
CS358: Applied Algorithms

Assignment 2: Locality-Sensitive Hashing (due 10/31/24 10PM EDT)

Instructor: Sam McCauley

Instructions

All submissions are to be done through github. This process is detailed in the handout
“Handing In Assignments” on the course website. Answers to the questions below should
be submitted by editing this document. All places where you are expected to fill in solution
are marked in comments with “FILL IN.”

Please contact me at srm2@cs.williams.edu if you have any questions or find any problems
with the assignment materials.

We will have a leaderboard for this assignment. This will allow some automatic testing
and feedback of your code, as well as giving some opportunity for friendly competition and
extra credit. The extra credit points will be applied to Homework 4 (so the extra credit will
be worth roughly the same as past extra credit).

Problem Description

In this problem, we will be trying to find the closest pair of items in a large, high-dimensional
dataset.

In particular, you will receive as input a large number of random 128 bit numbers (each
broken up into four 32-bit chunks). There will also be a single planted pair of numbers,
which are close in terms of Jaccard similarity. The goal of your program is to return the
index of these items.

The Jaccard similarity is a set similarity measure. In the context of bit strings a and b,
the Jaccard similarity can be defined (using C notation for bitwise operations & and |) as

number of bits in a & b

number of bits in a | b
.

In this assignment, you will use locality-sensitive hashing to efficiently find the pair of
items in the list with similarity .8 or greater.

Your code is required to use randomness. That is to say, each run of the algorithm
should use a different permutation for the MinHashes (you may not just hard code manually-
selected arrays as was done for h in Homework 3). In your starter code you are given an
array-shuffling function shuffle array() that satisfies this requirement (so long as your
submitted version uses srand(time(NULL)) and not srand(HASH SEED)).

Input: test.out is given two arguments; each is a text file containing any number
of problem instances. A problem instance begins with three numbers on a line. The first

1

srm2@cs.williams.edu


Assignment 2: Locality-Sensitive Hashing 2

number represents the size of the instance; this is equal to the number of subsequent lines
in the file that are a part of this instance. The next two numbers indicate the two indices of
the close pair (these indices assume the array is 0-indexed).

Each of the following lines represents a 128 bit number. Each line consists of four signed
32-bit integers, separated by a space. Concatenating the bits representing these integers
results in a single signed 128 bit number. It may be useful to represent each number as an
array of four 32 bit integers, or as two 64 bit integers in a struct (this is what I used, and
this is how the data will be passed to your function). It may be possible to store the number
in a single 128 bit data type (performing SIMD operations on them directly), but I have not
experimented with this.

In each problem instance, exactly one pair of numbers has similarity .8 or greater.
After all inputs are completed, the file may end, or another problem instance may be

immediately concatenated onto the end. For example, largeInput.txt contains 8 problem
instances.

The functionality in test.c will read the file, and store each number in an array (in order)
of objects of type Item. A Item is a struct containing two unsigned 64-bit integers. test.c
will, for each problem instance, call the function find_close(Item* input, int length)—
the arguments to this function are the array of Items, and the length of the array.

I have included two files for testing: simpleInput.txt and largeInput.txt. Unfor-
tunately, we have reached the lab where “big data” is beginning to get a bit annoying:
largeInput.txt is nearly 300MB, and cannot be stored in a github repo. Therefore, this
input is available in two places: on the website, and in my scratch drive where you can access
it from the lab computers (the location of the file is given in the example below).

Be sure to not add largeInput.txt to your git repo! Git does not handle large
files well and it is a pain to remove. Your .gitignore file contains largeInput.txt, which
should mean that it should not be added unless you override the ignore file.

You may also generate your own input; largeInput.txt was generated using 14 instances
of size 500,000, so doing the same should result in an almost-identical test file without any
downloads required. (Make sure you don’t commit those either.)

A simple run of the program can proceed as follows, accessing the version of largeInput.txt
on my scratch drive (this should work as-is if you run it on a lab computer, from your ac-
count):

./test.out simpleInput.txt /home/scratch/srm2/Assignment2/largeInput.txt

or, if you have largeInput.txt stored locally:

./test.out simpleInput.txt largeInput.txt

Output: The function should output the indices of the close pair of elements, i.e. the pair
with similarity .8 or greater. To make these easier to pass around, we assume that these
indices are 32-bit numbers, and concatenate them together to create one 64-bit number to
pass back to the calling function. That is to say: the return value of function find_close

is an unsigned 64-bit number where the first 32 bits represent one index of the close pair,
and the last 32 bits represent the other index of the close pair. The order of the solution
pair does not matter!



Assignment 2: Locality-Sensitive Hashing 3

Generating new inputs: I have included a file generateNew.c that can be compiled and
run to generate a new, random instance of the problem meeting the above requirements. It
takes a simple command-line argument, which is the length of the new instance. Feel free to
use this to generate tests for your code. It outputs the instance to the standard output, so
you should redirect the output to a text file in order to be able to use it.

Note that because of the way this works, this program will, sometimes, fail to generate
an instance.1 It will output a warning to stderr—which mean that you’ll still see it if you
redirect output to a file. It won’t output anything else (and won’t write anything to the file)
in this case. In general, this program was hacked together and should probably not be taken
as an example of quality code.

Here is one example of how to compile the code, then run it twice to generate two new
instances, each of size 10:

gcc -o generateNew.out generateNew.c

./generateNew.out 10 > newInstance.txt

./generateNew.out 10 >> newInstance.txt

Note the >> in the second run; this means that the output should be appended to newInstance.txt
rather than overwriting it.

Output Times: The inherent randomness in this assignment means that execution times
are likely to be very inconsistent. This has a few effects.

First, this assignment is likely to take a bit longer to run than previous assignments—a
relatively simple implementation seems to take 20–120 seconds to solve largeInput.txt.

Second, “ties” will be considered more generously for this assignment. Two submissions
will be considered “tied” if they their final running times are within .4 seconds
of each other.

Third, each testing day, your score for the leaderboard will be calculated as the median
of three runs.

Finally, please bear in mind that your best running time given by the testing scripts is
likely to decrease somewhat significantly, as (even with the above) repeated runs mean you
get more lucky instances. As before, this is an incentive to submit fairly early if you are
interested in getting the extra credit points.

Questions

Code (50 points). Implement MinHash to find the most similar pair of items, as described
above. You do not need to describe your implementation.

Problem 1 (20 points). If you optimize the number of concatenated hashes, it is likely that
much of the time in your implementation is spent on finding the similarity between all pairs

1This has to do with how it generates the “close” pair of items, while ensuring that each item still looks
random and does not have any other unusual qualities (for example, the number of 1s in each close-pair item
should be similar to the number of 1s in any other item).



Assignment 2: Locality-Sensitive Hashing 4

of items in a bucket. Implement a way to find these similarities using SIMD instructions for
buckets of size > 2. (For buckets of size 2 you can use the normal method.)

Your code should work both with and without SIMD instructions. Near the beginning
of minHash.c there is a constant USE SIMD; your implementation should not use SIMD
instructions if this is 0, and should use them if it is 1.

Specifically, your method will need to use the following intrinsics to calculate the Jaccard
similarity between elements:

c = _mm512_and_si512(a, b);

d = _mm512_or_si512(a, b);

Where the above function calls take the AND (respectively OR) of two m512i variables a

and b and store the result in an mm512i variable c (respectively d).
You also need to calculate the number of 1s in the result (after you take the AND and

OR between the elements). You should do that using SIMD instructions as well, as we saw
in class.

Note on running time: As mentioned in class, gcc may use some SIMD operations
automatically even when USE SIMD is 0, in which case this may not give you much speedup.
Nonetheless, it is still good practice for using SIMD operations.

Solution.

Problem 2 (10 points). In class, we calculated R, the number of expected repetitions to
find the close pair.

Let’s say you have a dataset of n sets that may or may not have a close pair in it. You
want to make sure that you don’t loop infinitely, so you place a bound on the number of
repetitions. Let’s call it RMAX .

Let j1 be the similarity of the close pair, and j2 be the similarity of all other pairs. In class,
we saw that since k = log1/j2 n, the expected number of repetitions is R = O(nlog1/j2 (1/j1)).
What should we set RMAX to be so that we find a close pair (if it exists) with high probability?
I am looking for an asymptotic answer, i.e. big-O notation.

Hint: You want to use basic probability calculations here (not union bound, nor the
bound from Homework 4 Problem 1).

Solution.

Problem 3 (20 points). Assume we have an instance of n items. The Jaccard similarity
between any two of these items is exactly .25, except for one pair which has similarity exactly
.5.

Let’s say you have a working implementation; this question asks how perturbations in
your implementation are likely to change its behavior. Let k be the number of hash functions
you concatenate in your implementation to obtain the final hash of your element (note that
this variable just stores the number of concatenated hashes in an implementation: it may
not be log4 n, or any other particular function of n and the similarities).



Assignment 2: Locality-Sensitive Hashing 5

Assume that with k concatenated hashes, the expected size of each hash bucket is B.
Furthermore, let R′ be a fixed number of repetitions, where exactly 1/2 of the time, your
implementation finds the close pair in R′ or fewer repetitions.

(a) Let’s say we increase the number of concatenations in your hash function: you
concatenate k′ = k + 1 hash functions instead of k. How does this affect the expected size
of each bucket (i.e. if B′ is the expected size of each bucket when concatenating k′ hashes,
what is the relationship between B′ and B)? Please briefly justify your answer.

Solution.

(b) Let’s say we increase the number of concatenations in your hash function: you
concatenate k′ = k + 1 hash functions instead of k. What fraction of the time will your
implementation now find the closest pair after R′ repetitions? Please briefly justify your
answer.

Hint for (b): First, write out what we’re looking for as a function of R′ and k as in part
(a). This will be worth substantial partial credit. For full credit, use (1 − 1/x)x = 1/e (you
can assume they are exactly equal) to obtain a number—i.e. a single constant rather than
an equation—for the answer.

Solution.


