
Applied Algorithms Lec 1:
Welcome (and some C)

Sam McCauley

September 6, 2024

Williams College

Welcome!

• Welcome back to campus.

• Can everyone see me and the projector?

Admin

• Colloquium Fridays at 2:30

• Some attendance required for majors

• Welcome colloquium today

About the Class

• Goal: bridge the gap between theory and practice

• How can theoretical models better predict practice?

• Useful algorithms you may not have seen

• Using algorithmic principles to become better coders!

Pantry Algorithms

• Algorithms that you should always

have handy because they are

incredibly useful

• Bloom filters, linear programming,

suffix trees

• What drives the course

• Algorithmic understanding of these

ideas!

Power of Modern Algorithms

A shipping company needs to efficiently pack items into its truck. How can we use

algorithms to find a good, or even the best, solution?

Power of Modern Algorithms

How far away are two average people in the Facebook graph? O(n2) doesn’t work

when n is in the billions!

Coding

• We’ll be doing some coding

practice each week

• Code review from time to time

• Collaboration highly encouraged

• Optional, friendly competition for

those who want to optimize code

(with some bonus points)

About Me

• Call me Sam

• Research is in algorithms

• Some experimental algorithms

• Office is TCL 306

• Office Hours Wed Thu 3-5pm TCL 306 (?) Let me know if you can’t make it!

About the Course

• No course textbook; some suggested readings

• Textbooks for background will be left in TCL 312.

• From last time it was taught: some grading changes; project added

• Goal: focus more on learning the topics, less on grades. Also lower workload

• Questions particularly welcome!

Help, Questions, Comments, Etc.

• Slack; email sam@cs.williams.edu

• During or after class

• Stop by the lab during (or not during) office hours

• Stop by my office (no promises!)

sam@cs.williams.edu

Lab

• TCL 312

• Passcode (write it down)

• Office hours will generally be in TCL 312

• Feel free to stop by.

• No one else has reserved it
• But others use it—keep an eye out for occupancy

• No food or drink this semester!

Theory assessment

• A small number of problems each week

• Don’t fall behind! (Or get too distracted by coding)

• Goal: Understanding how the algorithms work

• Especially important on the final

Coding assessment

• (Almost) all in C

• Weekly assignments

• Homework 1 is designed to give you an opportunity to catch up

• Coarse grading

• (Mostly) no parallelism in this course

Why C?

1 register short * to , * from ;
2 register count ;
3 {
4 register n = (count + 7) / 8 ;
5 switch (count % 8) {
6 case 0: do { * to = * from ++;
7 case 7 : * to = * from ++;
8 case 6 : * to = * from ++;
9 case 5 : * to = * from ++;

10 case 4 : * to = * from ++;
11 case 3 : * to = * from ++;
12 case 2 : * to = * from ++;
13 case 1 : * to = * from ++;
14 } while (−−n > 0) ;
15 }
16 }

• Familiarity

• Low-level

• Course is about how design
decisions affect performance

• Fast, useful to know

• A couple specific features we’ll be

using

Summary of Policies and
Assessments

Weekly Homeworks

• Due Thursday 10pm

• Released one week before

• Late penalty 1 letter grade per day

• Let me know if there is some reason why you cannot make it!
• I have no problems giving late days if the need arises
• (Seriously do this)
• But please tell me before!

Assignments

• Used for assessment (as opposed to homeworks which are used for practice)

• 3 during the semester

• Look like homeworks, handed in like homeworks

• But all work must be entirely your own!

• No instructor or TA help;
• No help from other students; no online resources
• Contact me with any questions or if issues come up

Final

• No final in the course

Final Project

• Idea: Pick a topic we went over, explore it in more depth

• Done in groups of up to 2

• I’ll meet with you regularly to discuss directions to take the project, and to

make sure that you have good content

• Start after third Assignment (Nov 14)

• Due: December 10th.

Homework Honor Code Policies: Problem Set Questions

• Normal CS department assignment rules

• You must do by yourself

• Instructor and TA can help

• Can discuss high-level strategies with other students (“hands-in-pockets” rule)

• Can ask other students about debugging and syntax issues

Homework Honor Code Policies: Code

• You can collaborate with other students and use online resources

• You may share code, use stackexchange, and use ChatGPT

• But you must cite what you use!!

• You have to understand anything you submit.

• I may actually ask you about code you’ve written—possibly because what you’ve
done is interesting (though it may also be to ensure you’re keeping up)

• Details in syllabus; let me know if you have questions

“Leaderboard” extra credit

• On some homeworks we’ll have a fun competition to see who can write the

fastest implementation

• Totally optional!

• First–third fastest will get 20, 15, 10 extra points

• +5 if you are faster than previous fastest

• Current 5 fastest times will be (anonymously) posted on website, along with

last year’s and my lightly optimized implementation

Grading

• Homeworks: 25%

• Assignments: 50%

• Final Project: 25%

Let’s look over the syllabus quickly

Course Website

“Assignment” 0

• Not worth points

• Due next Wednesday

• Just asks for your name and Github

• You can’t do Assignment 1 without it!

Coding in C

Plan for this section

• Quick review of some key concepts

• Emphasize some particularly important areas for this course

• Use the first week as an opportunity to catch up!

• Instructor, other students, even stackexchange (etc.) are all good resources for

questions you may have1

1Just remember to cite and be sure that you can explain anything you submit.

About C

• Lifetime of information to learn

• I am not an expert (though I’ve used it a lot)

• Many interesting features, many interesting behind-the-scenes effects

• Close connection between your code and the computer’s actions

Arrays

• Really just pointers

• No bounds checking

• Can use sizeof for fixed-size array (compiler replaces with size at compile

time). Also works with variables

Structs

• What C has instead of classes

• No member functions
• Still uses . operator to access member variables

• Sequence of variables stored contiguously in memory

• Semicolon after declaration

• Need to use struct or typedef to refer to structs.

Two Examples

• struct.c
• typedef to make things easier

• pointers.c
• Local variables different local vs remote
• Access out of bounds
• Values change(?) with different optimizations
• valgrind to catch these issues

Memory Allocation

• malloc and free
• Also use calloc and realloc
• Need stdlib.h

• If you call C++ code, be careful with mixing new and malloc

• Use useful library functions like memset and memcpy

• Example: memory1.c

Sorting in C

• qsort() from stdlib.h

• Takes as arguments array pointer, size of array, size of each element, and a

comparison function. Let’s look at sort.c

• What’s a downside to this in terms of efficiency?

• Many ways to get better sorts in C:

• Nicely-written homemade sort
• C++ boost library
• Third-party code

• Instructions to get this to work in handouts on the website (strictly optional)

Running Code

Accessing Lab Computers

• Can access using ssh

• Use a text-based editor (like vim or emacs) locally

• Can also use VSCode directly: run VSCode on your computer, modifying and

running a remote file

Notes on C and compilation

• We use gcc in this course

• Macs tell you they have gcc but it is not; it is actually clang
• Can try to install gcc using brew install gcc (I just use lab computers...)

• Unlikely to make too much of a difference, but one reason to use lab

computers if you’re running into issues

Architecture

• x86 architecture (not AMD, not M1)

• Intel i7; run lscpu for details

• This is likely to have an effect on fine-grained performance in some cases

• Your home computers are fine for correctness and coarse optimization; use

lab computers for fine-grained optimization

• If I ask you to do a performance comparison, you should generally do it on lab

computers. In any case you should write what you do it on.

Where are things stored?

• In CPU register (never touching
memory)

• Temporary variables like loop
indices

• Compiler decides this

• Call stack

• Small amount of dedicated
memory to keep track of current
function and local variables

• Pop back to last function when
done

• temporary

Other place to store things

• The heap!

• Very large amount of memory (basically all of RAM)

• Create space on heap using malloc

• Need stdlib.h to use malloc

How to decide stack vs heap?

• Java rules work out well:

• “objects” and arrays on the heap
• Anything that needs to be around after the function is over should be on the heap
• Otherwise declare primitive types and let the compiler work it out
• Keep scope in mind!

Makefile

• Each time we change a file, need to recompile that file

• Need to build output file (but don’t need to recompile other unchanged files)

• Makefile does this automatically

In this class

• I’ll give you a makefile

• You don’t need to change it unless you use multiple files or want to set
compiler options

• Probably don’t need to use multiple files in this class
• (Some exceptions for things like wrapper functions.)

Let’s look quickly at the default Makefile

• make, make clean, make debug

	Summary of Policies and Assessments
	Let's look over the syllabus quickly
	Course Website
	Coding in C
	Running Code

