
Applied Algorithms Lec 7: Mini-Midterm and

Optimization/Code Review

Sam McCauley

October 21, 2021

Williams College

Admin

• Mini-midterm 1 due Wednesday at 10pm

• No TA office hours this week. (I’ll hold my office hours as

normal.)

• Assignment 2 back soon

• No class next Monday. Schedule slightly tight because of that.

1

Mini-Midterm Questions?

2

Quick Survey

• Who’s seen bloom filters before?

• Who’s seen cuckoo hashing before?

• Who’s done any probabilistic algorithms analysis before?

• Who’s heard of streaming algorithms before?

• Plan for this section of the course: I’m going to go through all

of this in detail—but quickly. May be a tad slow/fast for

some of you. I will try to post writeups, and I’m always

available in office hours

3

Finishing up Assignment 1 Code

Review

Calculating the height in constant time

• What’s faster than calculating the height from scratch each

time?

• Only adding on “new” items

• That’s O(1) on average, but it’s a pain to implement

• Can we change our ordering to get improved performance?

• Next idea: fill in set one item at a time

4

Calculating the height in constant time

5

Sorting in linear time??

• Not possible in general, but our data has special structure

• Remember how we could more efficiently build up the heights.

What would happen if we sorted the array at the same time?

6

Sorting in linear time (from best-performing solution)

7

Binary search

• Really really costly

• Let’s look at two attempts to engineer a more efficient binary

search

8

Inlined, Unrolled binary search

• From “best last year”

• Did much better than one would think—we’ll talk about why

in a second

9

Why is binary search really slow?

• Cache efficiency! Lots of cache misses

• Also branch mispredictions

• Can we avoid these?

10

Code that avoids these

• What the heck?

11

Eytzinger layout

• Comment in code led to github that referenced a paper about

a way to rearrange arrays to lead to better binary search

performance

12

Analysis

• Recall: normal binary search is O(log2N/B) cache misses

• What about with this layout?

• Answer: O(log2N/B) cache misses!

• What gives?

• By the way: there IS a layout that gives O(logB N/B) cache

misses. But it has issues with constants.

13

Analysis

• Let’s say I’m at a given branch in my binary search. What can

I say about where I’ll be 2 branches from now?

14

Analysis

• Let’s say I’m at a given branch in my binary search. What can

I say about where I’ll be 2 branches from now?

• Idea: with this layout, we know where we’re going ahead of

time. While doing previous operations, can prefetch future

cache accesses so that they’re already available by the time

we get there.

• Prefetching is very rare as an optimization technique. But this

is a cool example of it

15

Getting rid of the binary search

• That said, even these highly optimized binary searches are

costly. Can we avoid them entirely?

• Hint: the high cost of binary search is that we’re jumping all

over the table. Can we group entries so that we don’t need to

jump all over the table?

• Stronger hint: if I have two similar heights for the first half of

my blocks, I’m going to be doing very similar searches in the

second half...

16

Use two tables

• Idea: make a table for both halves of the input; sort each.
O(2n/2) time with the optimizations from before.

• This does double our space usage!

• Now, can do a merge-like operation to determine, for each set

in the first half, find the optimal set in the second half

• Same idea as 3SUM

• O(2n/2) total time.

• Cache efficiency? O(2n/2/B).

• Best last year did this reordering, but did a full binary search

instead of a merge

17

(Pretty much) rest of best solution this year

18

Lessons

• Cache efficiency is king

• In this case, most optimizations depended on the problem
itself. gcc can’t help with that

• I think Assignment 2 is more optimization-heavy once it fits in

cache.

• Looks like I need to increase the input size a bit next time to

make sure the final times are macroscopic

19

Problem Set Questions

• Out of time to do them in class (sorry!)

• I’m happy to go over them in office hours

20

Probability

Probability Takeaways

What I want you to know:

1. Definition of probability/basic calculations

2. Determine if two events are independent

3. Calculate expectation

4. Linearity of expectation

5. Difference between “concentration bounds” vs expected

performance

21

Useful Formulas (use e = 2.71 . . .)

Two useful approximations for simplifying exponents (presented as

inequalities, but really quite tight even for moderate n):

(1 + 1/n)n ≤ e (1− 1/n)n ≤ 1/e

Example: (1.1)10 = 2.593 . . .

With probability we often use choose (a.k.a. binomial) notation,

but it’s unweidly. Here’s a good way to approximate it:(
x

y

)y

≤
(
x

y

)
≤
(
ex

y

)y

Example:
(n
10

)
= Θ(n10)

22

Definition of Probability

• Defined over a set of possible outcomes (often called the

sample space)

• An event is a subset of the outcomes

•
Pr [Event E] =

outcomes in the event

Total # of outcomes

• Formal definition probability generally applies weights to the

events (in which case the definition of probability is the

weight of outcomes in the event, divided by total weight of all

events). We will usually have equal-weight events.

23

Probability Calculation Examples

• Let’s say I roll a 20-sided die. What is the probability that an

even number comes up?

• Answer: 10/20 = 1/2.

• Let’s say I flip a coin 10 times. What is the probability of

getting exactly 5 heads?

•
(10
5

)
/210

24

Conditional Probability

• Sometimes we want to calculate the probability of an event,

when we already have some partial information about the

outcome

• Specifically: want to calculate the probability of event E1,

already knowing that the outcome is in E2. Denoted

Pr[E1|E2].

• Example: let’s say I’m playing cards with a 52-card deck. I

have already drawn three cards; all three were clubs. What is

the probability that the fourth card is a club?

• Pr[draw 4 clubs | first three cards were a club]

• How many outcomes are there for the fourth card? How many

of them are a club?

• 49 outcomes. 10 of them are clubs. Probability: 10/49.

25

Conditional Probability Second Example

Conditional probability can be a bit unintuitive at times! Break it

down to be sure you’re getting the right answer.

• Let’s say that I have two children. One of them is a boy.

What is the probability that both of them have boys?1

• Outcomes for my children: BB BG GB GG

• Outcomes consistent with ”one of them is a boy”: BB BG

GB

• Probability that both of them are boys: 1/3

• Rephrasing the question: Let’s say I have two children. They

are not both girls. What is the probability that they are both

boys?
1Assume an over-simplified world where a given child is a “girl” or “boy” with

probability 1/2

26

Independence

• Idea: two events are independent if one does not have any

impact on the other

• Example: let’s say I flip a (fair) coin twice. Let E1 be the

event that the first flip is heads, and E2 be the event that the

second flip is heads. E1 and E2 are independent.

• Formal definition: E1 and E2 are independent if

Pr[E1 | E2] = Pr[E1] and Pr[E2 | E1] = Pr[E2].

• I am not going to ask you to prove that two events are

independent formally. But, let’s look at one example.

27

Proving Independence

Example: let’s say I flip a (fair) coin twice. Let E1 be the event

that the first flip is heads, and E2 be the event that the second flip

is heads. E1 and E2 are independent.

Definition 1

E1 and E2 are independent if Pr[E1 | E2] = Pr[E1] and

Pr[E2 | E1] = Pr[E2].

All possible outcomes: HH HT TH TT

28

Proving Independence

Example: let’s say I flip a (fair) coin twice. Let E1 be the event

that the first flip is heads, and E2 be the event that the second flip

is heads. E1 and E2 are independent.

Definition 2

E1 and E2 are independent if Pr[E1 | E2] = Pr[E1] and

Pr[E2 | E1] = Pr[E2].

All possible outcomes: HH HT TH TT

Pr[E2] = 1/2

29

Proving Independence

Example: let’s say I flip a (fair) coin twice. Let E1 be the event

that the first flip is heads, and E2 be the event that the second flip

is heads. E1 and E2 are independent.

Definition 3

E1 and E2 are independent if Pr[E1 | E2] = Pr[E1] and

Pr[E2 | E1] = Pr[E2].

All possible outcomes: HH HT TH TT

Pr[E2 | E1]

30

Proving Independence

Example: let’s say I flip a (fair) coin twice. Let E1 be the event

that the first flip is heads, and E2 be the event that the second flip

is heads. E1 and E2 are independent.

Definition 4

E1 and E2 are independent if Pr[E1 | E2] = Pr[E1] and

Pr[E2 | E1] = Pr[E2].

All possible outcomes: HH HT TH TT

Pr[E2 | E1] = 1/2

Again: we’ll normally be looking at this intuitively.

31

Independence: Examples

• Let’s say I have a bag of balls, half of which are black, and
half of which are white. I take a ball out of the bag and look
at what color it is. Then I take another ball out of the bag
and look at what color it is.

• Event 1: The first ball is white.

• Event 2: The second ball is black

• Are these events independent?

32

Independence: Examples

• Let’s say I have a bag of balls, half of which are black, and
half of which are white. I take a ball out of the bag and look
at what color it is. Then I take another ball out of the bag
and look at what color it is.

• Event 1: The first ball is white.

• Event 2: The second ball is black

• Are these events independent?

• No! If the first ball is white, there will be more black balls

then white balls remaining in the bag for the next draw.

33

Independence: Examples

• Let’s say I shuffle a deck of cards and look at the top card. I

replace the card and shuffle the deck again and look at the

top card. Is the event that the first card is red, and the event

that the second card is red, independent?

• Yes

• Let’s say I roll a 20-sided die. Is the event that the resulting
number is a multiple of 3 independent of the event that the
result is even?

• Yes. (Multiples of 3 are: 3 6 9 12 15 18; half of these are

even.)

34

Why independence is useful

• If A and B are independent, then

Pr[A and B] = Pr(A) · Pr(B).

• What is the probability of flipping 10 heads in a row? All 10

are independent, so 1/210.

35

Why independence is useful

• Let’s say you’re in a class of n students. Every day the

professor asks a student to explain the previous night’s

reading (the student is chosen by rolling an n-sided die).

What is the probability that you won’t be chosen after all k

lectures in the course?

• Probability (not being chosen on one day) is (1− 1/n)

• Probability (not being chosen after k days) is (1− 1/n)k

• Side note: we can put this in a more readable form.

(1− 1/n)k = ((1− 1/n)n)k/n ≈ 1/ek/n

36

Cuckoo Hashing

A randomized algorithm

• Before we finish talking about probability, let’s look at an

example of a randomized algorithm

• Hashing: way to implement a dictionary with constant-time

insert, delete, lookup

• Hashing is randomized, so performance can be bad sometimes

• Cuckoo hashing: O(1) worst-case lookup. (Inserts are usually

constant-time, but can be expensive sometimes.)

37

Reminder: Dictionary

• You’ve seen in 136 and/or 256

• Idea: want to store n key/value pairs

• Can insert new key/value pair

• Query: given a key, get the associated value stored in the

dictionary

• How fast can we do inserts and queries? How much space do
we need?

• Can get O(1) expected time for both operations using O(n)

space.

38

Assumptions on hash

• Let’s assume we have access to a uniform random hash h that

hashes any item to a value in {0, . . . ,M}.

• For any x and any i ∈ {0, . . . ,M}, Pr(h(x) = i) = 1/M

• We assume h is independent: so even if we know that

h(y) = a and h(z) = b (and so on), then we still have “For

any x and any i ∈ {0, . . . ,M}, Pr(h(x) = i) = 1/M”

• Assume that M is much bigger than the number of items in

our dataset. (Like M = 264)

39

Building a Dictionary (doesn’t quite work yet)

To store n items:

• Allocate an array A with cn slots for some c . Each slot must

be large enough to store a key/value pair

• Insert x : store item x at position h(x)%cn

• Query q: look at position h(q)%cn and see if the key is stored

there

• If we can do this: O(1) worst-case query, insert; always

correct.

• What’s the problem with this approach?

40

Collisions

• Several items might hash to
the same location. How can
we resolve this?

• Chaining

• Linear Probing

41

Chaining

• Each entry in our array A is the head of a singly-linked list

• Insert: add item to linked list

• Query: find item in linked list

• Advantages?

• Space-efficient (just need pointers for linked list)

• Simple

• Good worst-case insert time

• Disadvantages?

• Cache inefficient

42

Linear Probing

• Set c > 1 (often have 1.5n or 2n slots in practice)

• Insert: attempt to insert x into h(x)%cn. If slot is full, keep

moving down the table to find the next empty slot.

• Query: start at h(x)%cn. Need to keep checking until find the

item, or find an empty slot

• Advantages?

• Somewhat space-efficient, good average insert and query time

• Cache-efficient!

• Disadvantages?

• Not that efficient; performance is terrible if table fills up

43

Cuckoo Hashing [Pagh, Rodler 2005]

• A third method of resolving collisions

• Queries are O(1) worst case

• Insert is still O(1) on average

44

Cuckoo Hashing Invariant

• Have two hash functions h1, h2

• Table of size cn with c = 2 (for now)

• Invariant: item x is either stored at h1(x)%cn, or at slot

h2(x)%cn.

• We’ll come back to inserts. But how can we query? How

much time does a query take?

45

Cuckoo Hashing Inserts

c a x u

0 1 2 3 4 5

a

h1(a) = 1
h2(a) = 2

e

h1(e) h2(e)

• Let’s say we want to insert

a new item a. How can we

do that?

• Easy case: if h1(a)%cn or

h2(a)%cn is free, can just

store a immediately.

• What do we do if both are

full?

46

Cuckooing!

47

Cuckoos kick other

bird’s eggs out of

the nest, replacing

them with their

own.

Cuckoo Hashing Inserts

c a x u

0 1 2 3 4 5

e

h1(e) h2(e)

h2(u) = 0

h1(c) = 1

• Let’s say we want to insert

a new item a. How can we

do that?

• Easy case: if h1(a)%cn or

h2(a)%cn is free, can just

store a immediately.

• What do we do if both are

full?

• Move one of the items in

the way to its other slot!

• If there’s an item THERE,

recurse

48

Cuckoo Hashing Example on Board

Does this always work?

• Recall our invariant: every item x is stored at h1(x)%cn or

h2(x)%cn

• Is there a simple example where this is impossible?

• One option: three items x , y , and z all have the same two
hashes

• What is the probability that this happens?

• 1− O(1/n) (outside the scope of the course; may give a

simplified explanation Thursday)

49

Cuckoo Hashing Performance

• Queries: O(1) worst case

• Cache performance?

• Two cache misses per query. Is that good?

• Kind of! Probably better than chaining. But linear probing has

only ≈one cache miss on any query, so long as log n items fit

in a cache line

• Insert: Still O(1) on average (we’ll come back to this)

• Cache performance?

• One cache miss per “cuckoo”–OK but not great

• In practice, inserts are really pretty bad for cuckoo hashing due

to poor constants

• Idea: cuckoo hashing does great on queries (though with

potentially worse cache efficiency than linear probing), but

pays for it with expensive inserts

50

Expectation

Random Variable

• A variable whose values depend on the outcome of a random

process

• Let’s say I draw four cards from a deck of cards. Let S be a

random variable indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• Since each card is a club with probability (about) 1/4, and we

draw 4 cards, it seems like S should generally be around 1.

Can we formalize this intuition?

51

Expectation

• When we make random decisions, we often care about the

average outcome

• Example: let’s say I flip a fair coin until I get a heads. How

long will it take me on average?

• 2 flips

• Another example: Consider a quicksort implementation that

chooses each pivot at random. This algorithm takes

O(n log n) time on average.

52

Expectation

• Let’s say a random variable X takes values {1, . . . k}

• Then E[X] =
∑k

i=1 i · Pr[X = i]

53

Expectation example

Let’s say I roll a 20-sided die, and I give you money equal to the

number that shows up on top. I charge $10 to play this game.

Should you play it?

Let’s look at what you win on average

• Random variable X to represent how much you win

• E[X] =
∑20

i=1 i/20

• E[X] = 20·21
2·20 = 10.5

• So yes, you’ll win $.50 on average

54

Useful expectation fact

• If X is a 0/1 random variable, then E[X] = Pr[X = 1]

55

Independence of Random Variables

• Two random variables are independent if the value of 1 does

not depend on the other.

• Example: let X1 denote the number of heads on my first coin

flip, and X2 denote the number of heads on my second coin

flip. These are independent.

• But: let XH denote the number of heads I flip over k coin

flips, and XT denote the number of tails. These are not

independent.

56

Linearity of Expectation

• Let’s say a random variable can be represented as the sum of

other random variables

• X = X1 + X2 + . . . + Xn

• Then E[X] = E[X1] + E[X2] + . . . + E[Xn]

• True even if the Xi are not independent!!!

57

Using Linearity of Expectation

• Let’s say I flip a coin 100 times. How many heads will I see on

average?

• X = number of heads I see in 100 flips.

•

Xi =

1 if the ith flip is heads

0 otherwise

• We can see that E[Xi] = 1/2.

• X = X1 + X2 + . . .Xn

• E[X] = 50 by linearity of expectation

58

Linearity of Expectation Example 2

• Hashing with chaining. Let’s say we hash n items to to n

slots. What’s the expected length of each chain?

• X j = length of a chain j

• X j
i = 1 if the ith item hashes to slot j

• E[X j
i] = 1/n

• E[X j] =
∑n

i=1 E[X j
i] = 1

59

Linearity of Expectation Example 3

• Let’s say we want to Bubble Sort an array A, where A is

randomly permuted

• How many swaps does Bubble Sort perform?

• Fact: number of swaps performed by Bubble Sort is exactly

the number of inversions in A (pairs i ,j such that i < j but

A[i] > A[j])

• Rephrasing: how many inversions are there in a

randomly-permuted array?

60

Linearity of Expectation Example 3

• X = number of inversions in A. What is E[X]?

• Let Xij = 1 if i , j represent an inversion; 0 otherwise

• Are the Xij independent?

• No! If a, b is an inversion, and b, c is an inversion, then a, c is

an inversion.

• Reason: know a < b < c , but A[a] > A[b] and A[b] > A[c], so

A[a] > A[c].

61

Linearity of Expectation Example 3

• X = number of inversions in A. What is E[X]?

• Let Xij = 1 if i , j represent an inversion; 0 otherwise

• X =
∑

i ,j Xij

• E[X] =
∑

i ,j E[Xij]

• E[Xij] = 1/2

• E[X] = n(n − 1)/4

62

Limits of Expectation

• Let’s say I charge you $1000 to play a game. With probability

1 in 1 million, I give you $10 billion. Otherwise, I give you $0.

• Would you play this game?

• Answer: probably not. You’re just going to lose $1000.

• But expectation is good! You expect to win $9000.

63

Concentration bounds

• Rather than giving the average performance, bound the

probability of bad performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads.

But what is the probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the

probability that the running time is more than O(n log n)?

• Answer: O(1/n)

64

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1− O(1/n)

• So: quicksort is O(n log n) with high probability

• Cuckoo hashing can maintain its invariant with high

probability

• Cuckoo hashing inserts require O(log n) swaps with high

probability

• Linear probing queries require O(log n) time with high

probability. (Contrast to O(1) in expectation!)

• With high probability is always with respect to a variable.

Assume that it’s with respect to n unless stated otherwise.

65

WHP example

• How many coins do I need to flip before I see a heads with

high probability? (With respect to some variable n)

• If I flip k times, I see a heads with probability 1− 1/2k .

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).

66

Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration

bounds

• Expectation states how well the algorithm does on average.

Could be much better or worse sometimes!

• With high probability gives a guarantee that will almost

always be met: if n is large it becomes vanishingly unlikely

that the bound will be violated.

67

Hashing Analysis

If we have time

• What is the probability that the first slot is empty when

inserting using linear probing?

• What is the expected length of a chain when using chaining?

• Quicksort analysis

68

	Finishing up Assignment 1 Code Review
	Probability
	Cuckoo Hashing
	Cuckoo Hashing Example on Board
	Expectation
	Hashing Analysis

