3-SUM

The problem on the midterm

THE PROBLEM

- Given 3 arrays A, B, and C
- Each consists of n integers
- Problem: give *i*, *j*, *k* such that A[i] + B[j] = C[k]

Can someone give me a simple algorithm to solve this problem?

IS THIS ACTUALLY WORTH SOLVING?

• Yes, surprisingly!

- Important subroutine for:
 - Finding 3 collinear points (important for ruling out corner cases in computational geometry)
 - Problems in graphs (finding 0-sum triangles)
 - Pattern matching (problems involving dictionaries of large strings

BETTER ALGORITHM

- Can solve it in $O(n^2)$
- Another "walk from both sides" algorithm
- Idea: sort A and B. (can also sort C if you want)
- Fix a k
- Can find in O(n) time if there is an i, j such that A[i] + B[j] = C[k]
- Invariant: if pointing at i' and j', then the correct i and j satisfy i $\geq =$ i', and j $\leq =$ j'

WALK FROM BOTH SIDES 68 + 3 = 7 | > 53 So we decrement B's pointer A: **B**:

WALK FROM BOTH SIDES

WALK FROM BOTH SIDES

WALK FROM BOTH SIDES 44 + 3 = 47 < 53 So we increment A's pointer A: **B**:

WALK FROM BOTH SIDES Done! A: **B**:

RUNNING TIME

- How long does all this take?
- Time to walk?
- How many values of C do we need to iterate over?

TAKING 3SUM FURTHER

- That was a cool algorithm! But it's a bit simple to implement
- We're implementing a version of 3-SUM that uses *blocking*. It has much better efficiency in terms of cache misses.

 (An aside: I believe this tiled version of 3-SUM will not be much faster, if it's faster at all. This midterm is about what you learned: taking a new algorithm, and turning it into efficient code.)

MAGIC HASH FUNCTION

```
uint64_t hash3(uint64_t value){
    return (value * 0x765a3cc864bd9779) >> (64 - SHIFT)
}
```

- Why is this magic?
- If X + Y = Z, then either:
 - hash3(X) + hash3(Y) = hash3(Z)
 - hash3(X) + hash3(Y) = hash3(Z) + 1

- You don't need to know why this works. (Short version: taking mod of both sides of an equation retains equality)
- You DO need to know: how many values can this hash output?
 - Answer: 1 << SHIFT

FINAL ALGORITHM

- Create 1 << SHIFT hash buckets for A, called BucketA
 - For each item x in A, store x in bucket BucketA[hash3(x)]
- Create 1 << SHIFT hash buckets for B, called BucketB
 - For each item x in B, store x in bucket BucketB[hash3(x)]
- Create 1 << SHIFT hash buckets for C, called BucketC
 - For each item x in C, store x in bucket BucketC[hash3(x)]

FINAL ALGORITHM

```
For a = 1 to (1 \le SHIFT)
```

```
For b = 1 to (1 << SHIFT)
```

```
Call the simple 3SUM algorithm with lists: BucketA[a],
BucketB[b], BucketC[(a + b) (modulo 1 << SHIFT)]
Call the simple 3SUM algorithm with lists: BucketA[a],
```

```
BucketB[b], BucketC[(a + b + 1) (modulo 1 << SHIFT)]</pre>
```

QUICK COMMENTS

- How to store hash buckets?
 - You don't know the size ahead of time
 - But, want to be cache-efficient within each bucket
- Need to find original (unsorted) value
- Any questions?