
CS358: Applied Algorithms

Homework 1: Two Towers Revisited (due 9/19/24)

Instructor: Sam McCauley

Instructions

All submissions are to be done through github. This process is detailed in the handout
“Handing In Assignments” on the course website. Answers to the questions below should
be submitted by editing this document. All places where you are expected to fill in solution
are marked in comments with “FILL IN.”

Please contact me at srm2@williams.edu if you have any questions or find any problems
with the homework/assignment materials.

Problem Description

Goal: The input represents a set of blocks; the ith integer in the input represents the “area”
of the ith block. The height of a block is the square root of its area.

The goal is to partition the blocks into two sets (which we call towers), such that the
height of the towers is as close as possible. The value returned should be the blocks that
make up the smaller of these two towers.

Input: The input to the problem will be an array of at most 64 signed 64-bit integers (this
array will be given as a pointer of type int64 t*), along with an integer representing how
many elements there are in the array.

Output: The output is a single signed 64-bit integer whose bits represent a subset of the
blocks in the array. For example, the subset consisting of only the first element in the array
would be represented by the integer 1; the subset consisting of the first, third, and fourth
elements of the array would be represented by 13.

Testing Parameters

The main() method of the testing program (in test.c) takes two arguments, each of which
is a file containing instances of the two towers problem. An instance of the problem is
represented by a sequence of integers (separated by spaces) on one line, and the intended
solution (represented as a decimal number) on the second line. You can test your program
by first running make, and then running ./test.out testData.txt timeData.txt.

1

srm2@williams.edu


Homework 1: Two Towers Revisited 2

• For all instances, the best solution is guaranteed to be at least .0001 larger than the
second-best solution (i.e. the smaller tower in the optimal solution is .0001 larger than
any other tower smaller than half the height). This guarantee is to help rule out issues
with floating point errors. This also means that the smaller tower is strictly smaller
than the larger tower—you do not need to worry about tiebreaking.

• These instances were tested using 64-bit doubles. Higher-precision numbers such as
long doubles are acceptable (and are available on the lab computers), but are not
necessary to obtain a correct solution. 32-bit floats may not be sufficient.

• All input block areas will be between 1 and 9223372036854775807 (this is the largest
number that fits in a signed 64 bit integer). For the timed testing case, these inputs
were (essentially) randomly generated. This means that you can assume that the
inputs are approximately randomly distributed. However, your algorithm should work
for any input.

• Two solutions with running times within .1 seconds of each other will be considered
tied for the purposes of this homework.

Questions

Code (50 points). Implement the meet in the middle algorithm for the two towers algorithm.
Please give a very brief (2-3 sentence) description of your approach below.

Solution.

Problem 1 (20 points). What proportion of your algorithm’s running time is spent on
sorting?1

Describe specifically how you performed your experiment. How did you measure the time
it took? What input did you use? Did the experiment entail any changes to the running of
your implementation that might change its performance?

Solution.

Problem 2 (30 points). Consider a similar problem: again we are given a list of n blocks
(let’s call it S), but now we want to partition them into three towers such that the heights
are as close as possible. In particular, the goal is to minimize

the height of the tallest tower− the height of the smallest tower.

1It’s OK if the version of your implementation that you use for this experiment does not exactly match the
version you hand in. If your implementation does not use sorting at all, design and perform an experiment
to estimate the time a sort would take compared to your implementation’s total running time.



Homework 1: Two Towers Revisited 3

In this problem you will design a meet in the middle approach to solve this problem. I have
broken the question into several parts below to help you find a solution.

(a) First, give a simple algorithm to solve this problem in O(n3n) time. How much space
does it require?

Solution.

(b) Now, let us consider two sets S1 and S2 that partition S (i.e. they satisfy S1∩S2 = ∅
and S1 ∪ S2 = S). Consider an assignment of each element of S1 to the small, medium,
and large tower; let’s call this assignment A1. Given assignment A1, what constraints are
there on an assignment A2 that assigns each element of S2 to the small, medium, and large
tower?2 Of assignments that meet this constraint, which gives us the best overall solution?

In particular, let’s say s1, m1, and `1 are the total heights of blocks that A1 assigns
to the small, medium, and large tower respectively; similarly, let’s say s2, m2, and `2 are
the assignments to the small, medium, and large tower for A2. This question is asking for
constraints on s2, m2, and `2 in terms of s1, m1, and `1—they’ll help us in part (c).

Solution.

(c) Using your ideas from part (b), give an O(n3n/2) space, O(n2n/2) time method that
can, for any single assignment of elements of S1 to the three towers, find an optimal assign-
ment of elements from S2 to the three towers.

Hint: Let’s say a set of elements S ′ ⊆ S2 is assigned to the smallest tower. How quickly
can you find the best way to assign the remainder of S2 to the middle and tallest tower? This
is where you should be precomputing a lookup table.

Solution.

(d) Using part (c), give an O(3n/2 · n2n/2)-time,3 O(n3n/2)-space algorithm to find the
optimal solution to a three towers instance.

Solution.

(e) Extra credit (5 points): Improve upon your result from part (d)—give an asymp-
totically faster algorithm. (The improvement needs to be exponential; improving by a O(n)
factor is not enough.)

Solution.

2In particular, given A1, we’d better ensure that any assignment A2 of elements of S2 results in the “small
tower” having the smallest total height, and the “large tower” having the largest total height. That’s all
that’s being asked for here. This is similar to how we, in the original two towers problem, assigned elements
to the smaller of the two towers and capped its height at half the sum of all elements in S.

3This is approximately O(n3.82n), quite a bit faster than O(n3n).



Homework 1: Two Towers Revisited 4

Tips and tricks

• Remember to create a correct program before worrying about creating a fast one!

• You need to iterate through all possible subsets. One way to do this is to store each
subset as an integer, and increment it to obtain a new subset. If you are unfamiliar
with this technique, it may be useful to read the version of this lab given in CSCI 136,
which can be found here for example: https://williams-cs.github.io/cs136-s21-www/
labs/two-towers.html (there’s also a video for that lab here: https://www.youtube.
com/watch?v=MFU0hGOWvuk).

• Since the problem asks for the items that make up the solution, your meet in the middle
approach will need to keep track of both the cost of a subset, and the items in the
subset. There are many ways to do this. One easy way may be to keep track of a subset
using a 64-bit integer, and to keep track of a partial solution using a struct containing
both the cost of the subset and the integer representing its items. Other solutions are
also possible, such as storing two arrays (one for costs and one for subsets), or storing
a hash table keeping track of which solution corresponds to which cost.

https://williams-cs.github.io/cs136-s21-www/labs/two-towers.html
https://williams-cs.github.io/cs136-s21-www/labs/two-towers.html
https://www.youtube.com/watch?v=MFU0hGOWvuk
https://www.youtube.com/watch?v=MFU0hGOWvuk

