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Admin

• Office hours changed:

• Sam: Mon 2:30–4, 5–6:30; Wed 2–4

• Chris: Tue 3–5, Wed 8–10

• Updated on website
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Questions about Assignment 2?
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Matrix Multiplication in External

Memory



Compute Product Directly

for i = 1 to n:

for j = 1 to n:

for k = 1 to n:

C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many I/Os?

• Assume matrices are stored
in row-major order.

• First: assume 3n2 < M

• After O(n2/B) I/Os, all

three matrices are in

memory, and don’t have

any more I/Os.

• What if nB > M?

• Answer: O(n3) I/Os.

Every inner loop

operation requires an

I/O for B. 3



Any ideas for how to improve this?

• One idea: transpose B.

• Another idea: swap the loops!

• -O3 optimization of gcc actually tries to do this automatically

(Very cool)

for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) I/Os: (assume B < n to make things

easier)
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Any ideas for how to improve this?

for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) I/Os: (assume B < n to make things

easier)

• Let’s say A[i ][k] is a cache miss. No more cache misses until

A[i ][k ′] with k ′ = k + B.

• Let’s say B[k][j ] is a cache miss. No more cache misses until

B[i ][j ′] with j ′ = j + B.

• Let’s say C [i ][j ] is a cache miss. No more cache misses until

C [i ][j ′] with j ′ = j + B.

• Sum up each
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Improvement in practice
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We haven’t used the cache yet

• No Ms in any running times—except when the whole problem

fits in cache

• Why? All algorithms so far have read the data once and then

thrown it away.

• Goal: bring items into cache so that we can perform many

computations on them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal.

7



Blocking

• Standard technique for improving cache performance of

algorithms.

• Remember from before: cache efficiency can get WAY better

when the problem fits in cache. Let’s find subproblems that

can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve in O(M/B) I/Os

• Efficiently combine them for a cache-efficient solution
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Blocked Matrix Multiplication

• Split A, B, and C into blocks of size M/3

•
√

M/3×
√
M/3-sized blocks

• Let’s say the number of rows and columns in our blocks is

(each) T = b
√
M/3c. Assume that T divides n for now.

• Multiply blocks one at a time

• Need some structure to help us make this work

9



Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the

matrices, and multiply (and add) them as normal, we obtain the

same result as we would have in normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication
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Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

17 15 20 4

15 3 20 8

1 10 15 2

3 19 3 14

 ·


4 12 9 1

4 6 11 2

13 18 8 20

3 11 18 9

 =



[
17 15

15 3

]
·
[
4 12

4 6

]
+

[
20 4

20 8

]
·
[
13 8

3 11

] [
17 15

15 3

]
·
[
9 1

11 2

]
+

[
20 4

20 8

]
·
[
8 20

18 9

]
[
1 10

3 19

]
·
[
4 12

4 6

]
+

[
15 2

3 14

]
·
[
13 8

3 11

] [
1 10

3 19

]
·
[
9 1

11 2

]
+

[
15 2

3 14

]
·
[
8 20

18 9

]

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Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (recall that

T 2 ≤ M/3)

• Do a normal n/T × n/T matrix multiplication
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Blocked Matrix Multiplication Pseudocode

MatrixMultiply(A, B, C, n, T):

for i = 1 to n/T:

for k = 1 to n/T:

for j = 1 to n/T:

A’ = TxT matrix with upper left corner A[Ti][Tk]

B’ = TxT matrix with upper left corner B[Tk][Tj]

C’ = TxT matrix with upper left corner C[Ti][Tj]

BlockMultiply(A’, B’, C’, T)

BlockMultiply(A, B, C, n):

for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model 13



Analysis

• Creating A′, B ′, C ′ and passing them to BlockMultiply all

can be done in O(T 2/B + T ) cache misses. If B2 = O(M)

then we can simplify this to O(M/B). (Called the “tall cache

assumption.”)

• BlockMultiply only accesses elements of A′, B ′, C ′. Since

all three matrices are in cache, it requires zero additional

cache misses

• Therefore, our total running time is the number of loop

iterations times the cost of a loop. This is

O((n/T )3 ·(T 2/B)) = O((n/
√
M)3 ·(M/B)) = O(n3/B

√
M).
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Implementation questions!

• What do we do if n is not divisible by T?

• Easy answer: pad it out! Doesn’t change asymptotics.

• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache
and we’re ignoring that space is used for other programs,
other variables, etc.

• Experiment! Try different values of M and see what’s fastest

on a particular machine.

• Is blocking actually worthwhile?

• Yes; it is used all the time to speed up programs with poor

cache performance.

• (Not a panacea; some programs (like linear scan, binary

search) can’t be blocked.)
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Sorting in External Memory



What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is
n
B log2

n
B .

• How about quicksort?

• Essentially same; partition is O(n/B); total is n
B log2

n
B .

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?
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Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does

n log n come from?

• Answer: each time you compare two numbers, can only have

two outcomes.

• Each time we bring a cache line into cache, how many more

things can we compare it to?
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Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256

1 2 4 . . .
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M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache

misses)
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Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .
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More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this

fits!)

• When all B slots are empty for the array, take B more items

from the array in cache.

• Example on board
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Analysis

• Divide array into M/B parts; combine in O(N/B) cache

misses.

• Recursion:

T (N) =
M

B
T (N/(M/B)) + O(N/B)

T (B) = O(1)

• Solves to O( n
B logM/B n/B) cache misses

• Optimal!
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Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of

Mergesort

• Another method is most popular in practice: Timsort
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Timsort

• We won’t go over in detail

• Idea: one cache-efficient pass over the array using O(n/B)

cache misses that tries to sort things as much as possible

• Then, a super optimized merge sort

• Used in Python, Java, Rust, Android
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External Memory Sorting

• M/B way merge sort is most efficient

• Timsort is very popular in practice; uses a simpler blocking

approach to stay cache-friendly.
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Optimization (And Assignment 1

Review)



Plan for this topic

• First, talk about how various techniques can make code more
efficient

• ...or less efficient

• Focus on loops, and on compiler options

• Then, look back a bit at Assignment 1. Talk about various
strategies, and what some final products looked like

• May continue this a bit Thursday if we run out of time

26



Taking out expensive operations

for(int i = 0; i < strlen(str1); i++){

str1[i] = ’a’;

}

• What’s wrong with this code? How long does it take?

• Does the compiler optimize this out?

• It can’t: we’re changing the array, which could change its

length. (Of course, we know that we’re never setting any

values to 0, but the compiler doesn’t check for that.)
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More subtle issues

int len = strlen(str1);

for(int i=0; i < len; i++){

str1[i] = str1[0];

}

int len = strlen(str1);

int start = str1[0];

for(int i=0; i < len; i++){

str1[i] = start;

}

• Version on the right runs 2-3x faster even with optimizations

on

• Why is that?

• Don’t need to look up value! (Compiler doesn’t know it

doesn’t change after the first iteration)
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