
Applied Algorithms Lec 6: External Memory

and Optimization

Sam McCauley

October 21, 2021

Williams College

Admin

• Office hours changed:

• Sam: Mon 2:30–4, 5–6:30; Wed 2–4

• Chris: Tue 3–5, Wed 8–10

• Updated on website

1

Questions about Assignment 2?

2

Matrix Multiplication in External

Memory

Compute Product Directly

for i = 1 to n:

for j = 1 to n:

for k = 1 to n:

C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many I/Os?

• Assume matrices are stored
in row-major order.

• First: assume 3n2 < M

• After O(n2/B) I/Os, all

three matrices are in

memory, and don’t have

any more I/Os.

• What if nB > M?

• Answer: O(n3) I/Os.

Every inner loop

operation requires an

I/O for B. 3

Any ideas for how to improve this?

• One idea: transpose B.

• Another idea: swap the loops!

• -O3 optimization of gcc actually tries to do this automatically

(Very cool)

for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) I/Os: (assume B < n to make things

easier)

4

Any ideas for how to improve this?

for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) I/Os: (assume B < n to make things

easier)

• Let’s say A[i][k] is a cache miss. No more cache misses until

A[i][k ′] with k ′ = k + B.

• Let’s say B[k][j] is a cache miss. No more cache misses until

B[i][j ′] with j ′ = j + B.

• Let’s say C [i][j] is a cache miss. No more cache misses until

C [i][j ′] with j ′ = j + B.

• Sum up each
5

Improvement in practice

6

We haven’t used the cache yet

• No Ms in any running times—except when the whole problem

fits in cache

• Why? All algorithms so far have read the data once and then

thrown it away.

• Goal: bring items into cache so that we can perform many

computations on them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal.

7

Blocking

• Standard technique for improving cache performance of

algorithms.

• Remember from before: cache efficiency can get WAY better

when the problem fits in cache. Let’s find subproblems that

can fit in cache.

• Idea: break problems into subproblems of size O(M)

• Can solve in O(M/B) I/Os

• Efficiently combine them for a cache-efficient solution

8

Blocked Matrix Multiplication

• Split A, B, and C into blocks of size M/3

•
√

M/3×
√
M/3-sized blocks

• Let’s say the number of rows and columns in our blocks is

(each) T = b
√
M/3c. Assume that T divides n for now.

• Multiply blocks one at a time

• Need some structure to help us make this work

9

Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the

matrices, and multiply (and add) them as normal, we obtain the

same result as we would have in normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication

10

Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

17 15 20 4

15 3 20 8

1 10 15 2

3 19 3 14

 ·


4 12 9 1

4 6 11 2

13 18 8 20

3 11 18 9

 =



[
17 15

15 3

]
·
[
4 12

4 6

]
+

[
20 4

20 8

]
·
[
13 8

3 11

] [
17 15

15 3

]
·
[
9 1

11 2

]
+

[
20 4

20 8

]
·
[
8 20

18 9

]
[
1 10

3 19

]
·
[
4 12

4 6

]
+

[
15 2

3 14

]
·
[
13 8

3 11

] [
1 10

3 19

]
·
[
9 1

11 2

]
+

[
15 2

3 14

]
·
[
8 20

18 9

]


11

Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (recall that

T 2 ≤ M/3)

• Do a normal n/T × n/T matrix multiplication

12

Blocked Matrix Multiplication Pseudocode

MatrixMultiply(A, B, C, n, T):

for i = 1 to n/T:

for k = 1 to n/T:

for j = 1 to n/T:

A’ = TxT matrix with upper left corner A[Ti][Tk]

B’ = TxT matrix with upper left corner B[Tk][Tj]

C’ = TxT matrix with upper left corner C[Ti][Tj]

BlockMultiply(A’, B’, C’, T)

BlockMultiply(A, B, C, n):

for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model 13

Analysis

• Creating A′, B ′, C ′ and passing them to BlockMultiply all

can be done in O(T 2/B + T) cache misses. If B2 = O(M)

then we can simplify this to O(M/B). (Called the “tall cache

assumption.”)

• BlockMultiply only accesses elements of A′, B ′, C ′. Since

all three matrices are in cache, it requires zero additional

cache misses

• Therefore, our total running time is the number of loop

iterations times the cost of a loop. This is

O((n/T)3 ·(T 2/B)) = O((n/
√
M)3 ·(M/B)) = O(n3/B

√
M).

14

Implementation questions!

• What do we do if n is not divisible by T?

• Easy answer: pad it out! Doesn’t change asymptotics.

• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache
and we’re ignoring that space is used for other programs,
other variables, etc.

• Experiment! Try different values of M and see what’s fastest

on a particular machine.

• Is blocking actually worthwhile?

• Yes; it is used all the time to speed up programs with poor

cache performance.

• (Not a panacea; some programs (like linear scan, binary

search) can’t be blocked.)

15

Sorting in External Memory

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is
n
B log2

n
B .

• How about quicksort?

• Essentially same; partition is O(n/B); total is n
B log2

n
B .

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

16

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does

n log n come from?

• Answer: each time you compare two numbers, can only have

two outcomes.

• Each time we bring a cache line into cache, how many more

things can we compare it to?

17

Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256

1 2 4 . . .

18

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache

misses)

19

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

20

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this

fits!)

• When all B slots are empty for the array, take B more items

from the array in cache.

• Example on board

21

Analysis

• Divide array into M/B parts; combine in O(N/B) cache

misses.

• Recursion:

T (N) =
M

B
T (N/(M/B)) + O(N/B)

T (B) = O(1)

• Solves to O(n
B logM/B n/B) cache misses

• Optimal!

22

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of

Mergesort

• Another method is most popular in practice: Timsort

23

Timsort

• We won’t go over in detail

• Idea: one cache-efficient pass over the array using O(n/B)

cache misses that tries to sort things as much as possible

• Then, a super optimized merge sort

• Used in Python, Java, Rust, Android

24

External Memory Sorting

• M/B way merge sort is most efficient

• Timsort is very popular in practice; uses a simpler blocking

approach to stay cache-friendly.

25

Optimization (And Assignment 1

Review)

Plan for this topic

• First, talk about how various techniques can make code more
efficient

• ...or less efficient

• Focus on loops, and on compiler options

• Then, look back a bit at Assignment 1. Talk about various
strategies, and what some final products looked like

• May continue this a bit Thursday if we run out of time

26

Taking out expensive operations

for(int i = 0; i < strlen(str1); i++){

str1[i] = ’a’;

}

• What’s wrong with this code? How long does it take?

• Does the compiler optimize this out?

• It can’t: we’re changing the array, which could change its

length. (Of course, we know that we’re never setting any

values to 0, but the compiler doesn’t check for that.)

27

More subtle issues

int len = strlen(str1);

for(int i=0; i < len; i++){

str1[i] = str1[0];

}

int len = strlen(str1);

int start = str1[0];

for(int i=0; i < len; i++){

str1[i] = start;

}

• Version on the right runs 2-3x faster even with optimizations

on

• Why is that?

• Don’t need to look up value! (Compiler doesn’t know it

doesn’t change after the first iteration)

28

	Matrix Multiplication in External Memory
	Sorting in External Memory
	Optimization (And Assignment 1 Review)

