Applied Algorithms Lec 6: External Memory and Optimization

Sam McCauley
October 21, 2021

Williams College

Admin

- Office hours changed:
- Sam: Mon 2:30-4, 5-6:30; Wed 2-4
- Chris: Tue 3-5, Wed 8-10
- Updated on website

Questions about Assignment 2?

Matrix Multiplication in External
Memory

Compute Product Directly

```
for i = 1 to n:
    for j = 1 to n:
    for k = 1 to n:
        C[i][j] += A[i][k] +
        B [k] [j]
```

- Recall: $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$
- How many I/Os?
- Assume matrices are stored in row-major order.
- First: assume $3 n^{2}<M$
- After $O\left(n^{2} / B\right)$ I/Os, all three matrices are in memory, and don't have any more I / Os.
- What if $n B>M$?
- Answer: $O\left(n^{3}\right)$ I/Os.

Every inner loop
operation requires an
I/O for B.

Any ideas for how to improve this?

- One idea: transpose B.
- Another idea: swap the loops!
- -03 optimization of gcc actually tries to do this automatically (Very cool)

```
for i = 1 to n:
    for k = 1 to n:
        for j = 1 to n:
            C[i][j] += A[i][k] + B[k][j]
```

- This gives us $O\left(n^{3} / B\right)$ I/Os: (assume $B<n$ to make things easier)

Any ideas for how to improve this?

```
for i = 1 to n:
    for k = 1 to n:
        for j = 1 to n:
            C[i][j] += A[i][k] + B[k][j]
```

- This gives us $O\left(n^{3} / B\right)$ I/Os: (assume $B<n$ to make things easier)
- Let's say $A[i][k]$ is a cache miss. No more cache misses until $A[i]\left[k^{\prime}\right]$ with $k^{\prime}=k+B$.
- Let's say $B[k][j]$ is a cache miss. No more cache misses until $B[i]\left[j^{\prime}\right]$ with $j^{\prime}=j+B$.
- Let's say $C[i][j]$ is a cache miss. No more cache misses until $C[i]\left[j^{\prime}\right]$ with $j^{\prime}=j+B$.
- Sum up each

Improvement in practice

I am given two functions for finding the product of two matrices:

```
void MultiplyMatrices_1(int **a, int **b, int **c, int n){
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            for (int k = 0; k< n; k++)
                c[i][j] = c[i][j] + a[i][k]*b[k][j];
}
void MultiplyMatrices_2(int **a, int **b, int **c, int n){
    for (int i = 0; i < n; i++)
        for (int k = 0; k < n; k++)
        for (int j = 0; j < n; j++)
            c[i][j] = c[i][j] + a[i][k]*b[k][j];
}
```

I ran and profiled two executables using gprof, each with identical code except for this function. The second of these is significantly (about 5 times) faster for matrices of size 2048×2048. Any ideas as to why?
c algorithm matrix matrix-multiplication gprof
kevlar1818
$2,639 \cdot 4 \cdot 19 \cdot 39$
\qquad

We haven't used the cache yet

- No Ms in any running times-except when the whole problem fits in cache
- Why? All algorithms so far have read the data once and then thrown it away.
- Goal: bring items into cache so that we can perform many computations on them before writing them back.
- Note: can't do this with linear scan. $O(n / B)$ is optimal.

Blocking

- Standard technique for improving cache performance of algorithms.
- Remember from before: cache efficiency can get WAY better when the problem fits in cache. Let's find subproblems that can fit in cache.
- Idea: break problems into subproblems of size $O(M)$
- Can solve in $O(M / B)$ I/Os
- Efficiently combine them for a cache-efficient solution

Blocked Matrix Multiplication

- Split A, B, and C into blocks of size $M / 3$
- $\sqrt{M / 3} \times \sqrt{M / 3}$-sized blocks
- Let's say the number of rows and columns in our blocks is (each) $T=\lfloor\sqrt{M / 3}\rfloor$. Assume that T divides n for now.
- Multiply blocks one at a time
- Need some structure to help us make this work

Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the matrices, and multiply (and add) them as normal, we obtain the same result as we would have in normal matrix multiplication.

- This idea is used in recursive matrix multiplication
- And Strassen's algorithm for matrix multiplication

Decomposing matrices into blocks

Example: Recall how to multiply 2×2 matrices:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} \cdot B_{11}+A_{12} \cdot B_{21} & A_{11} \cdot B_{12}+A_{12} \cdot B_{22} \\
A_{21} \cdot B_{11}+A_{22} \cdot B_{21} & A_{21} \cdot B_{12}+A_{22} \cdot B_{22}
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
17 & 15 & 20 & 4 \\
15 & 3 & 20 & 8 \\
1 & 10 & 15 & 2 \\
3 & 19 & 3 & 14
\end{array}\right] \cdot\left[\begin{array}{cccc}
4 & 12 & 9 & 1 \\
4 & 6 & 11 & 2 \\
13 & 18 & 8 & 20 \\
3 & 11 & 18 & 9
\end{array}\right]=} \\
& {\left[\left[\begin{array}{cc}
17 & 15 \\
15 & 3
\end{array}\right] \cdot\left[\begin{array}{cc}
4 & 12 \\
4 & 6
\end{array}\right]+\left[\begin{array}{cc}
20 & 4 \\
20 & 8
\end{array}\right] \cdot\left[\begin{array}{cc}
13 & 8 \\
3 & 11
\end{array}\right]\left[\begin{array}{cc}
17 & 15 \\
15 & 3
\end{array}\right] \cdot\left[\begin{array}{cc}
9 & 1 \\
11 & 2
\end{array}\right]+\left[\begin{array}{cc}
20 & 4 \\
20 & 8
\end{array}\right] \cdot\left[\begin{array}{cc}
8 & 20 \\
18 & 9
\end{array}\right]\right]} \\
& \left.\left[\begin{array}{ll}
1 & 10 \\
3 & 19
\end{array}\right] \cdot\left[\begin{array}{cc}
4 & 12 \\
4 & 6
\end{array}\right]+\left[\begin{array}{cc}
15 & 2 \\
3 & 14
\end{array}\right] \cdot\left[\begin{array}{cc}
13 & 8 \\
3 & 11
\end{array}\right]\left[\begin{array}{cc}
1 & 10 \\
3 & 19
\end{array}\right] \cdot\left[\begin{array}{cc}
9 & 1 \\
11 & 2
\end{array}\right]+\left[\begin{array}{cc}
15 & 2 \\
3 & 14
\end{array}\right] \cdot\left[\begin{array}{cc}
8 & 20 \\
18 & 9
\end{array}\right]\right]
\end{aligned}
$$

Blocked Matrix Multiplication

- Decompose matrix into blocks of length T (recall that $\left.T^{2} \leq M / 3\right)$
- Do a normal $n / T \times n / T$ matrix multiplication
tile size T

\square						A

Matrix A
Outer loop over tiles
Current tile in outer loop

Matrix B
Inner loop over elements
\square Current element in inner loop
matrix size N

Matrix C
Temporary result tile

Blocked Matrix Multiplication Pseudocode

```
MatrixMultiply(A, B, C, n, T):
    for i = 1 to n/T:
    for k = 1 to n/T:
        for j = 1 to n/T:
            A' = TxT matrix with upper left corner A[Ti][Tk]
            B' = TxT matrix with upper left corner B[Tk][Tj]
            C' = TxT matrix with upper left corner C[Ti][Tj]
            BlockMultiply(A', B', C', T)
```

BlockMultiply(A, B, C, n):
for $\mathrm{i}=1$ to n :
for $k=1$ to n :
for $j=1$ to n :
$C[i][j]+=A[i][k]+B[k][j]$

Analysis

- Creating $A^{\prime}, B^{\prime}, C^{\prime}$ and passing them to BlockMultiply all can be done in $O\left(T^{2} / B+T\right)$ cache misses. If $B^{2}=O(M)$ then we can simplify this to $O(M / B)$. (Called the "tall cache assumption.")
- BlockMultiply only accesses elements of $A^{\prime}, B^{\prime}, C^{\prime}$. Since all three matrices are in cache, it requires zero additional cache misses
- Therefore, our total running time is the number of loop iterations times the cost of a loop. This is $O\left((n / T)^{3} \cdot\left(T^{2} / B\right)\right)=O\left((n / \sqrt{M})^{3} \cdot(M / B)\right)=O\left(n^{3} / B \sqrt{M}\right)$.

Implementation questions!

- What do we do if n is not divisible by T ?
- Easy answer: pad it out! Doesn't change asymptotics.
- Can carefully make it work without padding as well
- How do we figure out M ? We don't have a two-level cache and we're ignoring that space is used for other programs, other variables, etc.
- Experiment! Try different values of M and see what's fastest on a particular machine.
- Is blocking actually worthwhile?
- Yes; it is used all the time to speed up programs with poor cache performance.
- (Not a panacea; some programs (like linear scan, binary search) can't be blocked.)

Sorting in External Memory

What about algorithms we know?

- How long does Mergesort take in external memory?
- Merge is $O(n / B)$; base case is when $n=B$, so total is $\frac{n}{B} \log _{2} \frac{n}{B}$.
- How about quicksort?
- Essentially same; partition is $O(n / B)$; total is $\frac{n}{B} \log _{2} \frac{n}{B}$.
- Heapsort is $n \log _{2} n / B$ unless we're careful...
- Can we do better?

Using the cache

- Blocking? A little unclear. (We'll come back to this.)
- Does anyone know the sorting lower bound? Where does $n \log n$ come from?
- Answer: each time you compare two numbers, can only have two outcomes.
- Each time we bring a cache line into cache, how many more things can we compare it to?

Merge sort reminder

- Divide array into two equal parts
- Recursively sort both parts
- Merge them in $O(n)$ time (and $O(n / B)$ cache misses)

M / B-way merge sort

- Divide array into M / B equal parts
- Recursively sort all M / B parts
- Merge all M / B arrays in $O(n)$ time (and $O(n / B)$ cache misses)

Diagram of M / B-way merge sort

More Detail on merges

- Keep B slots for each array in cache. $(M / B$ arrays so this fits!)
- When all B slots are empty for the array, take B more items from the array in cache.
- Example on board

Analysis

- Divide array into M / B parts; combine in $O(N / B)$ cache misses.
- Recursion:

$$
\begin{gathered}
T(N)=\frac{M}{B} T(N /(M / B))+O(N / B) \\
T(B)=O(1)
\end{gathered}
$$

- Solves to $O\left(\frac{n}{B} \log _{M / B} n / B\right)$ cache misses
- Optimal!

Useful?

- Can be useful if your data is VERY large
- Distribution sort: similar idea, but with Quicksort instead of Mergesort
- Another method is most popular in practice: Timsort
- We won't go over in detail
- Idea: one cache-efficient pass over the array using $O(n / B)$ cache misses that tries to sort things as much as possible
- Then, a super optimized merge sort
- Used in Python, Java, Rust, Android

External Memory Sorting

- M / B way merge sort is most efficient
- Timsort is very popular in practice; uses a simpler blocking approach to stay cache-friendly.

Optimization (And Assignment 1 Review)

Plan for this topic

- First, talk about how various techniques can make code more efficient
- ...or less efficient
- Focus on loops, and on compiler options
- Then, look back a bit at Assignment 1. Talk about various strategies, and what some final products looked like
- May continue this a bit Thursday if we run out of time

Taking out expensive operations

```
for(int i = 0; i < strlen(str1); i++){
    str1[i] = 'a';
}
```

- What's wrong with this code? How long does it take?
- Does the compiler optimize this out?
- It can't: we're changing the array, which could change its length. (Of course, we know that we're never setting any values to 0 , but the compiler doesn't check for that.)

More subtle issues

```
int len = strlen(str1);
for(int i=0; i < len; i++){
    str1[i] = str1[0];
}
```

```
int len = strlen(str1);
int start = str1[0];
for(int i=0; i < len; i++){
    str1[i] = start;
}
```

- Version on the right runs $2-3 x$ faster even with optimizations on
- Why is that?
- Don't need to look up value! (Compiler doesn't know it doesn't change after the first iteration)

