
Lecture 9: Bloom Filters and Cuckoo Filters

Sam McCauley

October 7, 2021

1 Goals for Today

The first section of this course was about time and space. We learned about how saving space can help with
running time. In particular, smaller space often means better cache efficiency.

Today, we are using randomization to take this idea one step further, and talk about two methods to
compress data.

You may have learned in the past (for example, in CS 361) that data cannot be losslessly compressed in
the worst case. But as with all of the algorithms we learn in this class, we do want good worst-case1 bounds.
So if the goal is to obtain worst-case compression bounds, our compression can’t be lossless: we must lose
something along the way.

A Bloom filter answers membership queries: it stores a set S, and for a query q, it answers q ∈ S (q is in
the set), or q /∈ S (q is not in the set).

Bloom filters are incredibly useful because they compress data while giving guarantees on exactly what
is lost—and what isn’t.

First guarantee: No false negatives A Bloom filter guarantees that the answer q /∈ S is always correct:
we can be completely sure that q is not in the set S.

Equivalently, we can frame this guarantee in terms of queries to members of S. If we query some q ∈ S,
then we are guaranteed that the Bloom filter will answer q ∈ S.

Second guarantee: Bounded false positive rate Consider a query q /∈ S. The Bloom filter is guar-
anteed to only (incorrectly) return q ∈ S with probability at most ε. This ε is called the false positive
rate.

Bloom filters allow us to choose any ε we want. The smaller the value of ε is, the fewer mistakes our
filter makes. But, in exchange, the compression will be less effective for small ε; that is to say, our filter will
take up more space.

2 Formal Definitions

In Section 1 we talked about the guarantees given by a Bloom filter. From now on, we call any any data
structure that meets these guarantees a “filter.” We reserve the term “Bloom Filter” for a data structure
with the exact setup described in Section 4.2

Let’s begin by formally defining what we mean by “filter.” A filter is a data structure that stores a set S
of size n. Each element of S must be from a universe U .3 The filter answers membership queries: for some
element q ∈ U , a query asks “is q ∈ S?” The filter either answers “yes, q ∈ S” or “no, q /∈ S.”

1The bounds may be “expected” performance, but we want to work well on worst-case data.
2So for example, a cuckoo filter is a “filter” because it satisfies these guarantees, but it is not a “Bloom filter.”
3For example, U may be “all possible strings,” or it could be “all 64-bit integers.” The only reason we need U is that we

need to be able to hash elements—whatever hash we choose must be able to hash all elements from U .

1



A filter has two guarantees. First, no false negatives: if the query q ∈ S, then the filter must answer
“yes, q ∈ S” with probability 1. Second, a false positive guarantee: if q /∈ S, the filter must answer q ∈ S
with probability at most ε.

A filter must be space-efficient. The Bloom filter uses 1.44n log2(1/ε) bits of space. The cuckoo filter
uses 2n log2(1/ε+ 1) bits of space; we will show how to reduce this to 1.05n log2(1/ε+ 1) + 3.15n bits. Both
are very space-efficient, but the cuckoo filter is up to 27% smaller for sufficiently small ε.

3 History and Discussion

The Bloom filter was invented by Burton H. Bloom while he was a graduate student at MIT in 1970. His
original publication [1] focused on practical performance, and he did not attempt a theoretical analysis of
the data structure.

Today we will also discuss the cuckoo filter [3], a more recent filter that gives the same guarantees as
a Bloom filter, but provides better space usage as well as better cache performance. This effect is most
dramatic when ε is small (that is to say, when the data is not too compressed—the filter still takes up a
relatively large amount of space).

The Bloom filter is used in an incredibly large number of contexts. It is fairly likely that a recent operation
you performed on your computer was sped up using a Bloom filter. The ideas that make up the Bloom filter
have been the foundation for further work on compressed data structures. For example, next lecture we
will be learning about the Count-Min Sketch, which uses many of the same ideas to compress much more
aggressively.

3.1 Uses

Cache-efficiency First, let us discuss using the Bloom filter as a way to improve cache-efficiency. Let’s
say that we are storing a large amount of data—in fact such a large amount that it needs to be stored in
relatively slow memory (like RAM).4 Furthermore, assume that we frequently make queries to items not
actually stored. For example, it may be that we are inserting elements into a database. Each inserted key
x is preceded by a query “is x ∈ S” to ensure that there are no two items with the same key.

These queries are very expensive because of the size of the database. Using the vocabulary we learned
in the first part of the class, they require at least one cache miss.5

The idea is to, instead, store a filter keeping track of the data. The filter is very small; in fact so small
that it fits in cache. This means that it can be accessed without any cache misses.

Why can we do this? The heart of this approach is the first filter guarantee. If we are looking for data
that is stored, we definitely want to take the cost to access the data. The filter does this: if we query a
q ∈ S, the filter is guaranteed to always give the correct answer. So to queries in the set, we access the data
just like we would have without a filter.

How much does it save us? The second filter guarantee gives us the performance. Let’s say we have a
query q /∈ S. Then with probability 1 − ε, we do not need to access the data at all, saving us cache misses
(as well as some computation). To put a finer point on it: let’s say I make X queries to the data, all for
things that are not actually stored. Without a filter, this takes X accesses to the full dataset, taking at least
X cache misses (and possibly many more). With a filter, this only takes εX accesses to the dataset. For
example, if we use a cuckoo filter with ε = 1/64, we can store the dictionary with only 1 byte of space per
word (likely to fit in cache), and the number of expensive accesses decreases by 1− 1/64 ≈ 98.4%.

Approximate Sets In the above examples, we wanted to simply improve query performance. The set
S—and in fact, an entire database—was stored as a backup.

4Remember, as we talked about earlier, that memory lower in the cache hierarchy is larger, but is much slower.
5In fact, frequently these items will be stored using a B-tree (we haven’t discussed in detail, but in short a B tree is a

binary-search-tree-like data structure for efficient external-memory searching), in which case each query requires logB n cache
misses—very expensive indeed!

2



But for some applications, we don’t want to store all of S; storing the Bloom filter alone is enough. In
these applications it’s not a big deal if an answer is incorrect, i.e. if the filter answers q ∈ S incorrectly.

The classic example of this use case is a spell checker. Let’s say we want to build a spell checker for a
text application, but we don’t have room to store an entire dictionary.6 Instead, we can store the dictionary
words in a filter. If we query a word that is spelled correctly, the filter is guaranteed to correctly recognize it
as spelled correctly. If we query an incorrectly-spelled word, the filter marks it as misspelled with probability
≥ 1− ε. For example, if we use a cuckoo filter with ε = 1/64, we can store the dictionary with only 1 byte
of space per word, and still have our spell checker identify misspelled words 98.4% of the time.

4 Bloom Filters

A Bloom filter consists of k = log2 1/ε hash functions, which I will denote using h1, h2, . . . , hk, and an array
A of m = (ln 2)nk ≈ 1.44nk bits. For each i = 1, . . . , k, hi : U → {0,m − 1} (that is to say, hi maps an
element from the universe of possible elements U to a slot in the hash table).

Notice that m and k, as defined above, may not be integers. For m we can just round up; this only means
that the data structure requires an extra bit of space. For k we have a more difficult problem: if we round
down we will not achieve the desired ε; if we round up we will take an extra bit of space for every stored
element. In that sense rounding up is the safer strategy.

Building a Bloom Filter We begin with A[i] = 0 for all i.
For each x ∈ S, we go through each hash hi = h1, h2, . . . , hk, and set A[i] = 1. Figure 1 shows an example

result of this process.

1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)
h2(y)

h3(y)

Figure 1: Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash functions,
and (rounding up) the array is of length m = 9 bits. Each hash value is shown by arrows; for example
h2(x) = 2. Note that h3(x) = 6 and h2(y) = 6, so when setting the bits for y, we already have A[h2(y)] = 1;
in this case setting A[6] = 1 does not change the data structure.

This ensures that the Bloom filter satisfies the following crucial invariant.

Invariant 1. A Bloom filter storing a set S using hashes h1, . . . hk satisfies A[hi(x)] = 1 for all x ∈ S and
all i ∈ {1, . . . , k}.

Querying a Bloom filter For a query q, we go through each hash hi = h1, h2, . . . hk. If A[hi(q)] = 0 for
any hi, the Bloom filter returns “q /∈ S.” Otherwise, we have A[hi(q)] = 1 for all hi, and the Bloom filter
returns “q ∈ S.” Two examples of this can be seen in Figures 2 and 3 below.

6This seems silly by modern standards, but in fact this was the one of the original use cases for a Bloom filter! In the 1970s,
storing a dictionary of all English words in ASCII was completely infeasible. For example, the 2019 Scrabble dictionary requires
3MB just to list all the words. Whereas the Macintosh II, which did not come out until 17 years after the Bloom filter was
invented, came with 1MB of RAM and a 40MB hard disk.

3



1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8

q

h1(q) h2(q)

Figure 2: An example query to an element not in the set. Since A[h2(q)] = 0, the Bloom filter returns
“q /∈ S.”

1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8

q

h1(q)
h2(q)h3(q)

Figure 3: An example false positive query. Since A[hi(q)] = 1 for all i, the Bloom filter returns “q ∈ S.”
Comparing to Figure 1, we see that q is not actually in S; q is a false positive.

Discussion Notice that since we build the Bloom filter by hashing items one by one, we can easily extend
this strategy to insert new elements into S (so long as no more than n items are stored in total).

However, we cannot delete items, as doing so could inadvertently cause false negatives (by violating
Invariant 1). For example, in Figure 1, if we were to delete y by setting A[hi(y)] = 0 for all i ∈ {1, 2, 3},
then we would have A[6] = 0. But that means that if we queried for x (which is still in S), the Bloom filter
would see that A[h3(x)] = 0, and incorrectly answer “x /∈ S”.

4.1 Analysis

For this analysis, we will assume that all hash functions hi are completely random: any x ∈ U is mapped to
any hash slot s ∈ {0, . . . ,m − 1} with probability 1/m. We will discuss in class that implementations like
Murmurhash or cryptographic hash functions (though not all hash implementations), generally behave like
this in practice.

First, let’s consider the first guarantee: that if q ∈ S, the Bloom filter returns “q ∈ S” correctly. By
Invariant 1, if q ∈ S, then A[hi(q)] = 1 for all i ∈ {1, . . . k}. This means that the query algorithm always
returns “q ∈ S.”

Now let’s consider the false positive rate. I am not going to give a formal proof in these notes; instead I
will give the high-level form of this argument. A full analysis of this data structure is surprisingly difficult
due to the fact that the bits are not quite independent: for example, if A[1] = 1, then the probability that
A[2] = 1 is slightly smaller. The recommended course textbook on probability contains the full analysis [4,
pages 109–111].

Whether or not a query q is positive is determined by which bits in A are set. So let’s begin by analyzing
that, for some i, A[i] = 1. A bit of A is 0 if no element hashes to it. An element hashes to a particular
bit with probability 1/m; so no element hashes to a given bit with probability (1 − 1/m)nk ≈ 1/enk/m =
1/e1/ ln 2 = 1/2. Therefore, A[i] = 1 with probability approximately 1/2.

As mentioned above, for any i, j, the event that A[i] = 1 and the event that A[j] = 1 are not quite
independent—but for simplicitly let’s assume that they are.7 Then, the probability that for all i ∈ {1, . . . , k},

7The textbook analysis does not make this assumption.

4



A[hi(q)] = 1 is 1/2k = 1/2log2 1/ε = 1/(1/ε) = ε. This gives us a false positive rate of at most ε.

5 Cuckoo Filter

The cuckoo filter is a more recent method of creating a filter, invented by Fan et al. in [3]. In this section
we start by describing and analyzing the cuckoo filter. We will discuss the advantages and disadvantages of
the cuckoo filter vs the Bloom filter in Section 6.

Rather than a bit array (as used in the Bloom filter), the cuckoo filter uses a hash table with properties
similar to cuckoo hashing.

A cuckoo filter consists of k hash functions8 denoted by h1, h2, . . . , hk, a fingerprint hash function f , and
a hash table T of m slots, where each slot has room for log2(1 + 1/ε) bits. For now, let’s have k = 2 hash
functions, and m = 2n slots. These parameters correspond to the cuckoo hash table we discussed in class.
As mentioned, with these parameters, inserting a new element in the table takes O(1) expected time, and
O(log n) time with probability at least 1− 1/n2, and a rebuild happens with probability at most 1/n2 [5].

The hash functions h1, . . . , hk take in an element from the universe U and output a number from 0 to
m− 1. The fingerprint hash takes in an element from U and outputs a number from 1 to 1/ε. Let’s assume
that 1/ε + 1 = 2f for some integer f ; then the fingerprint can be stored in f bits.

Inserting into a Cuckoo Filter To begin, we mark each slot of T as empty by storing a value of 0. To
insert an element x, we check to see if T [h1(x)] is empty, i.e. it stores the value 0. If it is, we store f(x) in
T [h1(x)]. Otherwise, we check T [h2(x)], and so on until we finally check T [hk(x)]. (Note that f(x) > 0, so
an empty slot always stores 0, and a nonempty slot always stores a number in {1, . . . 1/ε}.)

If T [hi(x)] is not empty for any i from 1 to k, then we cuckoo: choose some i ∈ {1, . . . , k}.9 Let’s say
that x1 is the element stored in T [hi(x)]. Then we store f(x) in T [hi(x)] and “cuckoo” x1 to another slot: if
there is an i1 ∈ {1, . . . k} with i1 6= i, then we store f(x1) in T [hi1(x1)]. Otherwise, T [hi1(x1)] is full for all
i1; again we pick an i2 ∈ {1, . . . k}, and we “cuckoo” the element stored in T [hi1(x1)] to another slot, leaving
room to store f(x1) in T [hi1(x1)].

If we cuckoo more than O(log n) elements during a single insertion, we rebuild the filter. The classic
cuckoo hashing analysis shows that, after n inserts, we only need to rebuild with probability O(1/n).10

Example inserts are given in Figures 4 and 5.

00 01 00 00 11 00 10 00

0 1 2 3 4 5 6 7

x

h1(x)h2(x)

Figure 4: A cuckoo filter with ε = 1/3 and k = 2. Each slot has room for log2(1 + 1/ε) = 2 bits. Since slot
h1(x) = 5 does not have a stored fingerprint, we can store f(x) in slot 5.

8Unlike in a Bloom filter, k will be a small constant that does not depend on ε. We’ll usually use k = 2. Furthermore, we
will usually be using partial-key cuckoo hashing, in which case we only need one of these hashes.

9It doesn’t matter how you choose this first i. You can always choose i = 1, or you can choose it at random.
10The detailed analysis of this is outside the scope of this class (though I recommend [6] for an excellent, though very short,

explanation using only information-theoretic arguments). But here is some intuition for the case with k = 2 and m = 2n. Since
k = 2, to “cuckoo” an element we move it to its opposite slot. Since half of the slots are full, this opposite slot is full with
probability 1/2. The probability that we see k elements without finding an empty slot is then 1/2k, and we have 1/2logn = 1/n.
Note that, as in the Bloom filter case, I am incorrectly treating these probabilities as independent—this argument is much more
a mnemonic for the correct bound than a proof.

5



00 01 00 00 11 10 10 00

0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2)

Figure 5: A cuckoo filter with ε = 1/3 and k = 2. Each slot has room for log2(1 + 1/ε) = 2 bits. In
this example both slots are full, so we “cuckoo” a fingerprint the fingerprint in slot h1(x2) = 4 to its other
slot. We use partial-key cuckoo hashing to calculate the new slot using an XOR: 4ˆh(11) = 7 (in this case,
h(11) = 3). After moving the fingerprint, 11 will be stored in slot 7, leaving room for f(x2) to be stored in
slot 4.

Invariant 2. For every x ∈ S, there exists an i ∈ {1, . . . , k} such that f(x) is stored in T [hi(x)].

Partial-key Cuckoo Hashing We cheated in the above insertion algorithm! When all of the slots for x
are full, I want to move x1 to another slot to make room for x. But this is a filter: I don’t know what x1 is;
all I know is that there are some fingerprint bits stored in T [hi(x)]. How can I find the other slot for x1?

If k = 2 and m is a power of 2, there is a nice trick that works well in practice, called “partial-key cuckoo
hashing.” Rather than two hashes h1(x) and h2(x), we use one hash h1(x), plus an additional hash h that
maps a fingerprint to a value in {1, . . .m − 1}. Then we set h2(x) = h1(x)^h(f(x)) (where ^ means XOR,
as in C).11 For this strategy to work, we need h(f(x)) to never be zero. (Otherwise, an element may have
both hashes map to the same slot, which creates issues.)

One benefit of this strategy is that XOR is its own inverse. That is to say, for any a and b, a^b^b = a.
This means that h1(x) = h2(x)^h(f(x)).

Thus, if we need to “cuckoo” an element stored in slot s, we take the log2(1 + 1/ε) bits stored in that
slot (let’s call these bits fs), and XOR them to obtain a new slot s′ = s^h(fs). If s′ is empty we store fs in
s′; otherwise we cuckoo s′ using the same method.

Querying a cuckoo filter To query an element q, we go through each hash hi = h1, h2, . . . hk. If
T [hi(q)] = f(q), the cuckoo filter returns “q ∈ S.” Otherwise, T [hi(q)] 6= f(q) for all hi, in which case the
filter returns “q /∈ S.”

Discussion As implied above, a cuckoo filter can handle inserting new elements (so long as no more than n
elements are stored in the filter simultaneously—if too many elements are stored, we are likely to be forced to
rebuild frequently). Unlike a Bloom filter, a cuckoo filter can also handle deletes under certain circumstances
(we won’t discuss these circumstances in this class).

5.1 Analysis

For this analysis, we will assume that all hash functions hi are completely random: any x ∈ U is mapped
to any hash slot s ∈ {0, . . . ,m − 1} with probability 1/m. Furthermore, we will assume the same of the
fingerprint hash f : any x ∈ U is mapped to a given fingerprint fx ∈ {1, . . . , 1/ε} with probability ε.
We will soon discuss in class how many practical (though not all!) implementations, like Murmurhash or
cryptographic hash functions, generally behave like this in practice.

11In [2], Eppstein shows that omitting h, and instead taking an XOR with the fingerprint itself, does not affect the theoretical
performance. But in my experience, this leads to serious issues with the parameters we will use in the assignment.

6



00 01 00 00 01 00 10 11

0 1 2 3 4 5 6 7

q

h1(q)
h2(q)

Figure 6: Querying a cuckoo filter with ε = 1/3 and k = 2. Let’s say that f(q) = 11. Neither slot hashed to
by q contains 11, so the filter returns “q /∈ S.” If q had hashed to slot 7 (say, if h1(q) = 7), then the filter
would have returned “q ∈ S”.

Aside: Union Bound The union bound is a very simple but very useful bound in analyzing randomized
algorithms. Like linearity of expectation, it has the benefit of always working: even for events that are not
independent.

Theorem 3. Let X and Y be random events. Then

Pr(X or Y ) ≤ Pr(X) + Pr(Y ).

More generally, if X1, X2, . . . , Xk are any random events, then

Pr(X1 or X2 or . . . or Xk) ≤
k∑

i=1

Xk.

The union bound gives a simple upper bound on the probability of an event. It can save us a huge amount
of work compared to a more exact analysis!

Here’s one example. Let’s say I have 10 students in a course, and I randomly assign each student an ID
between 1 and 100 (these IDs do not need to be unique). Can you upper bound the probability that some
student has ID 1?

First, let’s give an exact analysis. (The idea of this example is that this analysis is a little difficult, but
gives an exact answer—the union bound method will be much easier.) The probability that at least one
student has ID 1 is

1− Pr(no student has ID 1).

The probability that a single student has an ID other than 1 is 99/100. Thus, the probability that all 10
students have an ID other than 1 is (99/100)10. Thus, the probability that at least one student has ID 1 is
1− (99/100)10. Plugging this into a scientific calculator, we obtain a probability of 9.56%.

Now, let’s do the same analysis with the union bound. The probability that a given student has ID 1 is
1/100. Thus, the probability that any student has ID 1 is the sum, over all 10 students, of 1/100. This gives
us a value of 10/100 = 10%.

The union bound analysis was much simpler, but gave almost the same result! (Union bound will not
always give such a close approximation of the true result—it does best with events that occur with fairly
low probability.)

Meeting the Guarantees First, let’s consider the first guarantee: that if q ∈ S, the cuckoo filter returns
“q ∈ S” correctly. By Invariant 2, if q ∈ S, then there exists a hash hi such that T [hi(q)] = f(q). This
means that the query algorithm will always correctly answer “q ∈ S.”

Now, let’s consider the false positive rate. A query q /∈ S is a false positive if, for some hi, T [hi(q)] = f(q).
Let’s examine each hash h1 and h2 individually.

7



Let’s start with h1. Since we are storing n elements in 2n slots, the probability that T [h1(q)] contains a
fingerprint is 1/2. If T [h1(q)] contains the fingerprint of some element x, the probability that f(x) = f(q) is
ε. Therefore, the probability that T [h1(q)] contains a fingerprint f(x) = f(q) is ε/2.

Exactly the same analysis holds for h2: the probability that T [h2(q)] contains a fingerprint f(x) = f(q)
is ε/2.

A query q is a false positive if T [h2(q)] contains f(q), OR if T [h1(q)] contains f(q). Therefore, we can
use the union bound to say that q is a false positive with probability ε/2 + ε/2 ≤ ε.

Improving the Cuckoo Filter You may have noticed that the above analysis has total space usage
2n log2(1 + 1/ε). This is worse than the Bloom filter, which requires 1.44n log2(1/ε) bits of space!

Further theory and experiments (i.e. in [3]) have shown that if we set k = 4, we obtain good performance
even if the hash table T has only 1.05n slots, so long as we extend the fingerprints to have log2 4/ε bits.
This gives a total of 1.05n log2(4/ε) = 1.05n log2(1/ε) + 2n bits of space.

An alternate method, which we discussed in class, extends the hash table so that there is room for four
fingerprints in each hash slot (while still keeping k = 2). Insertion proceeds largely as before: we only
cuckoo if both hash slots contain two fingerprints. The invariant is that, for each x ∈ S, at least one of the
fingerprints in one of the hash slots must be f(x). In this case, we need to increase the length of the output
of f to be log2(8/ε) bits.12 Now, we can set m = 1.05n/4 for total space usage 1.05n/4 × (4 log2 8/ε) =
1.05n log2(1/ε) + 3.15n bits.

Note that while the above analysis seems to indicate that setting k = 4 instead of allowing slots to store
more elements seems like a bad idea (it’s more complicated and takes up more space), it’s actually fairly
popular in practice. Part of the reason for this is that hashing is expensive: it’s a big cost to hash each
item four times instead of just twice (plus the fingerprint on top). It’s also unclear how to make partial-key
cuckoo hashing work with k = 4, while with k = 2 it works immediately.

6 Comparison of the Two Filters

To begin, let us look at what happens each time we make a query. In a Bloom filter, we must hash the
query log2(1/ε) times, and see if the corresponding bit is set to 1. In a cuckoo filter, we must calculate the
fingerprint of the query and then hash the query twice, and see if the fingerprint stored at the corresponding
table entry is equal to the query’s fingerprint.

What does this mean in terms of cost? In both cases, testing the actual table entry is cheap (it’s just
an equality test). There are two costly aspects: hashing the query, and the cache misses incurred when
accessing the table. The Bloom filter performs log2(1/ε) hashes and (likely)13 will incur log2(1/ε) cache
misses; meanwhile the cuckoo filter performs 3 hashes and incurs 2 cache misses. This means that the
cuckoo filter is substantially more efficient for each query, particularly for small ε.

And yet, the Bloom filter is still almost certainly the more popular of the two filters we learned about
today, despite the extra cost mentioned above. The main reason why is simplicity. A Bloom filter only
requires a bit array along with some hash functions. Even on a limited system it can be implemented
easily. And, many implementations already exist. The cuckoo filter is simple enough to be efficient when
implemented, but requires a little more work: we need to allocate a hash table (rather than just a bit array),
and we need to write a method to efficiently “cuckoo” elements around the table.

Looking at the space bounds alone, we immediately get a further tradeoff: the Bloom filter requires
1.44n log2(1/ε) bits of space, whereas the cuckoo filter requires 1.05n log2(1/ε) + 3.15n bits of space. This
means that the Bloom filter is more space efficient if ε > 2.85%; otherwise the cuckoo filter is more space
efficient.

12In short: we can repeat the same analysis as in the two-hash version. But now, for a query q, f(q) is compared to 8 different
slots in the hash table. Taking the union bound over the 8 slots, the probability of a false positive is at most 8 · 1/2log2 8/ε = ε.

13I say “likely” because it is possible that some of the bits we look at are very close to each other. But for most elements,
each hash will require a cache miss.

8



So which should we use? If performance is not too important—you just want a filter that works—then
a Bloom filter is probably good enough for your use case. But if query performance is important, a cuckoo
filter may be worth implementing, as it hashes fewer times and incurs fewer cache misses. Finally, if space
is very important and ε is much less than 2.85%, using a cuckoo filter may give significant savings over the
space required by a Bloom filter.

So as with many of the algorithms we’ve learned in this class, while a simple version is likely good enough
for many use cases, a more involved algorithm can eke out significant gains—when the extra complexity is
worth it.

References

[1] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM, 13(7):422–426, 1970.

[2] David Eppstein. Cuckoo filter: Simplification and analysis. In Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT), volume 53, pages 8:1–8:12, 2016.

[3] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. Cuckoo filter: Practically
better than Bloom. In International Conference on emerging Networking Experiments and Technologies,
pages 75–88. ACM, 2014.

[4] Michael Mitzenmacher and Eli Upfal. Probability and computing: randomization and probabilistic tech-
niques in algorithms and data analysis. Cambridge university press, 2017.

[5] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004.

[6] Mihai Pătraşcu. Cuckoo hashing. http://infoweekly.blogspot.com/2010/02/cuckoo-hashing.html,
February 2, 2010. Unpublished blog post.

9


