3-SUM

The problem on the midterm

THE PROBLEM

- Given 3 arrays A, B, and C
- Each consists of n integers
- Problem: give i, j, k such that $\mathrm{A}[\mathrm{i}]+\mathrm{B}[\mathrm{j}]=\mathrm{C}[\mathrm{k}]$

Can someone give me a simple algorithm to solve this problem?

IS THIS ACTUALLY WORTH SOLVING?

- Yes, surprisingly!
- Important subroutine for:
- Finding 3 collinear points (important for ruling out corner cases in computational geometry)
- Problems in graphs (finding 0-sum triangles)
- Pattern matching (problems involving dictionaries of large strings

BETTER ALGORITHM

- Can solve it in $O\left(n^{2}\right)$
- Another "walk from both sides" algorithm
- Idea: sort A and B. (can also sort C if you want)
- Fix a k
- Can find in $O(n)$ time if there is an i, j such that $\mathrm{A}[\mathrm{i}]+\mathrm{B}[\mathrm{j}]=\mathrm{C}[\mathrm{k}]$
- Invariant: if pointing at i ' and j ', then the correct i and j satisfy $\mathrm{i}>=\mathrm{i}$ ', and $\mathrm{j}<=\mathrm{j}$ '

WALK FROM BOTH SIDES

A:	3	5	27	33	46	51	67	89

B:	2	7	8	9	44	55	67	68

Target: C[k] = 53

WALK FROM BOTH SIDES

$68+3=71>53$

So we decrement B's pointer

Target: C[k] = 53

WALK FROM BOTH SIDES

Target: C[k] = 53

WALK FROM BOTH SIDES

Target: C[k] = 53

WALK FROM BOTH SIDES

$$
44+3=47<53
$$

So we increment A's pointer

Target: C[k] = 53

WALK FROM BOTH SIDES

Target: C[k] = 53

WALK FROM BOTH SIDES

Target: C[k] = 53

WALK FROM BOTH SIDES

B:	2	7	8	9	44	55	67	68

Target: C[k] = 53

WALK FROM BOTH SIDES

Target: C[k] = 53

WALK FROM BOTH SIDES

Target: C[k] = 53

WALK FROM BOTH SIDES

Target: C[k] = 53

WALK FROM BOTH SIDES

Done!

Target: C $[\mathrm{k}]=53$

RUNNING TIME

- How long does all this take?
- Time to walk?
- How many values of C do we need to iterate over?

TAKING 3SUM FURTHER

- That was a cool algorithm! But it's a bit simple to implement
- We're implementing a version of 3-SUM that uses blocking. It has much better efficiency in terms of cache misses.
- (An aside: I believe this tiled version of 3-SUM will not be much faster, if it's faster at all. This midterm is about what you learned: taking a new algorithm, and turning it into efficient code.)

MAGIC HASH FUNCTION

```
uint64_t hash3(uint64_t value){
    return (value * 0x765a3cc864bd9779) >> (64 - SHIFT)
}
```

- Why is this magic?
- If $X+Y=Z$, then either:
- hash3(X) + hash3(Y) = hash3(Z)
- hash3(X) + hash3(Y) = hash3(Z) + 1

MAGIC HASH FUNCTION: EXPLANATION

```
uint64_t hash3(uint64_t value) {
    return (value * 0x765a3cc864bd9779) >> (64 - SHIFT)
}
```

- You don't need to know why this works. (Short version: taking mod of both sides of an equation retains equality)
- You DO need to know: how many values can this hash output?
- Answer: 1 << SHIFT

FINAL ALGORITHM

- Create 1 << SHIFT hash buckets for A, called BucketA
- For each item x in A , store x in bucket BucketA $[$ hash3(x$)$]
- Create $1 \ll$ SHIFT hash buckets for B, called BucketB
- For each item x in B, store x in bucket BucketB[hash3(x)]
- Create 1 << SHIFT hash buckets for C, called BucketC
- For each item x in C, store x in bucket BucketC[hash3(x)]

FINAL ALGORITHM

$$
\begin{aligned}
& \text { For } \mathrm{a}=\mathrm{I} \text { to }(\mathrm{I} \ll \text { SHIFT }) \\
& \text { For } \mathrm{b}=\mathrm{I} \text { to }(\mathrm{I} \ll \text { SHIFT })
\end{aligned}
$$

Call the simple 3SUM algorithm with lists: BucketA [a], BucketB[b], BucketC[(a + b) (modulo $1 \ll$ SHIFT)]

Call the simple 3SUM algorithm with lists: BucketA[a], BucketB[b], BucketC[(a + b + 1) (modulo $1 \ll$ SHIFT)]

QUICK COMMENTS

- How to store hash buckets?
- You don't know the size ahead of time
- But, want to be cache-efficient within each bucket
- Need to find original (unsorted) value
- Any questions?

