Lecture 10: Bloom Filters and Cuckoo Filters

Sam McCauley October 21, 2021

Williams College

- Mini-midterm 1 done!
- Assignment 3 out tonight
- Lecture notes from today's class right after
- I think I'll make a very short lab video for reference. (Totally optional; just to help you find your way around the assignment.)

Wrapping up Probability

- Let's say I charge you \$1000 to play a game. With probability 1 in 1 million, I give you \$10 billion. Otherwise, I give you \$0.
- Would you play this game?
- Answer: probably not. You're just going to lose \$1000.
- But expectation is good! You expect to win \$9000.

- Rather than giving the *average* performance, bound the probability of bad performance.
- Let's say I flip a coin k times. On average, I see k/2 heads. But what is the probability I never see a heads?
- Answer: $1/2^k$
- Quicksort has expected runtime $O(n \log n)$. What is the probability that the running time is more than $O(n \log n)$?
- Answer: O(1/n)

With High Probability

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- So: quicksort is $O(n \log n)$ with high probability
- Cuckoo hashing can maintain its invariant with high probability
- Cuckoo hashing inserts require $O(\log n)$ swaps with high probability
- Linear probing queries require $O(\log n)$ time with high probability. (Contrast to O(1) in expectation!)
- With high probability is always with respect to a variable. Assume that it's with respect to *n* unless stated otherwise.

• How many coins do I need to flip before I see a heads with high probability? (With respect to some variable *n*)

• If I flip k times, I see a heads with probability $1 - 1/2^k$.

• So I need $1/2^k = O(1/n)$. Solving, $k = \Theta(\log n)$.

Expectation vs Concentration (WHP)

- We'll usually use "with high probability" for concentration bounds
- Expectation states how well the algorithm does on average. Could be much better or worse sometimes!
- With high probability gives a guarantee that will almost always be met: if *n* is large it becomes vanishingly unlikely that the bound will be violated.

Filters: Goals for Today

• Worst-case compression

• Lossy compression with algorithmic guarantees

• That is to say: we know what we're losing and what we're not

- Stores a set S of size n
- Answers queries q of the form: "is $q \in S$?"
 - Really just a very simple dictionary that only returns whether or not a key exists (no values)
- All elements x ∈ S and all queries must be from some universe U
- (Only need U to make sure that we can hash everything.)

Guarantee 1 (No False Negatives)

A filter is always correct when it returns that $q \notin S$. Equivalently, if we query an item $q \in S$, then a filter will always correctly answer $q \in S$.

- Can you create a very simple data structure that has no false negatives?
- Easiest option: my data structure stores nothing. On every query q, my data structure responds "q ∈ S."
- Another easy option: I store the entire set *S* using a standard dictionary (perhaps using a hash table). On a query *q*, I look it up and give the correct answer.

Guarantee 2 (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε . We want our filter to have a false positive rate $\varepsilon < 1$.

The filters we will talk about today will work for *any* false positive rate ε , so long as $1/\varepsilon$ is a power of 2.¹ So we can, if we want, guarantee a false positive rate of 1/2, or of 1/1024—whatever is best for your use case.

 $^{^1 {\}rm The}$ cuckoo filter will actually need $1+1/\varepsilon$ to be a power of 2.

Guarantee 2 Sanity check

- Can you create a very simple data structure that has a good false positive rate?
- I store the entire set S using a standard dictionary (perhaps using a hash table). On a query q, I look it up and give the correct answer. This satisfies Guarantee 2 with ε = 0.
- What about my other solution? If I always return q ∈ S, what false positive rate do I have?
- Answer: 1. (So this is not a filter!)

- Obviously, smaller ε is better-it means we make fewer mistakes.
- So what's the tradeoff?
- We tradeoff space versus accuracy using ε .
 - Smaller ε means the compression is not as lossy
 - We make fewer mistakes, but we need more space
 - Larger ε means more aggressive compression
 - Space is very small, but filter is very inaccurate!
- A filter generally requires $O(n \log 1/\varepsilon)$ bits of space.

We talk about two filters today:

- A Bloom filter requires $1.44n \log_2(1/\varepsilon)$ bits of space.
- The cuckoo filter uses 1.05n log₂(1 + 1/ε) + 3.15n bits of space.

How can we interpret this?

- Plugging in numbers: if we have a cuckoo filter with $\varepsilon = 1/63$, the filter takes less than 1 byte of space per element being stored.
- Notice that this space does *not* depend on the size of the original elements. We can store very long strings and still require only one byte per string stored.

History and Discussion

Bloom filter

- Invented by Burton H. Bloom in 1970
- Original publication only talked about good practical performance; theoretical analysis came later.

- Invented by Fan et al. in 2014
- Provides better space usage for small ε (i.e. when the compression is not too lossy)
- Requires fewer hashes; has better cache performance.

When should you use a filter?

1st example: avoiding cache misses

- Let's say we have a very large table of data
- Large enough that it doesn't fit in L3
 - Maybe it doesn't even fit in RAM
- Frequently query items not in the table

Common filter usage

Queries to the entire dataset are very expensive!

Many workloads involve mostly "negative" queries: queries to keys not stored in the table. (query $q \notin S$)

- Classic example: dictionary of unusually-hyphenated words for a spellchecker.
- Checking if key already exists before an insert (deduplication in general)
- Check for malicious URLs
- Table with many empty entries

Classic filter usage: succinct data structure that will allow us to "filter out" negative queries.

Common filter usage

Filters are so small that they can fit in local memory.

Filters can Abb a state on the proving performance. If $q \notin S$ (false positive), still do an unnecessary access. With O(n log 1/ε) local memory (perhaps fitting in L3 cache), can filter out 1 − ε cache misses for keys q ∉ S.

• Greatly reduces number of remote accesses, thereby reducing time.

2nd example: Approximately storing a set

- Before, we stored the actual set *S*. (It was expensive to access, but we stored it.)
- But what if we don't want to?
- Example: approximate spell checker

Approximate spell checker

- Want to build a spell checker; don't have room to store dictionary
- Store the words in a filter
- Guarantee 1: if we query a correctly-spelled word, it is never marked as misspelled
- Guarantee 2: if we query a misspelled word, we only miss it (don't mark it misspelled) with probability ε
- Using only a byte or so per item, can do almost as well as storing a full dictionary!

Bloom Filters

A Bloom filter consists of:

- $k = \log_2 1/\varepsilon$ hash functions, which I will denote using h_1, h_2, \ldots, h_k ,
- Bit array A of $m = (\log_2 e)nk \approx 1.44n \log_2(1/\varepsilon)$ bits.
- For each i = 1,..., k, h_i: U → {0, m − 1} (that is to say, h_i maps an element from the universe of possible elements U to a slot in the hash table).
- Assume $1/\varepsilon$ is a power of 2. Round *m* up to the nearest integer

• Begin with A[i] = 0 for all *i*. (Basically, just calloc the bit array.)

- For each $x \in S$:
 - For each hash $h_i = h_1, h_2, \ldots, h_k$:
 - Set $A[h_i(x)] = 1$.

Building a Bloom Filter

Figure 1: Inserting two elements x and y into a Bloom filter with $\varepsilon = 1/8$. We have three hash functions, and (rounding up) the array is of length m = 9 bits.

• What invariant does this data structure satisfy?

Invariant 1

A Bloom filter storing a set S using hashes h_1, \ldots, h_k satisfies $A[h_i(x)] = 1$ for all $x \in S$ and all $i \in \{1, \ldots, k\}$.

On a query q:

- For each hash $h_i = h_1, h_2, \dots h_k$:
 - If $A[h_i(q)] = 0$, return " $q \notin S$."

• Otherwise, $A[h_i(q)] = 1$ for all h_i ; return " $q \in S$."

Figure 2: An example query to an element not in the set; k = 3.

Figure 3: An example false positive query.

Query example 2

- Can we insert into a Bloom filter?
 - Yes, but performance degrades as it fills up. We are OK so long as no more than *n* items are inserted.

- Can we delete?
 - No. If we flip a bit from 1 to 0, it may cause a false negative, violating Guarantee 1.

Assume our hashes h_i are perfectly uniform random: any x ∈ U is mapped to any hash slot s ∈ {0,..., m − 1} with probability 1/m; independently of any other hash.

• Let's strategize: what about the Bloom filter can we use to prove that Guarantee 1 and Guarantee 2 hold?

Guarantee (No False Negatives)

If we query an item $q \in S$, then a filter will always answer $q \in S$.

 By the Bloom filter Invariant, if q ∈ S, then A[h_i(q)] = 1 for all i ∈ {1,...k}.

• This means that the query algorithm always returns " $q \in S$."

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

High-level argument:

- Assume: each entry of A is 1 with probability 1/2
- Only get a false positive if every bit is a 1
- Are these events independent?
 - No! But it seems like the independence isn't too big of a deal...let's assume they're independent for now.
- Occurs with probability $(1/2)^k = (1/2)^{\log_2(1/\varepsilon)}$
- $(1/2)^{\log_2(1/\varepsilon)} = \varepsilon.$

Cuckoo Filter

- In short: you'll implement a cuckoo filter to speed up a sequence of dictionary queries
- You're looking for "bilingual palindromes": strings whose reverse is a word in another language
- Most words are not bilingual palindromes, so a filter can significantly speed up queries

A cuckoo filter consists of:

- k hash functions denoted by h_1, h_2, \ldots, h_k (k is a constant)
 - We'll only use one of these hash functions (*h*₁) in our implementation!
- a fingerprint hash function f that takes an item from the universe and outputs a number from 1 to $1/\varepsilon$ (we'll call this number the *fingerprint* of the item)
- a cuckooing hash function *h* that takes in a fingerprint and outputs a number from 1 to *m*, and
- a hash table T of m slots, where each slot has room for $\log_2(1/\varepsilon)$ bits.

Some initial parameters

- k = 2 hash functions
- m = 2n slots
- These parameters are easy to analyze, but space inefficient. We'll fix it later.
- Also assume that 1/ε + 1 is a power of 2, and m is a power of 2.

• Make sure all slots of T are empty

• Today: we'll set all slots to 0. A slot in *T* is nonempty if and only if it stores a number larger than 0.

Inserting into a Cuckoo Filter

- If there is an h_i such that $T[h_i(x)]$ is nonempty, then store f(x) in $T[h_i(x)]$.
- Otherwise, we cuckoo:
 - Choose some $i \in \{1, \ldots, k\}$
 - Let's say that x_1 is the element stored in $T[h_i(x)]$.
 - Then we store f(x) in $T[h_i(x)]$ and "cuckoo" x_1 to another slot
- If we cuckoo more than log *n* elements, we rebuild the filter.

There's a problem with what I said!

- We don't have access to x_1 . So how can we calculate $h_2(x_1)$?
- If k = 2, we can use *partial-key cuckoo hashing*
- Set $h_2(x) = h_1(x)^{\wedge} h(f(x))$. (XOR)
- Note that then $h_2(x)^{\wedge}h(f(x)) = h_1(x)^{\wedge}h(f(x))^{\wedge}h(f(x)) = h_1(x).$

So to cuckoo a fingerprint ϕ stored in a slot ${\it s}$ to its other location:

- Calculate $h(\phi)$
- Its other slot is $s^{\wedge}h(\phi)$.
- If that other slot is empty we can store φ in it (woo)!
 Otherwise, take the fingerprint stored there and cuckoo it to its other slot.

Cuckoo Filter Insert Example 1

Figure 4: A cuckoo filter with $\varepsilon = 1/3$ and k = 2.

Cuckoo Filter Insert Example 2

Figure 5: A cuckoo filter with $\varepsilon = 1/3$ and k = 2.

Invariant 2

For every $x \in S$, there exists an $i \in \{1, ..., k\}$ such that f(x) is stored in $T[h_i(x)]$.

To query an element \boldsymbol{q}

- For each hash $h_i = h_1, h_2, \dots h_k$:
 - If $T[h_i(q)] = f(q)$, return " $q \in S$."
- Return " $q \notin S$."

Querying a Cuckoo Filter: Example

Figure 6: Querying a cuckoo filter with $\varepsilon = 1/3$ and k = 2.

Querying a Cuckoo Filter: Example 2

Figure 7: Querying a cuckoo filter with $\varepsilon = 1/3$ and k = 2.

• Can a cuckoo filter handle inserts?

• How about deletes?

Union Bound

- Simple but useful tool in randomized algorithms
- Always works, even for events that are not independent

Theorem 1

Let X and Y be random events. Then

$$\Pr(X \text{ or } Y) \leq \Pr(X) + \Pr(Y).$$

More generally, if X_1, X_2, \ldots, X_k are any random events, then

$$\mathsf{Pr}(X_1 \; or \; X_2 \; or \; \dots \; or \; X_k) \leq \sum_{i=1}^k X_k.$$

• Let's say I have 10 students in a course, and I randomly assign each student an ID between 1 and 100 (these IDs do not need to be unique).

• Can you upper bound the probability that some student has ID 1?

Exact Analysis of Student ID Problem

 $\bullet\,$ The probability that at least one student has ID 1 is

```
1 - Pr(no \text{ student has ID } 1).
```

- The probability that a single student has an ID other than 1 is 99/100.
- Thus, the probability that all 10 students have an ID other than 1 is (99/100)¹⁰.
- Thus, the probability that at least one student has ID 1 is $1-(99/100)^{10}\approx 9.56\%.$

Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

This is messy! And it would be even worse if the IDs were not independent! The union bound lets us avoid this

- The prol work. her than 1 is 99/100.
- Thus, the probability that all 10 students have an ID other than 1 is (99/100)¹⁰.
- Thus, the probability that at least one student has ID 1 is $1 (99/100)^{10} \approx 9.56\%$.

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that *any* student has ID 1 is the sum, over all 10 students, of 1/100.

• This gives us a value of 10/100 = 10%.

Some assumptions:

- all hash functions h_i are uniformly random: any x ∈ U is mapped to any hash slot s ∈ {0,..., m − 1} with probability 1/m.
- Same for the fingerprint hash f: any x ∈ U is mapped to a given fingerprint f_x ∈ {1,...,1/ε} with probability ε.

Guarantee (No False Negatives)

A filter is always correct when it returns that $q \notin S$. Equivalently, if we query an item $q \in S$, then a filter will always correctly answer $q \in S$.

Invariant

For every $x \in S$, there exists an $i \in \{1, ..., k\}$ such that f(x) is stored in $T[h_i(x)]$.

• We can see that the invariant means that there are no false negatives.

Guarantee 3 (False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

- A query $q \notin S$ is a false positive if, for some h_i , $T[h_i(q)] = f(q).$
- Let's examine each hash h_1 and h_2 individually.

Second Guarantee: False Positive Rate

- Let's start with h_1 . What is the probability $T[h_1(q)]$ contains a fingerprint?
- 1/2, because we are storing *n* elements in 2n slots.
- If *T*[*h*₁(*q*)] contains a fingerprint, the probability that *f*(*x*) = *f*(*q*) is *ε*.
- Therefore, the probability that $T[h_1(q)]$ contains a fingerprint f(x) = f(q) is $\varepsilon/2$.

• What about *h*₂?

Same exact analysis: probability that T[h₂(q)] contains a fingerprint f(x) = f(q) is ε/2.

- q is a false positive if either T[h₁(q)] contains a fingerprint f(x₁) such that f(x₁) = f(q), or T[h₂(q)] contains a fingerprint f(x₂) such that f(x₂) = f(q)
- Each happens with probability at most $\varepsilon/2$
- By union bound, one or the other happens with probability at most $\varepsilon/2 + \varepsilon/2 = \varepsilon$.

- Currently, have m = 2n slots, so the space is $2n \log_2(1/\varepsilon)$.
- Here is one way to improve that:
- Store room for *four* fingerprints in each hash slot, and make the fingerprints hash to {1,..., 8/ε}. Assume that 8/ε + 1 is a multiple of 2.
- Then can set m = 1.05n/4, giving total space usage $1.05n \log_2(8/\varepsilon + 1) \approx 1.05n \log_2(1/\varepsilon) + 3.15n$.

Example

	X								
	h(x)								
	$H_2(\mathbf{x})$ $h_1(\mathbf{x})$								
	$\sqrt{n_1(x)}$								
	1000	1010	0000	0000	0101	0000	0100	0000	
	0000	0000	0000	0000	1001	0000	0110	0000	
	0000	0000	0000	0000	1001	0000	0110	0000	
	0000	0000	0000	0000	0010	0000	0101	0000	
	0000	0000	0000	0000	1001	0000	1111	0000	
ĺ	0	1	2	3	4	5	6	7	

Figure 8: A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Example 2

Figure 9: A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Bloom filters:

- Easy to implement
- Fairly efficient for large ε

Cuckoo filters:

- Much more space efficient
- Only require 2 hash functions (may improve practical performance)
- Good cache efficiency: only need to access the hash table 2 times, rather than log₂(1/ε).