
STREAMING: COUNT MIN SKETCH AND HYPERLOGLOG COUNTING

Sam McCauley
Applied Algorithms, Fall 2024

Goal for Today

Computers are increasingly o�en tasked with dealing with extremely large amounts of data. This is
particularly true on the internet: every user, every action, every message is a piece of data that needs
to be considered and processed very quickly.

In the last class, we learned about Bloom filters, which allow us to compress data. But you may have
noticed that there were serious limits to this compression: generally, each data item is compressed to
the size of a byte. At absolute minimum, a Bloom filter requires a bit or two of space for every stored
item. That isn’t going to work when the number of items we want to deal with number in the trillions
or even quadrillions.1

What we want is a much more aggressive form of compression. In fact, we want it to be so aggressive
that we can have a guaranteed size of our data structure that’s only logarithmic in the size of our data—
or even better than that.

How could such a thing be possible? And, if our data structure is that small, won’t we be losing al-
most all of the information we’re looking for? Surprisingly, a simple and carefully built data structure
can give us extremely valuable information about the data, even under such draconian space require-
ments.

What is a Stream?

A stream is a very long sequence of data which is given to the data structure one item at a time. Once
an item is given to the data structure, the data structure updates its representation and the item is
never seen again. You can imagine this as sitting next to a large stream. You are trying to sample small
pieces of the stream for analysis. But once something in the stream goes past you, that’s it—if you
didn’t sample it, you won’t see it again.

Formalism. A stream is a list of items x1, . . . xN (a stream may contain duplicates, where xi = xj

but i 6= j). As in filters, we assume that items are of the same type for the sake of hashing: for some

1The Brazil Internet Exchange alone processes over 7 trillion bits, on average, every second.

Page 1

Streaming: Count Min Sketch and HyperLogLog Counting CS 358 Fall 2024

universe U , xi ∈ U for all i, and all queries q must also satisfy q ∈ U . Each item in the stream is
presented to the data structure one at a time, in order. We will assume that an insert function is
called on x1, then x2, and so on until insert is called on xN . The data structure is required to have
small space, usually O(logN) or smaller (sometimes O(1)). Today we will be looking at an example
of each: the Count-Min Sketch requiresO(logN) bits of space for constant error, whereas the Hyper-
LogLog data structure requiresO(log logN) bits.

A�er all items have been inserted a single time into the data structure, we can make queries to learn
information about the stream. We will focus on two queries today:

• For a query q, how many times did q appear in the stream? In set notation, this asks us to deter-
mine |{i ∈ {1, . . . , N} | xi = q}|.

• How many distinct items appeared in the stream overall? In set notation, this asks us to deter-
mine |{xi | i ∈ {1, . . . , N}}|.

Discussion. Streaming algorithms have been a major area of research throughout the last few
decades. There exist entire courses on the topic. Streaming algorithms are are an excellent example
of how randomized algorithms can make otherwise-impossible problems tractable.

Why are streaming algorithms so useful? One reason is that data streams are, in fact, fairly common
nowadays: packets being transmitted through a node in a network (say, a router on the internet) es-
sentially form a data stream. Any entity interested in monitoring that tra�ic needs to solve a problem
on a large data stream.

However, a further motivation comes (again!) from cache e�iciency. As we discussed in class, the most
cache-e�icient way to go through data is to scan it.2 So if you have a massive amount of data stored
somewhere that you want to analyze, the cheapest way to approach it is to scan through the data
once, keeping track of statistics in a small-space data structure as you go. This is, again, a problem on
a large data stream.3

Count Min Sketch

Our first data structure keeps an impressively accurate count of every item in a data stream while using
extremely small space.

2Scans also tend to avoid branch mispredictions and other practical ine�iciencies.
3You may notice that if our goal cache-e�iciency, there’s an opportunity for a tradeo�: I can scan the data multiple times,

resulting in an increase in cache misses, but with a second chance to see important data items. Can seeing a stream
several times lead to more e�icient methods? In short, the answer is frequently yes. This is called the “multi pass”
streaming model. While this model is fairly popular we will not be looking at it in this class.

Page 2

Streaming: Count Min Sketch and HyperLogLog Counting CS 358 Fall 2024

The Count-Min Sketch is one of the best-known streaming data structures. It looks somewhat like
a Bloom filter, but with substantially di�erent parameters. We will use two error terms ε and δ in
describing the Count Min Sketch, as well as the length of the stream N . We assume every hash hi
outputs a number in {0, . . . , de/εe − 1}.

Algorithm 1 Insert xi
for j = 0 to d1/δe − 1 do

T [j][hj(xi)] = T [j][hj(xi)] + 1
end for

Algorithm 2 Query q
min = 0
for j = 0 to d1/δe − 1 do

if min< T [j][hj(q)] then
min← T [j][hj(q)]

end if
end for
returnmin

Structure. The Count Min Sketch (CMS) consists of a
two-dimensional table T with dln 1/δe rows. Each row
consists of de/εe entries. Each entry must be of size at least
logN bits.4

A Count Min Sketch has dln 1/δe hash functions, one for
each row of the table. In this way, the CMS essentially con-
sists of dln 1/δe independent hash tables stored in one lo-
cation.

To initialize the structure, we set all entries in T to 0.

Insert. To insert an item xi, we iterate through each row
of the CMS. For each row, we hash xi, and increment the

counter stored at that hash location.

Query. To query q, we iterate through each row of the CMS. For each row, we hash q, and keep track
of the value stored at that location. We return the minimum such value found. This value is an estimate
of how many times q occurred during the stream: that is to say, it estimates |{i | xi = q}|.

Bounds

A Count Min Sketch gives the following guarantee. Let q ∈ U be any query, let oq be the value given
by the query algorithm on q, and let ôq be the true number of occurences of q in the stream (i.e. ôq =
|{i | xi = q}|). Then we have the following two guarantees:

1. ôq ≤ oq, and

2. with probability at least 1− δ, oq ≤ ôq + εN .

Multiplying the number of rows, number of columns, and size of each entry, we can see that the Count
Min Sketch requires de/εe dln 1/δe dlogNe bits.

4In practice, one would likely just choose 16, 32, or 64 bit entries depending on the size of the stream.

Page 3

Streaming: Count Min Sketch and HyperLogLog Counting CS 358 Fall 2024

Analysis

The insertion and query algorithms of the count-min sketch immediately give us the lower bound
ôq ≤ oq. How can we upper bound oq?

You’ll prove the following useful lemma on your assignment.

Lemma 1. LetX be a positive random variable (i.e. a random variable where all possible values
are positive). Then

Pr [X ≥ e · E[X]] ≤ 1
e

To begin, let’s focus on a single row j of the table. Using linearity of expectation we can calculate the
expected size of the entry of j hashed to by a given query q.

Lemma 2. For any query q, for any row j of the hash table,

Pr [T [j][hj(q)] ≥ ôq + εN] ≤ 1/e

Proof. Let’s split all elementsxi withhj(xi) = hj(q) into two categories: elements wherexi = q;
and elements where xi 6= q. From the insertion algorithm above, we have

T [j][hj(q)] = ôq + (# i such that xi 6= q but hj(xi) 6= hj(q)).

Let’s examine the last term in the above. For all j ∈ {0, . . . d1/δe−1}and all i ∈ {1, . . . N}, define
a random variable Xj,i,q = 1 if xi 6= q and hj(q) = hj(xi); Xj,i,q = 0 otherwise. Therefore, we
can rewrite

T [j][hj(q)] = ôq +
N∑
i=1

Xj,i,q (1)

Let’s look at the last term. By linearity of expectation,

E
[
N∑
i=1

Xj,i,q

]
≤

N∑
i=1

E [Xj,i,q]

To calculate E [Xj,i,q), we split into two cases. If q = xi, thenXj,i,q = 0; therefore, E[Xj,i,q] = 0.
If q 6= xi, then Pr (hj(q) = hj(xi)) = 1

de/εe ≤ ε/e; therefore, E[Xj,i,q] ≤ ε/e. Combining these
two cases, we can conclude that E[Xj,i,q] ≤ ε/e.

Page 4

Streaming: Count Min Sketch and HyperLogLog Counting CS 358 Fall 2024

Therefore,

E
[
N∑
i=1

Xj,i,q

]
=

N∑
i=1

E[Xj,i,q] ≤
Nε

e
.

Applying Lemma 1,

Pr
[
N∑
i=1

Xj,i,q ≥ Nε
]
≤ 1/e

Combining with Equation 1,

Pr [T [j][hj(q)] ≥ ôq +Nε] ≤ 1/e

With Lemma 2 we’re almost done. Since each row T is generated by a di�erent hash function, the
rows are independent. Therefore, we can multiply them to get the final answer.

Lemma 3. For any query q,

Pr
[
min
j
T [j][hj(q)] ≥ ôq + εN

]
≤ δ

Proof. If
min
j
T [j][hj(q)] ≥ ôq + εN,

then for all j, T [j][hj(q)] ≥ ôq + εN . By Lemma 2 this occurs for a given j with probability 1/e.
Since the value in each row is independent, the probability that this occurs for all dln 1/δe rows
is (1

e

)dln 1/δe
≤
(1
e

)ln 1/δ
= δ.

HyperLogLog

The HyperLogLog data structure is much smaller than Count Min Sketch. It does not attempt to retain
the number of occurrences for each individual count. Rather, it attempts to estimate the number of
distinct items in the stream. That is to say, it estimates |{xi | i ∈ {1, . . . N}}|.

Structure. The HyperLogLog data structure consists of an arrayM of counters, whereM is of length
m (we assume m is a power of 2). Each counter should have at least log logn bits; in practice 8-bit

Page 5

Streaming: Count Min Sketch and HyperLogLog Counting CS 358 Fall 2024

counters are su�icient for any application.5 The HyperLogLog data structure also requires a (single)
hash function, which we will call h.

Algorithm 3 Insert xi
j ← h(xi) %m
r ← h(xi) >> log2m
z ← # trailing 0s of r
ifM [j] < z + 1 then

M [j]← z + 1
end if

Insert. Insertingxi begins by hashingxi. Processing this hash
proceeds in two steps. First, we obtain an index into the table.
Then, we perform a calculation on the hash.

The first step is to obtain an index j using the rightmost log2m

bits of h(xi).6 These bits are then shi�ed o� to obtain a remain-
der r = h(xi) >> log2m.

Then, we count the number of trailing zeroes in the binary rep-
resentation of r and store that number in an integer z. (Mathe-
matically, we find the largest z such that r/2z is an integer.)

We look up M [j]. If M [j] < z + 1, we set M [j] = z + 1. In other words, at every point in time M [j]
stores the largest number of zeroes (plus one!) of the remainder of any item that hashes to j.

Query. The query attempts to estimate how many distinct items were seen in the stream based on
M . At a high level, the following process constitutes taking a biased harmonic mean7 of the entries of
M .

To begin, we set a double Z = 0. Then for each j from 0 to m − 1, we add (1/2)M [j] to Z.

Algorithm 4 Query
Z = 0
for j = 0 tom− 1 do

Z ← Z + (1/2)M [j]

end for
return bm2/Z

We calculate a bias constant b, which depends onm. Good val-
ues of b can be found in Table 1.

Finally, we return bm2/Z.

Parameters and caveats. Using 8 hash bits per element is
su�icient for a stream of any earthly size. In fact, as streams get
large, the main parameter that needs to change is the size of the
hash function output. The hash function output should be large

enough that any two elements are unlikely to collide (a�er all, if x and y haveh(x) = h(y), the Hyper-
LogLog will treat them the same and will not count them as distinct elements). 32 bits was suggested
in the original paper, and is fine for moderate-sized streams (in fact, for the assignment, I’d suggest

5In particular, 8-bit counters are su�icient even if your stream consists of all particles in the observable universe—much
larger than any stream you would see on Earth.

6Because m is a power of 2, log2 m is always an integer.
7That is to say, a special kind of average that happens to work particularly well in this setting.

Page 6

Streaming: Count Min Sketch and HyperLogLog Counting CS 358 Fall 2024

you just use one 32-bit output from Murmurhash). However, streams with billions (or even hundreds
of millions) of distinct elements—specifically, streams with close to 232 elements or more—will incur
a decrease in quality with 32 bit hashes, and a 64 bit hash should be used instead.

m b

16 .673
32 .697
64 .709
≥ 128 .7213/(1 + 1.079/m)

Table 1

The value ofm is relatively small in the assignment, but is o�en
moderately large in practice. Counters are cheap, so one o�en
seesm = 1024 orm = 2048 to give improved estimates.

For streams where the number of distinct elements is very small
(less than 5m/2) or very large (close to 232 with 32-bit hashes),
one can still use the same data structure, but should calculate
the approximate set size using an alternate method. We won’t
be dealing with these methods in class, but they are important
for implementing this structure in practice.

Guarantees? You are not expected to know the guarantees of this algorithm in this class, but I in-
clude them here for completeness. Let D be the number of distinct elements in the stream. The ex-
pected output of HyperLogLog isD itself. For concentration bounds, it’s a little tricker. To get an idea
of how close we usually are to D, the standard error8 of D is 1.04/

√
m. It appears that the outputs

given by HyperLogLog are close to a Gaussian distribution. Therefore, the estimate should be within
a 1.04/

√
m factor ofD 65% of the time, and should be within a 2.08/

√
m factor ofD 95% of the time.

8This is essentially the standard deviation multiplied by the correct estimate D.

Page 7

	Goal for Today
	What is a Stream?
	Count Min Sketch
	Bounds
	Analysis

	HyperLogLog

