
CS358: Applied Algorithms

Homework 4: Streaming (due 10/19/2024 10PM)

Instructor: Sam McCauley

Instructions

All submissions are to be done through github. This process is detailed in the handout
“Handing In Assignments” on the course website. Answers to the questions below should
be submitted by editing this document. All places where you are expected to fill in solution
are marked in comments with “FILL IN.”

Please contact me at srm2@cs.williams.edu if you have any questions or find any problems
with the assignment materials.

Problem Description

In this problem, we will be analyzing a very long novel: “In Search of Lost Time,” by Marcel
Proust.1 This novel contains about a million words (including duplicates), and the text file
given for this assignment is about 7MB. Nonetheless, we will be using very small streaming
data structures to analyze this file with just a single pass over the data—the first using a
handful of kilobytes of space, the second using just 32 bytes.

In this assignment, you will be building two data structures.
First, you will build a Count-Min Sketch data structure. All words in “In Search of Lost

Time” will be inserted into the Count-Min Sketch. At the end, your data structure will
be queried with some of the most common words in the novel: how many times does this
word appear? The testing program will compare your output to the actual count of each
word; your data structure should always overestimate the count, but give reasonably similar
values.

Second, you will build a HyperLogLog data structure. Again, all words in “In Search
of Lost Time” will be inserted into it. At the end, your data structure will be queried to
find out approximately how many unique words occurred in the novel. HyperLogLog uses
an incredibly small amount of space, so it is likely that your data structure will have some
error. However, it should usually be reasonably close to the correct value.

Input: test.out is given three arguments. The first is a text document in ASCII
format.2 The second is a text document, where each line contains a word from the first text
document, followed by a space, followed by the number of times that word appears in the

1This novel is, I understand, very popular and well-regarded. However, it was chosen for this class mostly
because its copyright has expired.

2As with last time, this means there are no accented characters.

1

srm2@cs.williams.edu


Homework 4: Streaming 2

first document. The final argument is an integer denoting the number of unique words in
the original text document.

To run your program on “In Search of Lost Time,” you would use the following input:

./test.out proust.txt words.txt 36372

The following input may be useful for testing:

./test.out proustShort.txt wordsShort.txt 125

Output: This assignment is unique in this course in that a single answer is not usually
marked as correct or incorrect.3 Instead, the testing program will output, for each word in
the second text file, the actual number of occurrences of the word in the text compared to the
number output by your Count-Min Sketch. Furthermore, the testing program will output
the number of unique words predicted by your HyperLogLog data structure, compared to
the actual number of unique words.

Interpreting the output: For the large output, the CMS should generally answer most
word queries within 1000 of the correct value. Almost all CMS answers should be within
1500 of the correct value. The HLL overall estimation of the number of words should almost
always be between 25000 and 50000.

You should use several different seeds to check that your answers satisfy these bounds.

Functions: This assignment is, broadly, structured much like the last assignment. The
functions for both data structures already exist, and you must fill them in. The code in
test.c will perform the above tests using the functions you provide.

cms.c and cms.h contain the code for the Count-Min Sketch data structure. hll.c and
hll.h contain the code for the HyperLogLog data structure.
Here is a list of the functions and how they are used:

• void cms_instantiate(Cms* cms)

This function is called before any other calls to the cms functions. You can think of it
like a constructor. It should set constants and allocate memory. cms is a pointer to a
struct that I found useful (you can change this to not use a struct if you wish). You
do not need to edit this function if you don’t want to; the version in the assignment is
the version I used.

• void cms_insert(char* word, int length, Cms* cms)

This function inserts a new word (given by word) into the filter. length is the length
of the word, and cms is a pointer to the Count-Min Sketch we want to insert to.

test.c will insert each word in the first document into the Count-Min Sketch by calling
this function. These inserts will all occur before any call to filter lookup.

3This choice is due to two concerns. First, we’re using randomness, so some error is to be expected.
Second, these structures are fairly inconsistent: for example, a cuckoo filter will almost always have approx-
imately the same false positive rate on a large dataset; a CMS or HLL may not.



Homework 4: Streaming 3

• int cms_lookup(char* word, int length, Cms* cms)

This function looks up a word (given by word) in the sketch pointed to by cms. It
returns an estimate of how often word (which has length length) occurs in the first
document.

• void hll_instantiate(Hll* hll)

This function is called before any other calls to the hll functions. You can think of it
like a constructor. It should set constants and allocate memory. hll is a pointer to a
struct that I found useful4 (you can change this to not use a struct if you wish). You
do not need to edit this function if you don’t want to; the version in the assignment is
the version I used.

• void hll_insert(char* word, int length, Hll* hll)

This function inserts a new word (given by word) into the HyperLogLog data structure
hll. length is the length of the word, and hll is a pointer to the structure we want
to insert to.

test.c will insert each word in the first document into the HyperLogLog data structure
by calling this function.

• int hll_estimate(Hll* hll)

This function asks for an estimate of how many unique words have been inserted into
hll.

Count-Min Sketch Parameters: Your CMS should have 4 rows, each of 300 entries.
Each entry should be of 32 bits.5

HyperLogLog Parameters: Your HyperLogLog data structure should keep track of 32
counters, each of length 8 bits. For 32 counters, the bias constant is .697. (The bias constants
are included in hll.h.)

Questions

Code (50 points). Implement a Count-Min Sketch and a HyperLogLog counter, each as
described above. You do not need to describe your implementation.

Problem 1 (20 points). Let X be a positive random variable (i.e. X only takes on values
that are ≥ 0). For simplicity, assume that X only takes on integer values (i.e. the probability
that X is not an integer is 0). Show that

Pr [X ≥ e · E[X]] ≤ 1/e.

4This is unnecessary here, unlike in the CMS and cuckoo filter. You could easily have the seed as a global
constant and just pass around the table of counters rather than storing this struct.

5This is wasteful! Unfortunately, 16 bit integers are JUST small enough to barely overflow on this data.
Using 18 or 19 bit entries would almost certainly be ideal, but are much more difficult to work with.



Homework 4: Streaming 4

Hint: Use the definition of expectation (and the assumption that X is always positive).
It may also be useful to write Pr[X ≥ e · E[X]] =

∑∞
i=e·E[X] Pr[X = i].

Solution.

Problem 2 (10 points). Let’s say I create a HyperLogLog structure H1 for a stream a1, . . . an
and a second HyperLogLog structure H2 for a stream b1, . . . bn. Assume that all ai and bi
are in the same universe U , and assume that identical parameters and hash functions are
used to create H1 and H2.

Describe how to use H1 and H2 to create a new HyperLogLog structure H3 that can esti-
mate the number of unique items in the concatenation of the two streams: a1, . . . an, b1, . . . , bn.
(You should build H3 using only H1 and H2, without seeing the stream again.)

Solution.

Problem 3 (20 points). The following short questions ask about different situations in which
you can use a Count-Min Sketch. For each, say how many entries you would need in each
row (in other words, what value of ε you would need asymptotically) to obtain the correct
answer in a single row with constant probability. In each case, assume that there are N total
insertions into the CMS.

For each explanation, please give a brief explanation (≈ one sentence) as to
why—and bear in mind that I am only expecting an asymptotic answer.

(a) A stream consists of two kinds of items: items of the first kind appear once each,
and items of the second kind appear twice each. Let’s consider a Count-Min Sketch data
structure to determine if a given item appeared once or twice. How many entries would you
need in each row of the CMS in order for it to provide the correct answer with constant
probability?

Solution.

(b) In a stream of items, one appears the majority of the time (more than half the items
are the same). Let’s consider a Count-Min Sketch data structure to determine the majority
item. How many entries would you need in each row of the CMS in order for it to provide
the correct answer with constant probability?

Solution.


