e · E[X ]] ≤ 1/e

• So the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e



Count-Min Sketch Guarantee: Upper bound

• On query q, let’s say the filter returns that there were oq occurrences; correct
answer is ôq.

• We know that for any j , E
[
T [j][hj(q)]

]
≤ ôq + εN

e

• That is to say: guess is off by εN
e in expectation

• On Assignment 4, you’ll prove that for any positive random variable X ,
Pr[X ≥ e · E[X ]] ≤ 1/e

• So the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e



Count-Min Sketch Guarantee: Upper bound

• On query q, let’s say the filter returns that there were oq occurrences; correct
answer is ôq.

• We know that for any j , E
[
T [j][hj(q)]

]
≤ ôq + εN

e

• That is to say: guess is off by εN
e in expectation

• On Assignment 4, you’ll prove that for any positive random variable X ,
Pr[X ≥ e · E[X ]] ≤ 1/e

• So the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e



Count-Min Sketch Guarantee: Upper bound

• On query q, let’s say the filter returns that there were oq occurrences; correct
answer is ôq.

• We know that for any j , E
[
T [j][hj(q)]

]
≤ ôq + εN

e

• That is to say: guess is off by εN
e in expectation

• On Assignment 4, you’ll prove that for any positive random variable X ,
Pr[X ≥ e · E[X ]] ≤ 1/e

• So the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e



Count-Min Sketch Guarantee: Upper bound

• On query q, let’s say the filter returns that there were oq occurrences; correct
answer is ôq.

• We know that for any j , E
[
T [j][hj(q)]

]
≤ ôq + εN

e

• That is to say: guess is off by εN
e in expectation

• On Assignment 4, you’ll prove that for any positive random variable X ,
Pr[X ≥ e · E[X ]] ≤ 1/e

• So the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e



Count-Min Sketch Guarantee: Upper bound

• For each row j , the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e

• Are the rows independent?

• Yes. (For each row, we select a new hash and start over)

• What is Pr
[
minj T [j][hj(q)]

]
≥ ôq + εN?

• Only fails if cell is too big in every row! Occurs with probability(
1
e

)# rows

=

(
1
e

)dln 1/δe
≤ δ



Count-Min Sketch Guarantee: Upper bound

• For each row j , the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e

• Are the rows independent?

• Yes. (For each row, we select a new hash and start over)

• What is Pr
[
minj T [j][hj(q)]

]
≥ ôq + εN?

• Only fails if cell is too big in every row! Occurs with probability(
1
e

)# rows

=

(
1
e

)dln 1/δe
≤ δ



Count-Min Sketch Guarantee: Upper bound

• For each row j , the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e

• Are the rows independent?

• Yes. (For each row, we select a new hash and start over)

• What is Pr
[
minj T [j][hj(q)]

]
≥ ôq + εN?

• Only fails if cell is too big in every row! Occurs with probability(
1
e

)# rows

=

(
1
e

)dln 1/δe
≤ δ



Count-Min Sketch Guarantee: Upper bound

• For each row j , the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e

• Are the rows independent?

• Yes. (For each row, we select a new hash and start over)

• What is Pr
[
minj T [j][hj(q)]

]
≥ ôq + εN?

• Only fails if cell is too big in every row! Occurs with probability(
1
e

)# rows

=

(
1
e

)dln 1/δe
≤ δ



Count-Min Sketch Guarantee: Upper bound

• For each row j , the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e

• Are the rows independent?

• Yes. (For each row, we select a new hash and start over)

• What is Pr
[
minj T [j][hj(q)]

]
≥ ôq + εN?

• Only fails if cell is too big in every row! Occurs with probability

(
1
e

)# rows

=

(
1
e

)dln 1/δe
≤ δ



Count-Min Sketch Guarantee: Upper bound

• For each row j , the probability that T [j][hj(q)] ≥ ôq + εN is at most 1/e

• Are the rows independent?

• Yes. (For each row, we select a new hash and start over)

• What is Pr
[
minj T [j][hj(q)]

]
≥ ôq + εN?

• Only fails if cell is too big in every row! Occurs with probability(
1
e

)# rows

=

(
1
e

)dln 1/δe
≤ δ



Count-Min Sketch Bounds

•
⌈e
ε

⌉ ⌈
ln 1

δ

⌉
dlog2 Ne bits of space

• For any query q, if the filter returns oq and the actual number of occurrences
is ôq, then with probability 1− δ:

ôq ≤ oq ≤ ôq + εN.



Count-Min Sketch

• Small sketch (size based on error
rate)

• Always overestimates count

• Bound on overestimation is based
on stream length



Count-Min Sketch

• Small sketch (size based on error
rate)

• Always overestimates count

• Bound on overestimation is based
on stream length



Count-Min Sketch

• Small sketch (size based on error
rate)

• Always overestimates count

• Bound on overestimation is based
on stream length



Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (a little wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate num
occurrences of each word within ±1500

• Often more accurate! Also: feel free to try 1000 or 10000 entries per row; it
gets quite accurate



Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (a little wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate num
occurrences of each word within ±1500

• Often more accurate! Also: feel free to try 1000 or 10000 entries per row; it
gets quite accurate



Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (a little wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate num
occurrences of each word within ±1500

• Often more accurate! Also: feel free to try 1000 or 10000 entries per row; it
gets quite accurate



Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (a little wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate num
occurrences of each word within ±1500

• Often more accurate! Also: feel free to try 1000 or 10000 entries per row; it
gets quite accurate



Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (a little wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate num
occurrences of each word within ±1500

• Often more accurate! Also: feel free to try 1000 or 10000 entries per row; it
gets quite accurate



Hyper Log Log Counting



Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the stream

• Common question: how many unique elements are there in the stream?



Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the stream

• Common question: how many unique elements are there in the stream?



Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the stream

• Common question: how many unique elements are there in the stream?



The problem we’re trying to solve

• Stream of N elements

• Approximate number of unique
elements

• (Compare to CMS: stores
approximately how many there are
of each element)



The problem we’re trying to solve

• Stream of N elements

• Approximate number of unique
elements

• (Compare to CMS: stores
approximately how many there are
of each element)



The problem we’re trying to solve

• Stream of N elements

• Approximate number of unique
elements

• (Compare to CMS: stores
approximately how many there are
of each element)



The problem we’re trying to solve

• Stream of N elements

• Approximate number of unique
elements

• To do this exactly: need dictionary
of all elements we’ve already seen.

• How can you count unique
elements approximately?
Challenge: don’t want to
double-count when we see an
element twice.



The problem we’re trying to solve

• Stream of N elements

• Approximate number of unique
elements

• To do this exactly: need dictionary
of all elements we’ve already seen.

• How can you count unique
elements approximately?
Challenge: don’t want to
double-count when we see an
element twice.



Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more often it happens,
the more distinct hashes (and thus distinct items) we must be seeing!

• In particular: how many 0s does each hash end with?



Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more often it happens,
the more distinct hashes (and thus distinct items) we must be seeing!

• In particular: how many 0s does each hash end with?



Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more often it happens,
the more distinct hashes (and thus distinct items) we must be seeing!

• In particular: how many 0s does each hash end with?



Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more often it happens,
the more distinct hashes (and thus distinct items) we must be seeing!

• In particular: how many 0s does each hash end with?



Hashes ending in 0s

• What is the probability that a hash ends in ten 0’s?

Answer: 1/1024

• So if we have two distinct elements, it’s very unlikely that the hash of either
will end in 10 0’s.

• If we have 210 = 1024 distinct elements, it’s pretty likely that the hash of one
will end with 10 0’s!

• Note “distinct!” All of this comes back to estimating how many unique
elements there are. Unique elements give a new hash, and a new opportunity
for many zeroes. Non-unique elements don’t give a new hash.



Hashes ending in 0s

• What is the probability that a hash ends in ten 0’s? Answer: 1/1024

• So if we have two distinct elements, it’s very unlikely that the hash of either
will end in 10 0’s.

• If we have 210 = 1024 distinct elements, it’s pretty likely that the hash of one
will end with 10 0’s!

• Note “distinct!” All of this comes back to estimating how many unique
elements there are. Unique elements give a new hash, and a new opportunity
for many zeroes. Non-unique elements don’t give a new hash.



Hashes ending in 0s

• What is the probability that a hash ends in ten 0’s? Answer: 1/1024

• So if we have two distinct elements, it’s very unlikely that the hash of either
will end in 10 0’s.

• If we have 210 = 1024 distinct elements, it’s pretty likely that the hash of one
will end with 10 0’s!

• Note “distinct!” All of this comes back to estimating how many unique
elements there are. Unique elements give a new hash, and a new opportunity
for many zeroes. Non-unique elements don’t give a new hash.



Hashes ending in 0s

• What is the probability that a hash ends in ten 0’s? Answer: 1/1024

• So if we have two distinct elements, it’s very unlikely that the hash of either
will end in 10 0’s.

• If we have 210 = 1024 distinct elements, it’s pretty likely that the hash of one
will end with 10 0’s!

• Note “distinct!” All of this comes back to estimating how many unique
elements there are. Unique elements give a new hash, and a new opportunity
for many zeroes. Non-unique elements don’t give a new hash.



Hashes ending in 0s

• What is the probability that a hash ends in ten 0’s? Answer: 1/1024

• So if we have two distinct elements, it’s very unlikely that the hash of either
will end in 10 0’s.

• If we have 210 = 1024 distinct elements, it’s pretty likely that the hash of one
will end with 10 0’s!

• Note “distinct!” All of this comes back to estimating how many unique
elements there are. Unique elements give a new hash, and a new opportunity
for many zeroes. Non-unique elements don’t give a new hash.



Example

You see the following hashes one by one:

0010001010101001



Example

You see the following hashes one by one:

0010110010111101



Example

You see the following hashes one by one:

0001000111101111



Example

You see the following hashes one by one:

0000001011000011



Example

You see the following hashes one by one:

0110010010011100



Example

You see the following hashes one by one:

1000101011100001



Example

You see the following hashes one by one:

0110100100111101



Example

You see the following hashes one by one:

0011101001100010



Example

You see the following hashes one by one:

0110000000001110



Example

You see the following hashes one by one:

0011001110001111



Example

You see the following hashes one by one:

1111100010110000



Example

You see the following hashes one by one:

1111110101011100



Example

You see the following hashes one by one:

1100010011010011



Example

You see the following hashes one by one:

How many unique items were there?

1101110101001100



Example 2

You see the following hashes one by one:

0010001010101001



Example 2

You see the following hashes one by one:

0010110010111101



Example 2

You see the following hashes one by one:

0011101001100010



Example 2

You see the following hashes one by one:

0010001010101001



Example 2

You see the following hashes one by one:

0011101001100010



Example 2

You see the following hashes one by one:

0010110010111101



Example 2

You see the following hashes one by one:

0010110010111101



Example 2

You see the following hashes one by one:

0010001010101001



Example 2

You see the following hashes one by one:

0010110010111101



Example 2

You see the following hashes one by one:

0010001010101001



Example 2

You see the following hashes one by one:

0010110010111101



Example 2

You see the following hashes one by one:

0010001010101001



Example 2

You see the following hashes one by one:

0010110010111101



Example 2

You see the following hashes one by one:

0010001010101001



Example 2

You see the following hashes one by one:

How many unique items were there? Was it more or less than the last one?

0010110010111101



Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 3 elements!



Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 3 elements!



Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 3 elements!



Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 3 elements!



Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 3 elements!



Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 3 elements!



Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But: if we’re just off by 1 or 2 zeroes, that affects our answer by a lot! (We
don’t get good concentration bounds)



Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But: if we’re just off by 1 or 2 zeroes, that affects our answer by a lot! (We
don’t get good concentration bounds)



Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But: if we’re just off by 1 or 2 zeroes, that affects our answer by a lot! (We
don’t get good concentration bounds)



Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But: if we’re just off by 1 or 2 zeroes, that affects our answer by a lot! (We
don’t get good concentration bounds)



Improving reliability

• How do we improve the consistency of a random process?

Repeat!∗ (∗in a
particular way)

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of 0s at end of any
item hashed to that counter

• For CMS, we took the min. What do we do here to combine the estimates?

• Answer: It’s complicated. (And the rationale is outside the scope of the
course.)



Improving reliability

• How do we improve the consistency of a random process? Repeat!∗ (∗in a
particular way)

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of 0s at end of any
item hashed to that counter

• For CMS, we took the min. What do we do here to combine the estimates?

• Answer: It’s complicated. (And the rationale is outside the scope of the
course.)



Improving reliability

• How do we improve the consistency of a random process? Repeat!∗ (∗in a
particular way)

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of 0s at end of any
item hashed to that counter

• For CMS, we took the min. What do we do here to combine the estimates?

• Answer: It’s complicated. (And the rationale is outside the scope of the
course.)



Improving reliability

• How do we improve the consistency of a random process? Repeat!∗ (∗in a
particular way)

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of 0s at end of any
item hashed to that counter

• For CMS, we took the min. What do we do here to combine the estimates?

• Answer: It’s complicated. (And the rationale is outside the scope of the
course.)



Improving reliability

• How do we improve the consistency of a random process? Repeat!∗ (∗in a
particular way)

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of 0s at end of any
item hashed to that counter

• For CMS, we took the min. What do we do here to combine the estimates?

• Answer: It’s complicated. (And the rationale is outside the scope of the
course.)



Improving reliability

• How do we improve the consistency of a random process? Repeat!∗ (∗in a
particular way)

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of 0s at end of any
item hashed to that counter

• For CMS, we took the min. What do we do here to combine the estimates?

• Answer: It’s complicated. (And the rationale is outside the scope of the
course.)



HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x). Then i will index into
M. Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M[i], set
M[i] = z + 1

• Make sure to add 1 to your count of the number of zeroes



HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x). Then i will index into
M. Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M[i], set
M[i] = z + 1

• Make sure to add 1 to your count of the number of zeroes



HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x). Then i will index into
M. Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M[i], set
M[i] = z + 1

• Make sure to add 1 to your count of the number of zeroes



HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x). Then i will index into
M. Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M[i], set
M[i] = z + 1

• Make sure to add 1 to your count of the number of zeroes



HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x). Then i will index into
M. Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M[i], set
M[i] = z + 1

• Make sure to add 1 to your count of the number of zeroes



Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1
2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.



Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1
2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.



Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1
2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.



Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1
2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.



Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores
less than 2, so we store it.



Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores
less than 2, so we store it.



Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores
less than 2, so we store it.



Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores
less than 2, so we store it.



Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores
less than 2, so we store it.



Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores
less than 2, so we store it.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores
0, so we store 5 in the slot.



Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores
0, so we store 5 in the slot.



Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores
0, so we store 5 in the slot.



Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores
0, so we store 5 in the slot.



Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores
0, so we store 5 in the slot.



Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores
0, so we store 5 in the slot.



Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1. The counter stores
5, so we keep the slot as-is.



Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1. The counter stores
5, so we keep the slot as-is.



Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1. The counter stores
5, so we keep the slot as-is.



Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1. The counter stores
5, so we keep the slot as-is.



Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1. The counter stores
5, so we keep the slot as-is.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2,
so we keep it as-is.



At the end of the day

Have an array of counters:

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

• Sum up (1/2)M[j] across all j = 0 to m − 1; store in Z

• Return bm2/Z . Here m = 8. We would have to look up the value of b for 8.
(No one does HyperLogLog with 8)



At the end of the day

Have an array of counters:

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

• Sum up (1/2)M[j] across all j = 0 to m − 1; store in Z

• Return bm2/Z . Here m = 8. We would have to look up the value of b for 8.
(No one does HyperLogLog with 8)



At the end of the day

Have an array of counters:

0 5 0 0 0 0 2 0
000 001 010 011 100 101 110 111

• Sum up (1/2)M[j] across all j = 0 to m − 1; store in Z

• Return bm2/Z . Here m = 8. We would have to look up the value of b for 8.
(No one does HyperLogLog with 8)



Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in any hash

• Size > log log(number of distinct elements) (hence the loglog in the name)

• 8-bit counters are good enough, so long as the number of elements in your
stream is less than the number of particles in the universe

• Note: one thing to be careful of is hash length. But 64 bit hashes should be
good enough for any reasonable application (and 32 bits is usually fine)



Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in any hash

• Size > log log(number of distinct elements) (hence the loglog in the name)

• 8-bit counters are good enough, so long as the number of elements in your
stream is less than the number of particles in the universe

• Note: one thing to be careful of is hash length. But 64 bit hashes should be
good enough for any reasonable application (and 32 bits is usually fine)



Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in any hash

• Size > log log(number of distinct elements) (hence the loglog in the name)

• 8-bit counters are good enough, so long as the number of elements in your
stream is less than the number of particles in the universe

• Note: one thing to be careful of is hash length. But 64 bit hashes should be
good enough for any reasonable application (and 32 bits is usually fine)



Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in any hash

• Size > log log(number of distinct elements) (hence the loglog in the name)

• 8-bit counters are good enough, so long as the number of elements in your
stream is less than the number of particles in the universe

• Note: one thing to be careful of is hash length. But 64 bit hashes should be
good enough for any reasonable application (and 32 bits is usually fine)



Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in any hash

• Size > log log(number of distinct elements) (hence the loglog in the name)

• 8-bit counters are good enough, so long as the number of elements in your
stream is less than the number of particles in the universe

• Note: one thing to be careful of is hash length. But 64 bit hashes should be
good enough for any reasonable application (and 32 bits is usually fine)



HLL in the Assignment

• We’ll use m = 32 counters

• Bias constant is .697



HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these problems

• Other known improvements as well



HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these problems

• Other known improvements as well



HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these problems

• Other known improvements as well



HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these problems

• Other known improvements as well



One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,
gives extremely accurate results



One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,
gives extremely accurate results



One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,
gives extremely accurate results



One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,
gives extremely accurate results



One More Cool Thing

• Facebook developed an HLL-based
algorithm to calculate the diameter
of a graph

• In terms of “friend jumps”, how far
away are the furthest people in
the Facebook graph?

• How far away are two people on
average?

• Usually takes O(n2) time!

• Theirs is essentially linear time,
gives extremely accurate results



Hash Functions in Practice



What do we want out of a hash function?

Of course, we want consistency (each time we hash an item we get the same
result back). What else might we want?

• Fast

• Low space requirements (i.e. may need to store a seed; don’t want that to be
too big)

• Good collision avoidance

• Bear in mind: different hashes work on different types of elements. We’ll focus
on integers and strings (especially strings)



Ideal Hash Functions (Independent, Uniform Hashing)

• Best possible collision avoidance

• But: require extremely large space usage unless universe of possible
elements is extremely small

• You did use one of these...

• For h on Assignment 3! Those values were all chosen independently, completely
at random



Ideal Hash Functions (Independent, Uniform Hashing)

• Best possible collision avoidance

• But: require extremely large space usage unless universe of possible
elements is extremely small

• You did use one of these...

• For h on Assignment 3! Those values were all chosen independently, completely
at random



Ideal Hash Functions (Independent, Uniform Hashing)

• Best possible collision avoidance

• But: require extremely large space usage unless universe of possible
elements is extremely small

• You did use one of these...

• For h on Assignment 3! Those values were all chosen independently, completely
at random



Ideal Hash Functions (Independent, Uniform Hashing)

• Best possible collision avoidance

• But: require extremely large space usage unless universe of possible
elements is extremely small

• You did use one of these...

• For h on Assignment 3! Those values were all chosen independently, completely
at random



Hashing in Java

• Anyone know how Java hashes a
64 bit Long?

• return x ∧ (x >> 32);

• Advantages of this?

Is this good for:

• In cuckoo filter: h1, h, f?
• h1 and f : might work if elements

are fairly well-spread (we take
mod)

• h: probably won’t work (output
too small)

• CMS? HLL?
• CMS might be OK; prob not

(same as above)
• HLL likely useless unless

elements very uniformly spread



Multiply-Shift Hashing

1 uint64_t hash3(uint64_t value){

2 return (uint64_t)(value * 0x765a3cc864bd9779) >> (64 -

SHIFT);

3 }

• Hash from Assignment 1

• Seed is a large prime number to multiply by; can also add a large random
prime

• Advantages?

• Fast! (And easy.)



Multiply-Shift Hashing

1 uint64_t hash3(uint64_t value){

2 return (uint64_t)(value * 0x765a3cc864bd9779) >> (64 -

SHIFT);

3 }

• How good is it?
• Pretty good! For any x , y , Pr[h(x) = h(y)] = 1/n.
• But unfortunately behavior doesn’t extend to larger numbers of elements.

• Let’s say we use this for a hash table with chaining (n items, n chains). What
is the expected number of elements we find during a query q?

• Xi = 1 if h(xi) = h(q). Then E[Xi ] = 1/n. By linearity of expectation, total
number of items is

∑n
i=1 1/n = 1.



Multiply-Shift hashing for other data structures

• Is this going to work well for a filter?

• Probably not. Would have to try it.

• Count-min sketch?

• On paper should work pretty well! After all, our analysis only used the
expectation

• I’d guess it won’t work as well as with a better hash function

• Hyperloglog?

• Would have to try but I would very much suspect it would not work well at all



Multiply-Shift hashing for other data structures

• Is this going to work well for a filter?

• Probably not. Would have to try it.

• Count-min sketch?

• On paper should work pretty well! After all, our analysis only used the
expectation

• I’d guess it won’t work as well as with a better hash function

• Hyperloglog?

• Would have to try but I would very much suspect it would not work well at all



Multiply-Shift hashing for other data structures

• Is this going to work well for a filter?

• Probably not. Would have to try it.

• Count-min sketch?

• On paper should work pretty well! After all, our analysis only used the
expectation

• I’d guess it won’t work as well as with a better hash function

• Hyperloglog?

• Would have to try but I would very much suspect it would not work well at all



Multiply-Shift hashing for other data structures

• Is this going to work well for a filter?

• Probably not. Would have to try it.

• Count-min sketch?

• On paper should work pretty well! After all, our analysis only used the
expectation

• I’d guess it won’t work as well as with a better hash function

• Hyperloglog?

• Would have to try but I would very much suspect it would not work well at all



Multiply-Shift hashing for other data structures

• Is this going to work well for a filter?

• Probably not. Would have to try it.

• Count-min sketch?

• On paper should work pretty well! After all, our analysis only used the
expectation

• I’d guess it won’t work as well as with a better hash function

• Hyperloglog?

• Would have to try but I would very much suspect it would not work well at all



Multiply-Shift hashing for other data structures

• Is this going to work well for a filter?

• Probably not. Would have to try it.

• Count-min sketch?

• On paper should work pretty well! After all, our analysis only used the
expectation

• I’d guess it won’t work as well as with a better hash function

• Hyperloglog?

• Would have to try but I would very much suspect it would not work well at all



Multiply-Shift hashing for other data structures

• Is this going to work well for a filter?

• Probably not. Would have to try it.

• Count-min sketch?

• On paper should work pretty well! After all, our analysis only used the
expectation

• I’d guess it won’t work as well as with a better hash function

• Hyperloglog?

• Would have to try but I would very much suspect it would not work well at all



Murmurhash

• Popular practical hash function

• Uses repeated MUltiply and Rotate operations
• Rotate is like shift, but bits that “fall off” are replaced on other side
• Can be implemented with two shifts and an OR

• Code isn’t exactly short; 50 operations to hash a number



Murmurhash

• Popular practical hash function

• Uses repeated MUltiply and Rotate operations
• Rotate is like shift, but bits that “fall off” are replaced on other side
• Can be implemented with two shifts and an OR

• Code isn’t exactly short; 50 operations to hash a number



Murmurhash

• Popular practical hash function

• Uses repeated MUltiply and Rotate operations
• Rotate is like shift, but bits that “fall off” are replaced on other side
• Can be implemented with two shifts and an OR

• Code isn’t exactly short; 50 operations to hash a number



Murmurhash Code



Murmurhash Code

(The light grey lines skip pieces of code.)



Murmurhash3 Performance

• No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))

• Someday may discover: might not work well in some circumstances

• This is what happened to Murmurhash2:
• “Will this flaw cause your program to fail? Probably not - what this means in

real-world terms is that if your keys contain repeated 4-byte values AND they
differ only in those repeated values AND the repetitions fall on a 4-byte
boundary, then your keys will collide with a probability of about 1 in 227.4 instead
of 232. Due to the birthday paradox, you should have a better than 50% chance
of finding a collision in a group of 13115 bad keys instead of 65536.”

• https://sites.google.com/site/murmurhash/murmurhash2flaw

https://sites.google.com/site/murmurhash/murmurhash2flaw


Murmurhash3 Performance

• No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))

• Someday may discover: might not work well in some circumstances

• This is what happened to Murmurhash2:
• “Will this flaw cause your program to fail? Probably not - what this means in

real-world terms is that if your keys contain repeated 4-byte values AND they
differ only in those repeated values AND the repetitions fall on a 4-byte
boundary, then your keys will collide with a probability of about 1 in 227.4 instead
of 232. Due to the birthday paradox, you should have a better than 50% chance
of finding a collision in a group of 13115 bad keys instead of 65536.”

• https://sites.google.com/site/murmurhash/murmurhash2flaw

https://sites.google.com/site/murmurhash/murmurhash2flaw


Murmurhash3 Performance

• No known worst-case guarantees (not even Pr(h(x) = h(y)) = O(1/n))

• Someday may discover: might not work well in some circumstances

• This is what happened to Murmurhash2:
• “Will this flaw cause your program to fail? Probably not - what this means in

real-world terms is that if your keys contain repeated 4-byte values AND they
differ only in those repeated values AND the repetitions fall on a 4-byte
boundary, then your keys will collide with a probability of about 1 in 227.4 instead
of 232. Due to the birthday paradox, you should have a better than 50% chance
of finding a collision in a group of 13115 bad keys instead of 65536.”

• https://sites.google.com/site/murmurhash/murmurhash2flaw

https://sites.google.com/site/murmurhash/murmurhash2flaw


Murmurhash3 Performance

Average of square of bucket sizes. Data is an intentionally bad (albeit reasonable)
case

From “Practical Hash Functions for Similarity Estimation and Dimensionality
Reduction” by Dahlgaard, Knudsen, Thorup NeurIPS 2017



Murmurhash3 Performance in Practice

• Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

• Visual example: let’s say we hash “number strings”: “1”, “2”, . . . “216553”

• Cool experiment from https:

//softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

• I wouldn’t normally cite stackexchange but this is really cool

• Compare SDBM (another popular hash) with Murmurhash2; fill in pixel if
corresponding table entry is hashed to

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed


Murmurhash3 Performance in Practice

• Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

• Visual example: let’s say we hash “number strings”: “1”, “2”, . . . “216553”

• Cool experiment from https:

//softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

• I wouldn’t normally cite stackexchange but this is really cool

• Compare SDBM (another popular hash) with Murmurhash2; fill in pixel if
corresponding table entry is hashed to

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed


Murmurhash3 Performance in Practice

• Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

• Visual example: let’s say we hash “number strings”: “1”, “2”, . . . “216553”

• Cool experiment from https:

//softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

• I wouldn’t normally cite stackexchange but this is really cool

• Compare SDBM (another popular hash) with Murmurhash2; fill in pixel if
corresponding table entry is hashed to

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed


Murmurhash3 Performance in Practice

• Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

• Visual example: let’s say we hash “number strings”: “1”, “2”, . . . “216553”

• Cool experiment from https:

//softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

• I wouldn’t normally cite stackexchange but this is really cool

• Compare SDBM (another popular hash) with Murmurhash2; fill in pixel if
corresponding table entry is hashed to

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed


Murmurhash3 Performance in Practice

• Much more resilient than multiply-shift to more-difficult statistical tests
(beyond average case)

• Visual example: let’s say we hash “number strings”: “1”, “2”, . . . “216553”

• Cool experiment from https:

//softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

• I wouldn’t normally cite stackexchange but this is really cool

• Compare SDBM (another popular hash) with Murmurhash2; fill in pixel if
corresponding table entry is hashed to

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed


SDBM (lots of chunks of full cells!)



Murmurhash2 (visually: random)



One last murmurhash question

• Murmurhash really just does a bunch of arbitrary multiplies and rotates

• Is there anything special about this specific sequence, or will any such set
work pretty well?

• Answer: others might not work. Example: “SuperFastHash” also uses
multiplies and rotates



One last murmurhash question

• Murmurhash really just does a bunch of arbitrary multiplies and rotates

• Is there anything special about this specific sequence, or will any such set
work pretty well?

• Answer: others might not work. Example: “SuperFastHash” also uses
multiplies and rotates



One last murmurhash question

• Murmurhash really just does a bunch of arbitrary multiplies and rotates

• Is there anything special about this specific sequence, or will any such set
work pretty well?

• Answer: others might not work. Example: “SuperFastHash” also uses
multiplies and rotates



Hash comparison

Hash Lowercase Random UUID Numbers

============= ============= =========== ==============

Murmur 145 ns 259 ns 92 ns

6 collis 5 collis 0 collis

SDBM 148 ns 484 ns 90 ns

4 collis 6 collis 0 collis

SuperFastHash 164 ns 344 ns 118 ns

85 collis 4 collis 18742 collis

SuperFastHash has bad performance on lowercase English words, and
horrendous performance on numbers-as-strings.

(Also from https://softwareengineering.stackexchange.com/questions/

49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed)

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed


Unease with our options

• Murmurhash seems to do well (and is fast), but has few guarantees.

• What do we do if we’re OK with a slightly slower hash, but we REALLY want to
be sure it does well?

• Answer: cryptographic hashes! Secure even for cryptographic applications;
no known statistical weaknesses

• Examples: SHA-3, BLAKE2, many others

• Broken: MD5, SHA-1, many others



Unease with our options

• Murmurhash seems to do well (and is fast), but has few guarantees.

• What do we do if we’re OK with a slightly slower hash, but we REALLY want to
be sure it does well?

• Answer: cryptographic hashes! Secure even for cryptographic applications;
no known statistical weaknesses

• Examples: SHA-3, BLAKE2, many others

• Broken: MD5, SHA-1, many others



Unease with our options

• Murmurhash seems to do well (and is fast), but has few guarantees.

• What do we do if we’re OK with a slightly slower hash, but we REALLY want to
be sure it does well?

• Answer: cryptographic hashes! Secure even for cryptographic applications;
no known statistical weaknesses

• Examples: SHA-3, BLAKE2, many others

• Broken: MD5, SHA-1, many others



Unease with our options

• Murmurhash seems to do well (and is fast), but has few guarantees.

• What do we do if we’re OK with a slightly slower hash, but we REALLY want to
be sure it does well?

• Answer: cryptographic hashes! Secure even for cryptographic applications;
no known statistical weaknesses

• Examples: SHA-3, BLAKE2, many others

• Broken: MD5, SHA-1, many others



Unease with our options

• Murmurhash seems to do well (and is fast), but has few guarantees.

• What do we do if we’re OK with a slightly slower hash, but we REALLY want to
be sure it does well?

• Answer: cryptographic hashes! Secure even for cryptographic applications;
no known statistical weaknesses

• Examples: SHA-3, BLAKE2, many others

• Broken: MD5, SHA-1, many others



(Source: https://shattered.io)

https://shattered.io

	Count-Min Sketch
	Hyper Log Log Counting
	Hash Functions in Practice

