
Lecture 10: Bloom Filters and Cuckoo Filters

Sam McCauley

October 21, 2021

Williams College

Admin

• Mini-midterm 1 done!

• Assignment 3 out tonight

• Lecture notes from today’s class right after

• I think I’ll make a very short lab video for reference. (Totally

optional; just to help you find your way around the

assignment.)

1

Wrapping up Probability

Limits of Expectation

• Let’s say I charge you $1000 to play a game. With probability

1 in 1 million, I give you $10 billion. Otherwise, I give you $0.

• Would you play this game?

• Answer: probably not. You’re just going to lose $1000.

• But expectation is good! You expect to win $9000.

2

Concentration bounds

• Rather than giving the average performance, bound the

probability of bad performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads.

But what is the probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the

probability that the running time is more than O(n log n)?

• Answer: O(1/n)

3

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1− O(1/n)

• So: quicksort is O(n log n) with high probability

• Cuckoo hashing can maintain its invariant with high

probability

• Cuckoo hashing inserts require O(log n) swaps with high

probability

• Linear probing queries require O(log n) time with high

probability. (Contrast to O(1) in expectation!)

• With high probability is always with respect to a variable.

Assume that it’s with respect to n unless stated otherwise.

4

WHP example

• How many coins do I need to flip before I see a heads with

high probability? (With respect to some variable n)

• If I flip k times, I see a heads with probability 1− 1/2k .

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).

5

Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration

bounds

• Expectation states how well the algorithm does on average.

Could be much better or worse sometimes!

• With high probability gives a guarantee that will almost

always be met: if n is large it becomes vanishingly unlikely

that the bound will be violated.

6

Filters: Goals for Today

What we want

• Worst-case compression

• Lossy compression with algorithmic guarantees

• That is to say: we know what we’re losing and what we’re not

7

Filter

• Stores a set S of size n

• Answers queries q of the form: “is q ∈ S?”

• Really just a very simple dictionary that only returns whether

or not a key exists (no values)

• All elements x ∈ S and all queries must be from some

universe U

• (Only need U to make sure that we can hash everything.)

8

Filter Guarantees

Guarantee 1 (No False Negatives)

A filter is always correct when it returns that q /∈ S .

Equivalently, if we query an item q ∈ S , then a filter will always

correctly answer q ∈ S .

9

Guarantee 1 Sanity check

• Can you create a very simple data structure that has no false

negatives?

• Easiest option: my data structure stores nothing. On every

query q, my data structure responds “q ∈ S .”

• Another easy option: I store the entire set S using a standard

dictionary (perhaps using a hash table). On a query q, I look

it up and give the correct answer.

10

Filter Guarantees

Guarantee 2 (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S , the filter

(incorrectly) returns “q ∈ S” with probability ε.

We want our filter to have a false positive rate ε < 1.

The filters we will talk about today will work for any false positive

rate ε, so long as 1/ε is a power of 2.1 So we can, if we want,

guarantee a false positive rate of 1/2, or of 1/1024—whatever is

best for your use case.

1The cuckoo filter will actually need 1 + 1/ε to be a power of 2.

11

Guarantee 2 Sanity check

• Can you create a very simple data structure that has a good

false positive rate?

• I store the entire set S using a standard dictionary (perhaps

using a hash table). On a query q, I look it up and give the

correct answer. This satisfies Guarantee 2 with ε = 0.

• What about my other solution? If I always return q ∈ S , what

false positive rate do I have?

• Answer: 1. (So this is not a filter!)

12

Tradeoff

• Obviously, smaller ε is better-it means we make fewer

mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.

13

Space bounds

We talk about two filters today:

• A Bloom filter requires 1.44n log2(1/ε) bits of space.

• The cuckoo filter uses 1.05n log2(1 + 1/ε) + 3.15n bits of

space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with

ε = 1/63, the filter takes less than 1 byte of space per

element being stored.

• Notice that this space does not depend on the size of the

original elements. We can store very long strings and still

require only one byte per string stored.

14

History and Discussion

Bloom filter

• Invented by Burton H.

Bloom in 1970

• Original publication only

talked about good practical

performance; theoretical

analysis came later.

15

Cuckoo filter

• Invented by Fan et al. in

2014

• Provides better space usage

for small ε (i.e. when the

compression is not too

lossy)

• Requires fewer hashes; has

better cache performance.

16

When should you use a filter?

1st example: avoiding

cache misses

• Let’s say we have a

very large table of

data

• Large enough that it
doesn’t fit in L3

• Maybe it doesn’t

even fit in RAM

• Frequently query

items not in the table

17

Common filter usage

q
Lookup(q)

Queries to the entire dataset are very expensive!

18

Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys

not stored in the table. (query q /∈ S)

• Classic example: dictionary of unusually-hyphenated words for

a spellchecker.

• Checking if key already exists before an insert (deduplication

in general)

• Check for malicious URLs

• Table with many empty entries

Classic filter usage: succinct data structure that will allow us to

“filter out” negative queries.

19

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?Yes, q ∈ S .

Is q ∈ S?

Is q ∈ S?No, q /∈ S .

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries,

improving performance.

Fast in-memory query.If filter reports q ∈ S , access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

20

Common filter usage

• With O(n log 1/ε) local memory (perhaps fitting in L3 cache),

can filter out 1− ε cache misses for keys q /∈ S .

• Greatly reduces number of remote accesses, thereby reducing

time.

21

When should you use a filter?

2nd example: Approximately storing a set

• Before, we stored the actual set S . (It was expensive to

access, but we stored it.)

• But what if we don’t want to?

• Example: approximate spell checker

22

Approximate spell checker

• Want to build a spell checker; don’t have room to store

dictionary

• Store the words in a filter

• Guarantee 1: if we query a correctly-spelled word, it is never

marked as misspelled

• Guarantee 2: if we query a misspelled word, we only miss it

(don’t mark it misspelled) with probability ε

• Using only a byte or so per item, can do almost as well as

storing a full dictionary!

23

Bloom Filters

Bloom Filter

A Bloom filter consists of:

• k = log2 1/ε hash functions, which I will denote using

h1, h2, . . . , hk ,

• Bit array A of m = (log2 e)nk ≈ 1.44n log2(1/ε) bits.

• For each i = 1, . . . , k , hi : U → {0,m − 1} (that is to say, hi

maps an element from the universe of possible elements U to

a slot in the hash table).

• Assume 1/ε is a power of 2. Round m up to the nearest

integer

24

Building a Bloom Filter

• Begin with A[i] = 0 for all i . (Basically, just calloc the bit

array.)

• For each x ∈ S :

• For each hash hi = h1, h2, . . . , hk :

• Set A[hi (x)] = 1.

25

Building a Bloom Filter

10 0 1 0 0 10 0 10 0 10

0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x) h3(x)

y

h1(y)
h2(y)

h3(y)

Figure 1: Inserting two elements x and y into a Bloom filter with

ε = 1/8. We have three hash functions, and (rounding up) the array is of

length m = 9 bits.

26

Invariant

• What invariant does this data structure satisfy?

Invariant 1

A Bloom filter storing a set S using hashes h1, . . . hk satisfies

A[hi (x)] = 1 for all x ∈ S and all i ∈ {1, . . . , k}.

27

Querying a Bloom filter

On a query q:

• For each hash hi = h1, h2, . . . hk :

• If A[hi (q)] = 0, return “q /∈ S .”

• Otherwise, A[hi (q)] = 1 for all hi ; return “q ∈ S .”

28

Query example

1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8

q

h1(q) h2(q)

Figure 2: An example query to an element not in the set; k = 3.

29

Query example 2

1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8

q

h1(q)
h2(q)h3(q)

Figure 3: An example false positive query.

30

Query example 2

1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8

q

h1(q)
h2(q)h3(q)

1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x) h3(x)

y

h1(y)
h2(y)

h3(y)

31

Discussion

• Can we insert into a Bloom filter?

• Yes, but performance degrades as it fills up. We are OK so

long as no more than n items are inserted.

• Can we delete?

• No. If we flip a bit from 1 to 0, it may cause a false negative,

violating Guarantee 1.

32

Bloom filter analysis

• Assume our hashes hi are perfectly uniform random: any

x ∈ U is mapped to any hash slot s ∈ {0, . . . ,m − 1} with

probability 1/m; independently of any other hash.

• Let’s strategize: what about the Bloom filter can we use to

prove that Guarantee 1 and Guarantee 2 hold?

33

Guarantee 1

Guarantee (No False Negatives)

If we query an item q ∈ S , then a filter will always answer q ∈ S .

• By the Bloom filter Invariant, if q ∈ S , then A[hi (q)] = 1 for

all i ∈ {1, . . . k}.

• This means that the query algorithm always returns “q ∈ S .”

34

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S , the filter

(incorrectly) returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?

• No! But it seems like the independence isn’t too big of a

deal...let’s assume they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.

35

Cuckoo Filter

Assignment 3

• In short: you’ll implement a cuckoo filter to speed up a

sequence of dictionary queries

• You’re looking for “bilingual palindromes”: strings whose

reverse is a word in another language

• Most words are not bilingual palindromes, so a filter can

significantly speed up queries

36

Cuckoo Filter

A cuckoo filter consists of:

• k hash functions denoted by h1, h2, . . . , hk (k is a constant)

• We’ll only use one of these hash functions (h1) in our

implementation!

• a fingerprint hash function f that takes an item from the

universe and outputs a number from 1 to 1/ε (we’ll call this

number the fingerprint of the item)

• a cuckooing hash function h that takes in a fingerprint and

outputs a number from 1 to m, and

• a hash table T of m slots, where each slot has room for

log2(1/ε) bits.

37

Some initial parameters

• k = 2 hash functions

• m = 2n slots

• These parameters are easy

to analyze, but space

inefficient. We’ll fix it later.

• Also assume that 1/ε+ 1 is

a power of 2, and m is a

power of 2.

38

Initializing a Cuckoo Filter

• Make sure all slots of T are empty

• Today: we’ll set all slots to 0. A slot in T is nonempty if and

only if it stores a number larger than 0.

39

Inserting into a Cuckoo Filter

• If there is an hi such that T [hi (x)] is nonempty, then store

f (x) in T [hi (x)].

• Otherwise, we cuckoo:

• Choose some i ∈ {1, . . . , k}

• Let’s say that x1 is the element stored in T [hi (x)].

• Then we store f (x) in T [hi (x)] and “cuckoo” x1 to another

slot

• If we cuckoo more than log n elements, we rebuild the filter.

40

Implementing Insertions

There’s a problem with what I said!

• We don’t have access to x1. So how can we calculate h2(x1)?

• If k = 2, we can use partial-key cuckoo hashing

• Set h2(x) = h1(x)∧h(f (x)). (XOR)

• Note that then

h2(x)∧h(f (x)) = h1(x)∧h(f (x))∧h(f (x)) = h1(x).

41

Cuckooing

So to cuckoo a fingerprint φ stored in a slot s to its other location:

• Calculate h(φ)

• Its other slot is s∧h(φ).

• If that other slot is empty we can store φ in it (woo)!

Otherwise, take the fingerprint stored there and cuckoo it to

its other slot.

42

Cuckoo Filter Insert Example 1

00 01 00 00 11 1000 10 00

0 1 2 3 4 5 6 7

x

h1(x)

f (x) = 102

Figure 4: A cuckoo filter with ε = 1/3 and k = 2.

43

Cuckoo Filter Insert Example 2

00 01 00 00 000101 10 10 0100

0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2)

h(012) = 0112

4ˆh(012) = 7

f (x2) = 012

Figure 5: A cuckoo filter with ε = 1/3 and k = 2.

44

Cuckoo Filter Invariant

Invariant 2

For every x ∈ S , there exists an i ∈ {1, . . . , k} such that f (x) is

stored in T [hi (x)].

45

Querying a Cuckoo Filter

To query an element q

• For each hash hi = h1, h2, . . . hk :

• If T [hi (q)] = f (q), return “q ∈ S .”

• Return “q /∈ S .”

46

Querying a Cuckoo Filter: Example

00 01 00 00 01 00 10 11

0 1 2 3 4 5 6 7

q f (q) = 102
h(102) = 0102

h1(q)
h2(q) = 1 ˆh(102) = 3

Figure 6: Querying a cuckoo filter with ε = 1/3 and k = 2.

47

Querying a Cuckoo Filter: Example 2

00 01 00 00 01 00 10 11

0 1 2 3 4 5 6 7

q2 f (q2) = 112

h1(q2)
h2(q2) = 1 ˆh(112) = 7

Figure 7: Querying a cuckoo filter with ε = 1/3 and k = 2.

48

Discussion

• Can a cuckoo filter handle inserts?

• How about deletes?

49

Union Bound

• Simple but useful tool in randomized algorithms

• Always works, even for events that are not independent

Theorem 1

Let X and Y be random events. Then

Pr(X or Y) ≤ Pr(X) + Pr(Y).

More generally, if X1,X2, . . . ,Xk are any random events, then

Pr(X1 or X2 or . . . or Xk) ≤
k∑

i=1

Xk .

50

Union Bound Example

• Let’s say I have 10 students in a course, and I randomly assign

each student an ID between 1 and 100 (these IDs do not need

to be unique).

• Can you upper bound the probability that some student has

ID 1?

51

Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1− Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is

99/100.

• Thus, the probability that all 10 students have an ID other

than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1− (99/100)10 ≈ 9.56%.

52

Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1− Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is

99/100.

• Thus, the probability that all 10 students have an ID other

than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1− (99/100)10 ≈ 9.56%.

53

This is messy! And it would be even

worse if the IDs were not independent!

The union bound lets us avoid this

work.

Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that any student has ID 1

is the sum, over all 10 students, of 1/100.

• This gives us a value of 10/100 = 10%.

54

Analysis

Some assumptions:

• all hash functions hi are uniformly random: any x ∈ U is

mapped to any hash slot s ∈ {0, . . . ,m − 1} with probability

1/m.

• Same for the fingerprint hash f : any x ∈ U is mapped to a

given fingerprint fx ∈ {1, . . . , 1/ε} with probability ε.

55

First Guarantee: No False Negatives

Guarantee (No False

Negatives)

A filter is always correct when

it returns that q /∈ S .

Equivalently, if we query an

item q ∈ S , then a filter will

always correctly answer

q ∈ S .

Invariant

For every x ∈ S , there exists

an i ∈ {1, . . . , k} such that

f (x) is stored in T [hi (x)].

• We can see that the invariant means that there are no false

negatives.

56

Second Guarantee: False Positive Rate

Guarantee 3 (False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S , the filter

(incorrectly) returns “q ∈ S” with probability ε.

• A query q /∈ S is a false positive if, for some hi ,

T [hi (q)] = f (q).

• Let’s examine each hash h1 and h2 individually.

57

Second Guarantee: False Positive Rate

• Let’s start with h1. What is the probability T [h1(q)] contains

a fingerprint?

• 1/2, because we are storing n elements in 2n slots.

• If T [h1(q)] contains a fingerprint, the probability that

f (x) = f (q) is ε.

• Therefore, the probability that T [h1(q)] contains a fingerprint

f (x) = f (q) is ε/2.

58

Second Guarantee: False Positive Rate

• What about h2?

• Same exact analysis: probability that T [h2(q)] contains a

fingerprint f (x) = f (q) is ε/2.

59

Second: Guarantee: Putting it Together

• q is a false positive if either T [h1(q)] contains a fingerprint

f (x1) such that f (x1) = f (q), or T [h2(q)] contains a

fingerprint f (x2) such that f (x2) = f (q)

• Each happens with probability at most ε/2

• By union bound, one or the other happens with probability at

most ε/2 + ε/2 = ε.

60

Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make

the fingerprints hash to {1, . . . , 8/ε}. Assume that 8/ε+ 1 is

a multiple of 2.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.

61

Example

1000 1010 0000 0000 0101 0000 0100 0000

0000 0000 0000 0000 1001 0000 0110 0000

0000 0000 0000 0000 0010 0000 0101 0000

0000 0000 0000 0000 1001 0000 1111 0000

0 1 2 3 4 5 6 7

x

h2(x)
h1(x)

Figure 8: A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots

per bin.

62

Example 2

1000 1010 0000 0000 0101 0000 0100 0000

0000 0000 0000 0000 1001 0000 0110 0000

0000 0000 0000 0000 0010 0000 0101 0000

0000 0000 0000 0000 1001 0000 1111 0000

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

Figure 9: A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots

per bin.

63

Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash

functions (may improve

practical performance)

• Good cache efficiency: only

need to access the hash

table 2 times, rather than

log2(1/ε).

64

	Wrapping up Probability
	Filters: Goals for Today
	History and Discussion
	Bloom Filters
	Cuckoo Filter

