
Applied Algorithms Lec 7: Mini-Midterm and

Optimization/Code Review

Sam McCauley

October 21, 2021

Williams College



Admin

• Assignment 1 graded

• Assignment 2 almost done!

• One of the harder assignments in the course

• Valgrind is your friend! Use it if you have seg faults, or
unusual errors, or just to double-check that your program
doesn’t have memory issues

• make clean; make debug

• valgrind ./test.out testData.txt timeData.txt

• More than half the advice I’ve given in office hours this week

was ”let’s run valgrind and see what it says”

1



Mini-Midterm Reminders

• Released right after class

• No collaboration!

• Deadline is firm unless in exceptional cases

• Please do still email me if something comes up! But generally

looking for exceptional circumstances that would normally

delay a midterm. (Serious illness, personal emergency, etc.)

• No automated testing or leaderboard

• No TA office hours

• I’ll hold office hours, but really just to help with basic

structural things—no hints

2



Brief Assignment 2 discussion

• Any remaining questions about Assignment 2?

3



Mini Midterm 1: External Memory

3 SUM



Optimization (And Assignment 1

Review)



Plan for this topic

• First, talk about how various techniques can make code more
efficient

• ...or less efficient

• Focus on loops, and on compiler options

• Then, look back a bit at Assignment 1. Talk about various

strategies, and what some final products looked like

• Also review the problem set questions

4



Taking out expensive operations

for(int i = 0; i < strlen(str1); i++){

str1[i] = ’a’;

}

• What’s wrong with this code? How long does it take?

• Does the compiler optimize this out?

• It can’t: we’re changing the array, which could change its

length. (Of course, we know that we’re never setting any

values to 0, but the compiler doesn’t check for that.)

5



More subtle issues

int len = strlen(str1);

for(int i=0; i < len; i++){

str1[i] = str1[0];

}

int len = strlen(str1);

int start = str1[0];

for(int i=0; i < len; i++){

str1[i] = start;

}

• Version on the right runs 2-3x faster (on TCL 312 machines,

compiled with gcc) even with optimizations on

• Why is that?

• Don’t need to look up value! (Compiler doesn’t know it

doesn’t change after the first iteration)

6



Theme of user optimizations vs compiler optimizations

• The compiler will do the best optimizations it can that work

for all code

• Bear in mind: only common optimizations are implemented

• Opportunities for you: what do you know about your data,

and about your methodology, that allows for further

efficiency?

7



Loop Unrolling

• Classic technique to improve loop efficiency

• What are the costs of each iteration of a simple for loop?

for(int x = 0; x < 1000; x++){

total += array[x];

}

8



Loop Unrolling

for(int x = 0; x < 1000; x++){

total += array[x];

}

• Need to do a branch every loop

• Instruction pointer jump every loop (cost of “jumping back”

varies; outside scope of course)

• Need to compare every loop

• Need to increment every loop

9



Unrolled Loop

for(int x = 0; x < 1000; x+=5){

total += array[x];

total += array[x+1];

total += array[x+2];

total += array[x+3];

total += array[x+4];

}

• In short: repeat body of the loop multiple times. What does

this gain us?

10



Unrolled Loop

for(int x = 0; x < 1000;

x++){

total += array[x];

}

• Branch every loop

• Instruction pointer jump every

loop

• Compare every loop

• Increment every loop

for(int x = 0; x < 1000;

x+=5){

total += array[x];

total += array[x+1];

total += array[x+2];

total += array[x+3];

total += array[x+4];

}

• Branch every 5 loops

• Instruction pointer jump every

5 loops

• Compare every 5 loops

• Increment every 5 loops* 11



What did we need to know to make this substitution?

• Needed array size to be a multiple of 5

• If not: still (might) give speedup with checks between each

substitution (number of branches and compares does not

decrease in that case)

12



Disadvantages of Loop Unrolling?

• Seems like we break even at worst?

• Loop unrolling increases code size

• Can hurt performance if important parts of code no longer fit

in cache

• Remember: fetching instructions can require cache misses!

13



Automatic loop unrolling?

• Why can’t gcc unroll our loops?

• It can!

• Need to turn on specifically (not enabled at any optimization

level)

• -O3 does a specific kind of unrolling of nested loops

14



Compiler optimizations?

• We’ve stumbled upon a classic (and thematic) problem in

optimization: time vs space of the machine code itself

• Many optimizations of code reduce the number of operations

(or their total time), but increase the size of the code

itself—potentially leading to cache misses

15



Revisiting compiler flags

• -O0: No optimizations

• -O1: Some optimizations; may take longer to compile than

-O0

• -O2: Turns on “nearly all” optimizations that do not involve a

space-time tradeoff

• -O3: More optimizations. May lead to larger final programs

• -Ofast: Even more optimizations. Most notable is reordering

floating point operations (can lead to correctness issues)

16



Optimizations and this course

• Our projects generally involve really small programs. This is

why the very optimized versions tend to work well for your

code.

• Not advised in general

• Example: Gentoo user manual. (Gentoo is a linux distribution

in which all software is compiled from scratch. So this is

advice for people compiling large software like the linux kernel,

chromium, libreoffice, etc. (as well as, of course, very small

utilities like git))

17



Gentoo optimization advice

18



One more common cost for time-space tradeoff

• We’ve talked about how costly it is to call a function

• Well, most of the time, we don’t really need function calls at

all, do we? If the function doesn’t call another function, can

just put the code for the function directly into the code

• Called function inlining

• Tradeoff?

19



Function Inlining

• Can do it yourself. May not be a good idea. (Makes code

harder to read.)

• gcc will judge each function for you and inline it if gcc thinks

it’s a good idea (flag to get gcc to do this is

--finline-functions; it is turned on with -O2)

• Can use inline keyword. gcc will try particularly hard to
inline it for you, and if it can’t will tell you if you have
-Winline flag on

• Can use inline ; does the same thing. Some compilers

may like this better

• Probably want to always use static inline

• Can also use attribute ((always inline)) which really

forces it to inline even if optimizations are turned off

20



One more optimization flag

• --march=native

• tells gcc to use instructions specific to this processor. May

increase speed

• Only disadvantage: your compiled binary may not run on

other computers unless they have an identical processor

21



Looking Back at Assignment 1



Some comments

• Lots of great submissions!

• It seems that algorithmic improvements are more important

than engineering improvements for Assignment 1

• (I believe the reverse is the case for Assignment 2)

22



Leaderboard at the end

• Most students were in the ballpark of 4-8 seconds

23



Where do our costs come from in Assignment 1?

• Three O(n2n/2) terms:

• Calculating the height of all subsets

• Sorting the table

• Performing a binary search for each first-half-subset

Let’s improve all of these to O(2n/2). (The fastest submission is a

very clean implementation of all three of these.)

24



Calculating the height in constant time

• What’s faster than calculating the height from scratch each

time?

• Only adding on “new” items

• That’s O(1) on average, but it’s a pain to implement

• Can we change our ordering to get improved performance?

• First idea: Gray codes

25



Gray codes

• (Named after Frank Gray)

• Reorder all subsets such

that each differs by 1 bit

• Always possible; lots of

clean implementations that

can iterate through

• So far: doesn’t do too much

to make two towers faster

26



Calculating the height in constant time

• What’s faster than calculating the height from scratch each

time?

• Only adding on “new” items

• That’s O(1) on average, but it’s a pain to implement

• Can we change our ordering to get improved performance?

• Next idea: fill in set one item at a time

27



Calculating the height in constant time

28



Sorting in linear time??

• Not possible in general, but our data has special structure

• Remember how we could more efficiently build up the heights.

What would happen if we sorted the array at the same time?

29



Sorting in linear time (from best-performing solution)

30



Binary search

• Really really costly

• Let’s look at two attempts to engineer a more efficient binary

search

31



Inlined, Unrolled binary search

• From “best last year”

• Did much better than one would think—we’ll talk about why

in a second

32



Why is binary search really slow?

• Cache efficiency! Lots of cache misses

• Also branch mispredictions

• Can we avoid these?

33



Code that avoids these

• What the heck?

34



Eytzinger layout

• Comment in code led to github that referenced a paper about

a way to rearrange arrays to lead to better binary search

performance

35



Analysis

• Recall: normal binary search is O(log2N/B) cache misses

• What about with this layout?

• Answer: O(log2N/B) cache misses!

• What gives?

• By the way: there IS a layout that gives O(logB N/B) cache

misses. But it has issues with constants.

36



Analysis

• Let’s say I’m at a given branch in my binary search. What can

I say about where I’ll be 2 branches from now?

• Idea: with this layout, we know where we’re going ahead of

time. While doing previous operations, can prefetch future

cache accesses so that they’re already available by the time

we get there.

• Prefetching is very rare as an optimization technique. But this

is a cool example of it

37



Getting rid of the binary search

• That said, even these highly optimized binary searches are

costly. Can we avoid them entirely?

• Hint: the high cost of binary search is that we’re jumping all

over the table. Can we group entries so that we don’t need to

jump all over the table?

• Stronger hint: if I have two similar heights for the first half of

my blocks, I’m going to be doing very similar searches in the

second half...

38



Use two tables

• Idea: make a table for both halves of the input; sort each.
O(2n/2) time with the optimizations from before.

• This does double our space usage!

• Now, can do a merge-like operation to determine, for each set

in the first half, find the optimal set in the second half

• Same idea as 3SUM

• O(2n/2) total time.

• Cache efficiency? O(2n/2/B).

39



(Pretty much) rest of best solution

40



Lessons

• Cache efficiency is king

• In this case, most optimizations depended on the problem
itself. gcc can’t help with that

• I think Assignment 2 is more optimization-heavy once it fits in

cache.

• Looks like I need to increase the input size a bit next time to

make sure the final times are macroscopic

41



Problem Set Questions On Board


	Mini Midterm 1: External Memory 3 SUM
	Optimization (And Assignment 1 Review)
	Looking Back at Assignment 1
	Problem Set Questions On Board

