Applied Algorithms Lec 6: External Memory and Optimization

Sam McCauley October 21, 2021

Williams College

Admin

• Office hours changed:

• Sam: Mon 2:30-4, 5-6:30; Wed 2-4

• Chris: Tue 3-5, Wed 8-10

• Updated on website

Questions about Assignment 2?

Matrix Multiplication in External

Memory

Compute Product Directly

```
for i = 1 to n:
  for j = 1 to n:
  for k = 1 to n:
    C[i][j] += A[i][k] +
    B[k][j]
```

- Recall: $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$
- How many I/Os?
- Assume matrices are stored in row-major order.
 - First: assume $3n^2 < M$
 - After O(n²/B) I/Os, all three matrices are in memory, and don't have any more I/Os.
 - What if nB > M?
 - Answer: O(n³) I/Os.
 Every inner loop
 operation requires an I/O for B.

Any ideas for how to improve this?

- One idea: transpose B.
- Another idea: swap the loops!
- -03 optimization of gcc actually tries to do this automatically (Very cool)

```
for i = 1 to n:
   for k = 1 to n:
   for j = 1 to n:
      C[i][j] += A[i][k] + B[k][j]
```

• This gives us $O(n^3/B)$ I/Os: (assume B < n to make things easier)

Any ideas for how to improve this?

```
for i = 1 to n:
  for k = 1 to n:
  for j = 1 to n:
    C[i][j] += A[i][k] + B[k][j]
```

- This gives us $O(n^3/B)$ I/Os: (assume B < n to make things easier)
- Let's say A[i][k] is a cache miss. No more cache misses until A[i][k'] with k' = k + B.
- Let's say B[k][j] is a cache miss. No more cache misses until B[i][j'] with j' = j + B.
- Let's say C[i][j] is a cache miss. No more cache misses until C[i][j'] with j'=j+B.
- Sum up each

Improvement in practice

I am given two functions for finding the product of two matrices:

I ran and profiled two executables using <code>gprof</code>, each with identical code except for this function. The second of these is significantly (about 5 times) faster for matrices of size 2048 x 2048. Any ideas as to why?

295k • 80 • 725 • 933

add a comment

asked Sep 13 '11 at 0:29

kevlar1818
2,639 • 4 • 19 • 39

We haven't used the cache yet

- No Ms in any running times—except when the whole problem fits in cache
- Why? All algorithms so far have read the data once and then thrown it away.
- Goal: bring items into cache so that we can perform many computations on them before writing them back.
- Note: can't do this with linear scan. O(n/B) is optimal.

Blocking

- Standard technique for improving cache performance of algorithms.
- Remember from before: cache efficiency can get WAY better when the problem fits in cache. Let's find subproblems that can fit in cache.
- Idea: break problems into subproblems of size O(M)
 - Can solve in O(M/B) I/Os
 - Efficiently combine them for a cache-efficient solution

Blocked Matrix Multiplication

- Split A, B, and C into blocks of size M/3
 - $\sqrt{M/3} \times \sqrt{M/3}$ -sized blocks
 - Let's say the number of rows and columns in our blocks is (each) $T = \lfloor \sqrt{M/3} \rfloor$. Assume that T divides n for now.
- Multiply blocks one at a time
- Need some structure to help us make this work

Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and multiply (and add) them as normal, we obtain the same result as we would have in normal matrix multiplication.

• This idea is used in recursive matrix multiplication

And Strassen's algorithm for matrix multiplication

Decomposing matrices into blocks

Example: Recall how to multiply $2x^2$ matrices:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{bmatrix}$$

$$\begin{bmatrix} 17 & 15 & 20 & 4 \\ 15 & 3 & 20 & 8 \\ 1 & 10 & 15 & 2 \\ 3 & 19 & 3 & 14 \end{bmatrix} \cdot \begin{bmatrix} 4 & 12 & 9 & 1 \\ 4 & 6 & 11 & 2 \\ 13 & 18 & 8 & 20 \\ 3 & 11 & 18 & 9 \end{bmatrix} = \begin{bmatrix} 7 & 15 \\ 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 4 & 12 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 20 & 4 \\ 20 & 8 \end{bmatrix} \cdot \begin{bmatrix} 13 & 8 \\ 3 & 11 \end{bmatrix} \begin{bmatrix} 17 & 15 \\ 15 & 3 \end{bmatrix} \cdot \begin{bmatrix} 9 & 1 \\ 11 & 2 \end{bmatrix} + \begin{bmatrix} 20 & 4 \\ 20 & 8 \end{bmatrix} \cdot \begin{bmatrix} 8 & 18 \\ 18 & 18 \end{bmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} 17 & 15 \\ 15 & 3 \end{bmatrix} \cdot \begin{bmatrix} 4 & 12 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 20 & 4 \\ 20 & 8 \end{bmatrix} \cdot \begin{bmatrix} 13 & 8 \\ 3 & 11 \end{bmatrix} & \begin{bmatrix} 17 & 15 \\ 15 & 3 \end{bmatrix} \cdot \begin{bmatrix} 9 & 1 \\ 11 & 2 \end{bmatrix} + \begin{bmatrix} 20 & 4 \\ 20 & 8 \end{bmatrix} \cdot \begin{bmatrix} 8 & 20 \\ 18 & 9 \end{bmatrix} \\ \begin{bmatrix} 1 & 10 \\ 3 & 19 \end{bmatrix} \cdot \begin{bmatrix} 4 & 12 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 15 & 2 \\ 3 & 14 \end{bmatrix} \cdot \begin{bmatrix} 13 & 8 \\ 3 & 11 \end{bmatrix} & \begin{bmatrix} 1 & 10 \\ 3 & 19 \end{bmatrix} \cdot \begin{bmatrix} 9 & 1 \\ 11 & 2 \end{bmatrix} + \begin{bmatrix} 15 & 2 \\ 3 & 14 \end{bmatrix} \cdot \begin{bmatrix} 8 & 20 \\ 18 & 9 \end{bmatrix} \end{bmatrix}$$

Blocked Matrix Multiplication

- Decompose matrix into blocks of length T (recall that $T^2 \leq M/3$)
- Do a normal $n/T \times n/T$ matrix multiplication

Blocked Matrix Multiplication Pseudocode

```
MatrixMultiply(A, B, C, n, T):
  for i = 1 to n/T:
    for k = 1 to n/T:
      for j = 1 to n/T:
       A' = TxT matrix with upper left corner A[Ti][Tk]
       B' = TxT matrix with upper left corner B[Tk][Tj]
       C' = TxT matrix with upper left corner C[Ti][Tj]
       BlockMultiply(A', B', C', T)
BlockMultiply(A, B, C, n):
  for i = 1 to n:
     for k = 1 to n:
         for j = 1 to n:
           C[i][j] += A[i][k] + B[k][j]
```

Let's analyze the cost of this algorithm in the EM model

Analysis

- Creating A', B', C' and passing them to BlockMultiply all can be done in $O(T^2/B+T)$ cache misses. If $B^2=O(M)$ then we can simplify this to O(M/B). (Called the "tall cache assumption.")
- BlockMultiply only accesses elements of A', B', C'. Since all three matrices are in cache, it requires zero additional cache misses
- Therefore, our total running time is the number of loop iterations times the cost of a loop. This is $O((n/T)^3 \cdot (T^2/B)) = O((n/\sqrt{M})^3 \cdot (M/B)) = O(n^3/B\sqrt{M}).$

Implementation questions!

- What do we do if n is not divisible by T?
 - Easy answer: pad it out! Doesn't change asymptotics.
 - Can carefully make it work without padding as well
- How do we figure out M? We don't have a two-level cache and we're ignoring that space is used for other programs, other variables, etc.
 - Experiment! Try different values of *M* and see what's fastest on a particular machine.
- Is blocking actually worthwhile?
 - Yes; it is used all the time to speed up programs with poor cache performance.
 - (Not a panacea; some programs (like linear scan, binary search) can't be blocked.)

Sorting in External Memory

What about algorithms we know?

- How long does Mergesort take in external memory?
- Merge is O(n/B); base case is when n = B, so total is $\frac{n}{B} \log_2 \frac{n}{B}$.
- How about quicksort?
- Essentially same; partition is O(n/B); total is $\frac{n}{B} \log_2 \frac{n}{B}$.
- Heapsort is $n \log_2 n/B$ unless we're careful...
- Can we do better?

Using the cache

- Blocking? A little unclear. (We'll come back to this.)
- Does anyone know the sorting lower bound? Where does n log n come from?
- Answer: each time you compare two numbers, can only have two outcomes.
- Each time we bring a cache line into cache, how many more things can we compare it to?

Merge sort reminder

- Divide array into two equal parts
- Recursively sort both parts
- Merge them in O(n) time (and O(n/B) cache misses)

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache misses)

Diagram of M/B-way merge sort

More Detail on merges

- Keep B slots for each array in cache. (M/B arrays so this fits!)
- When all B slots are empty for the array, take B more items from the array in cache.
- Example on board

Analysis

- Divide array into M/B parts; combine in O(N/B) cache misses.
- Recursion:

$$T(N) = \frac{M}{B}T(N/(M/B)) + O(N/B)$$
$$T(B) = O(1)$$

- Solves to $O(\frac{n}{B}\log_{M/B} n/B)$ cache misses
- Optimal!

Useful?

• Can be useful if your data is VERY large

 Distribution sort: similar idea, but with Quicksort instead of Mergesort

• Another method is most popular in practice: Timsort

Timsort

- We won't go over in detail
- Idea: one cache-efficient pass over the array using O(n/B) cache misses that tries to sort things as much as possible
- Then, a super optimized merge sort
- Used in Python, Java, Rust, Android

External Memory Sorting

• *M/B* way merge sort is most efficient

 Timsort is very popular in practice; uses a simpler blocking approach to stay cache-friendly.

Optimization (And Assignment 1

Review)

Plan for this topic

- First, talk about how various techniques can make code more efficient
 - ...or less efficient
- Focus on loops, and on compiler options
- Then, look back a bit at Assignment 1. Talk about various strategies, and what some final products looked like
 - May continue this a bit Thursday if we run out of time

Taking out expensive operations

```
for(int i = 0; i < strlen(str1); i++){
    str1[i] = 'a';
}</pre>
```

- What's wrong with this code? How long does it take?
- Does the compiler optimize this out?

 It can't: we're changing the array, which could change its length. (Of course, we know that we're never setting any values to 0, but the compiler doesn't check for that.)

More subtle issues

```
int len = strlen(str1);
for(int i=0; i < len; i++){
   str1[i] = str1[0];
}</pre>
```

```
int len = strlen(str1);
int start = str1[0];
for(int i=0; i < len; i++){
    str1[i] = start;
}</pre>
```

- Version on the right runs 2-3x faster even with optimizations on
- Why is that?
- Don't need to look up value! (Compiler doesn't know it doesn't change after the first iteration)