Applied Algorithms Lec 1:
Welcome (and some C)

Sam McCauley
September 6, 2024

Williams College

Welcome!

e Welcome back to campus.

e Can everyone see me and the projector?

Admin

e Colloquium Fridays at 2:30

e Some attendance required for majors

e Welcome colloquium today

About the Class

Goal: bridge the gap between theory and practice

How can theoretical models better predict practice?

Useful algorithms you may not have seen

Using algorithmic principles to become better coders!

Pantry Algorithms

Algorithms that you should always
have handy because they are
incredibly useful

Bloom filters, linear programming,
suffix trees

What drives the course

Algorithmic understanding of these
ideas!

Power of Modern Algorithms

A shipping company needs to efficiently pack items into its truck. How can we use
algorithms to find a good, or even the best, solution?

Power of Modern Algorithms

e

N

How far away are two average people in the Facebook graph? O(nz) doesn’t work
when n is in the billions!

We'll be doing some coding
practice each week

Code review from time to time

Collaboration highly encouraged

Optional, friendly competition for
those who want to optimize code
(with some bonus points)

About Me

Call me Sam

Research is in algorithms

e Some experimental algorithms

Office is TCL 306

Office Hours Wed Thu 3-5pm TCL 306 (?) Let me know if you can’t make it!

About the Course

No course textbook; some suggested readings

Textbooks for background will be left in TCL 312.

From last time it was taught: some grading changes; project added

e Goal: focus more on learning the topics, less on grades. Also lower workload

Questions particularly welcome!

Help, Questions, Comments, Etc.

Slack; email sam@cs.williams.edu

During or after class

Stop by the lab during (or not during) office hours

Stop by my office (no promises!)

sam@cs.williams.edu

Lab

TCL 312

Passcode (write it down)

Office hours will generally be in TCL 312

Feel free to stop by.

e No one else has reserved it
e But others use it—keep an eye out for occupancy

No food or drink this semester!

Theory assessment

A small number of problems each week

Don't fall behind! (Or get too distracted by coding)

Goal: Understanding how the algorithms work

Especially important on the final

Coding assessment

(Almost) all in C

Weekly assignments

Homework 1 is designed to give you an opportunity to catch up

Coarse grading

(Mostly) no parallelism in this course

Why C?

register short *to, *from;
register count;

{

register n = (count + 7) / 8;
switch (count % 8) {

case 0O: do { *to

case 7: *to
case 6: *to
case 5: *to
case 4: *to
case 3: *to
case 2: *to
case 1: *to

} while (——n

*from++;
*from++;
*from++;
*from++;
*from++;
*from++;
*from++;
*from++;
9);

Familiarity

Low-level

e Course is about how design
decisions affect performance

Fast, useful to know

A couple specific features we’ll be
using

Summary of Policies and
Assessments

Weekly Homeworks

e Due Thursday 10pm

e Released one week before

o Late penalty 1 letter grade per day
¢ Let me know if there is some reason why you cannot make it!
¢ I have no problems giving late days if the need arises
e (Seriously do this @)
e But please tell me before!

Assignments

Used for assessment (as opposed to homeworks which are used for practice)

3 during the semester

Look like homeworks, handed in like homeworks

But all work must be entirely your own!
¢ No instructor or TA help;
¢ No help from other students; no online resources
e Contact me with any questions or if issues come up

Final

e No final in the course

Final Project

e Idea: Pick a topic we went over, explore it in more depth

e Done in groups of up to 2

¢ I'll meet with you regularly to discuss directions to take the project, and to
make sure that you have good content

e Start after third Assignment (Nov 14)

e Due: December 10th.

Homework Honor Code Policies: Problem Set Questions

Normal CS department assignment rules

You must do by yourself

Instructor and TA can help

Can discuss high-level strategies with other students (“hands-in-pockets” rule)

Can ask other students about debugging and syntax issues

Homework Honor Code Policies: Code

You can collaborate with other students and use online resources

You may share code, use stackexchange, and use ChatGPT

But you must cite what you use!!

You have to understand anything you submit.

e I may actually ask you about code you've written—possibly because what you've
done is interesting (though it may also be to ensure you're keeping up)

Details in syllabus; let me know if you have questions

“Leaderboard” extra credit

On some homeworks we’'ll have a fun competition to see who can write the
fastest implementation

Totally optional!

First-third fastest will get 20, 15, 10 extra points

+5 if you are faster than previous fastest

Current 5 fastest times will be (anonymously) posted on website, along with
last year's and my lightly optimized implementation

CSCI 358 - Fall 2021

Applied Algorithms

Home | Lectures | Assignments | Handouts | Leaderboard | CS@Williams

Assignment8

Last Updated Dec 09 23:35

1 d46e 4.517875

2 8506 10.044391
3 8d4c 10.063052
4 005¢ 10.085786
5 590c 10.105472
6 Sam 10.288698

Grading

¢ Homeworks: 25%

e Assignments: 50%

e Final Project: 25%

Let’s look over the syllabus quickly

Course Website

“Assignment” 0

Not worth points

Due next Wednesday

Just asks for your name and Github

You can’t do Assignment 1 without it!

Coding in C

Plan for this section

Quick review of some key concepts

Emphasize some particularly important areas for this course

Use the first week as an opportunity to catch up!

Instructor, other students, even stackexchange (etc.) are all good resources for
questions you may have'

TJust remember to cite and be sure that you can explain anything you submit.

About C

Lifetime of information to learn

I am not an expert (though I've used it a lot)

Many interesting features, many interesting behind-the-scenes effects

Close connection between your code and the computer’s actions

Arrays

e Really just pointers

¢ No bounds checking

e Can use sizeof for fixed-size array (compiler replaces with size at compile
time). Also works with variables

Structs

What C has instead of classes

e No member functions
e Still uses . operator to access member variables

Sequence of variables stored contiguously in memory

Semicolon after declaration

Need to use struct or typedef to refer to structs.

Two Examples

e struct.c
e typedef to make things easier

e pointers.c
e Local variables different local vs remote
e Access out of bounds
e Values change(?) with different optimizations
e valgrind to catch these issues

Memory Allocation

malloc and free

e Also use calloc and realloc
e Need stdlib.h

If you call C++ code, be careful with mixing new and malloc

Use useful library functions like memset and memcpy

Example: memoryl.c

Sorting in C

gsort() from stdlib.h

Takes as arguments array pointer, size of array, size of each element, and a
comparison function. Let’s look at sort.c

What's a downside to this in terms of efficiency?

Many ways to get better sorts in C:
e Nicely-written homemade sort
e C++ boost library
e Third-party code

Instructions to get this to work in handouts on the website (strictly optional)

Running Code

Accessing Lab Computers

e Can access using ssh

e Use a text-based editor (like vim or emacs) locally

e Can also use VSCode directly: run VSCode on your computer, modifying and
running a remote file

Notes on C and compilation

e We use gcc in this course

e Macs tell you they have gcc but it is not; it is actually clang
e Can try to install gcc using brew install gcc (I just use lab computers...)

e Unlikely to make too much of a difference, but one reason to use lab
computers if you're running into issues

Architecture

e x86 architecture (not AMD, not M1)
e Intel i7; run lscpu for details
e This is likely to have an effect on fine-grained performance in some cases

e Your home computers are fine for correctness and coarse optimization; use
lab computers for fine-grained optimization

e If I ask you to do a performance comparison, you should generally do it on lab
computers. In any case you should write what you do it on.

Where are things stored?

STACK
INAGTIVE 28 ORIGIN
FRAME N-3 5 .
e In CPU register (never touching
memor
METE N-2 i
e Temporary variables like loop
indices
INACTIVE N_1 . . .
FRAME e Compiler decides this
e Call stack
ACTIVE |y ¢ Small amount of dedicated
FRAME
memory to keep track of current
STACK 1 1
g <= POINTER function and local variables
7 =9 e Pop back to last function when
"~ AVAILABLE | S done
STAC
g : o temporary
2
1
0

Agatallr for Wikpodia
Public Domain 2006

Other place to store things

The heap!

Very large amount of memory (basically all of RAM)

Create space on heap using ma'lloc

Need stdlib.h to use malloc

How to decide stack vs heap?

e Java rules work out well:
e “objects” and arrays on the heap
¢ Anything that needs to be around after the function is over should be on the heap
e Otherwise declare primitive types and let the compiler work it out
e Keep scope in mind!

Makefile

e Each time we change a file, need to recompile that file

¢ Need to build output file (but don’t need to recompile other unchanged files)

o Makefile does this automatically

In this class

e I'll give you a makefile

e You don’t need to change it unless you use multiple files or want to set
compiler options
e Probably don’t need to use multiple files in this class
e (Some exceptions for things like wrapper functions.)

Let’s look quickly at the default Makefile

e make, make clean, make debug

	Summary of Policies and Assessments
	Let's look over the syllabus quickly
	Course Website
	Coding in C
	Running Code

