
Applied Algorithms Lec 4: Cache Misses and

External Memory

Sam McCauley

October 21, 2021

Williams College

Admin

• Office hours 2:30–4 and 5–6:30 today

• No office hours tomorrow; Wed 2–4 in TCL 312 instead

• Slack vs email (everything important will be on email)

• Some reading today! Optional/potentially useful for reference.
We don’t cover the topic in exactly the same way

• For ex: we’ll have K = 1; no distribution sort; no B-trees

1

Admin: Talks coming up

• Tomorrow 7PM: Landing a tech internship (featuring your

fellow Williams students)

• Thursday 5PM: “How’d you get there?” talk about jobs in

sustainable tech (need preregister)

• Friday 2:30: Colloquium is by Andrew McGregor, who works in
randomized streaming algorithms (topic in Part 2 of course)

• More details later. But almost certainly one of the most

relevant talks to this course this year

2

Admin: Assignment 1

• Assignment 1 due Wednesday 10pm

• Emailed out small Assignment 1 updates

• Extra test run at 7pm Wed

• Add -lm to make debug

• Tips for fast sorting added to website

3

Any Assignment 1 Questions?

Avoiding branch mispredictions

• Avoid branches (ifs, etc.)

• If you do create a branch, ask yourself how easy it is to

predict!

• Compiler can remove a lot of branch mispredictions

• Only way to be sure is to experiment

4

Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof

on the executable

• Gives information about what calls what and how much time

is in each

• Not perfect, but gives us some information, especially for
simpler programs

• Can see if one function is called a LOT

• Can see if one function is only ever called by one other function

• (Can be issues with optimizations, especially -O3)

• I may ask you to use this, but be aware of its limitations

5

Profilers examples: cachegrind

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind [your program]

• Use --branch-sim=yes for branch prediction statistics.

• Very oversimplified unfortunately

• Outputs number of cache misses for instructions, then data,

then combined

• Simulates a simple cache (based on your machine) with

separate L1 caches for instructions and data, and unified L2

and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

6

Final major cost: cache misses!

• Data is stored in different places on the computer

• Cost to access it frequently dominates running time

7

8

How caches work

• Stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Example: cachemisses.c

• Modern caches are very complicated

•

•

9

10

How caches work

• Stores data in the optimal(ish) place

• Moves data around in cache lines of 64 bytes

• Modern caches are very complicated

• Basically: close is good; recent is good; jumping around is

bad.

• Your compiler has limited capability to improve cache

efficiency!

11

Optimization Conclusions

• Different places where we can incur costs:

• Operations

• Branches and moving around instructions

• Cache misses

• Determining costs is a matter of experimentation on modern
machines!

• Rarely perfect!

• Theme throughout class: design different experiments to test

different aspects of code performance.

12

Plan for next few lectures

• Today: cache misses. (Best place to gain performance

algorithmically)

• Thursday: Assignment 2 algorithm, discussion about
optimizing loops and functions

• Inlining, loop unrolling, more about compiler options

• Monday: more external memory, Assignment 1 code review,

any other loose ends

13

External Memory Model

Measuring cache misses

• Takeaway from today’s examples: cache performance is often

more important than number of operations

• But algorithmic analysis measures number of operations

• Can we algorithmically examine the cache performance of a

program?

• Yes: external memory model

14

What do we want out of this model?

• Simple, but able to capture major performance considerations

• Parameters for the model? How can we make it universal

across computers that may have very different cache

parameters?

• Do we want asymptotics? Worst case?

15

External memory model basics

• Cache of size M

• Cache line of size B

• Computation is free: only count number of “cache misses.”

Can perform arbitrary computation on items in cache.

• We will say something like “O(n/B) cache misses” rather

than “O(n) operations” to emphasize the model.

16

External Memory Model Basics

Transferring B consecutive items to/from the disk costs 1. Can

only store M things in cache.

17

Memory Evictions

• Can only hold M items in cache!

• So when we bring B in, need to write B items back to disk.

(We can bring them in later if we need them again)

• Assume that the computer does this optimally.

• Reasonable; it’s really good at it. Very cool algorithms behind

this!

18

Vocabulary

• “Cache” of size M; “disk” of unlimited size

• With the cost of one “cache miss” can bring in B consecutive
items

• (Sometimes called “memory access” or “I/Os” but I will try

not to use those terms.)

• These B items are called a “block” or a “cache line”.

19

Simple example: cachemisses.c

• What is the cost of our algorithm in the external memory

model if the items are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory

model if the items have stride B + 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown

of this process.

20

Finding the minimum element in an array

• How many cache misses in the external memory model?

• Answer: O(n/B)

21

Binary search?

• What is the recurrence for binary search in terms of number

of operations?

• What is the recurrence for binary search in terms of the

number of cache misses?

• Each recursive call takes 1 cache miss.

• Base case: can perform all operations on B items with only 1

cache miss

• Total: O(log2(n/B)) cache misses.

22

Why does this make sense?

• Simple model that captures one level of the memory hierarchy

• Idea: usually one level has by far the largest cost.

• Small programs may be dominated by L1 cache misses

• Larger programs it may be by L3 cache misses

• External memory model zooms in on one crucial level of the

memory hierarchy (with particular B, M); gives asymptotics

for how well we do on that level.

23

Question about External Memory

Model Basics?

Joke to break up the material

24

Joke to break up the material

25

Matrix Multiplication in External

Memory

Matrix Multiplication Reminder

• Given two n × n matrices A, B

• Want to compute their product C :

• cij =
∑n

k=1 aikbkj

Example:

[
1 2

8 −1

]
×

[
2 3

−2 7

]
=

[
−2 17

18 17

]

26

Compute Product Directly

for i = 1 to n:

for j = 1 to n:

for k = 1 to n:

C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many I/Os does this

take?

• Assume matrices are stored
in row-major order.

• First: assume M < n2

• What if M > n2?

• Answer: O(n3) I/Os.

Every inner loop

operation requires an

I/O for B.

27

Any ideas for how to improve this?

• One idea: transpose B.

• Another idea: swap the loops!

for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) I/Os. Is this actually worth doing?

28

Yep!

29

We haven’t used the cache yet

• No Ms in any running times

• Why? All algorithms so far have read the data once and then

thrown it away.

• Goal: bring items into cache so that we can perform many

computations on them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal.

30

Blocking

• Standard technique for improving cache performance of

algorithms.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) I/Os

• Efficiently combine them for a cache-efficient solution

31

Blocked Matrix Multiplication

• Split A, B, and C into blocks of size M/3

•
√

M/3×
√
M/3-sized blocks

• Really want blocks with size T = b
√
M/3c. Assume that T

divides n for now.

• Multiply blocks one at a time

32

Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the

matrices, and multiply (and add) them as normal, we obtain the

same result as we would have in normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication

33

Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

17 15 20 4

15 3 20 8

1 10 15 2

3 19 3 14

 ·


4 12 9 1

4 6 11 2

13 18 8 20

3 11 18 9

 =



[
17 15

15 3

]
·
[
4 12

4 6

]
+

[
20 4

20 8

]
·
[
13 8

3 11

] [
17 15

15 3

]
·
[
9 1

11 2

]
+

[
20 4

20 8

]
·
[
8 20

18 9

]
[
1 10

3 19

]
·
[
4 12

4 6

]
+

[
15 2

3 14

]
·
[
13 8

3 11

] [
1 10

3 19

]
·
[
9 1

11 2

]
+

[
15 2

3 14

]
·
[
8 20

18 9

]


34

Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (recall that

T 2 ≤ M/3)

• Do a normal n/T × n/T matrix multiplication

35

Blocked Matrix Multiplication Pseudocode

MatrixMultiply(A, B, C, n, T):

for i = 1 to n/T:

for j = 1 to n/T:

for k = 1 to n/T:

A’ = TxT matrix with upper left corner A[Ti][Tk]

B’ = TxT matrix with upper left corner B[Tk][Tj]

C’ = TxT matrix with upper left corner C[Ti][Tj]

BlockMultiply(A’, B’, C’, T)

BlockMultiply(A, B, C, n):

for i = 1 to n:

for j = 1 to n:

for k = 1 to n:

C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model 36

Analysis

• Creating A′, B ′, C ′ and passing them to BlockMultiply all

can be done in O(T 2/B + T) cache misses. If B = O(M2)

then we can simplify this to O(M/B). (Called the “tall cache

assumption.”)

• BlockMultiply only accesses elements of A′, B ′, C ′. Since

all three matrices are in cache, it requires zero additional

cache misses

• Therefore, our total running time is the number of loop

iterations times the cost of a loop. This is

O((n/T)3 ·(T 2/B)) = O((n/
√
M)3 ·(M/B)) = O(n3/B

√
M).

37

Implementation questions!

• What do we do if n is not divisible by T?

• Easy answer: pad it out! Doesn’t change asymptotics.

• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache
and we’re ignoring that space is used for other programs,
other variables, etc.

• Experiment! Try different values of M and see what’s fastest

on a particular machine.

• Is blocking actually worthwhile?

• Yes; it is used all the time to speed up programs with poor

cache performance.

• (Not a panacea; some programs (like linear scan, binary

search) can’t be blocked.)

38

Sorting in External Memory

What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is

n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?

39

Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does

n log n come from?

• Answer: each time you compare two numbers, can only have

two outcomes.

• Each time we bring a cache line into cache, how many more

things can we compare it to?

40

Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256

1 2 4 . . .

41

M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache

misses)

42

Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .

43

More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this

fits!)

• When all B slots are empty for the array, take B more items

from the array in cache.

• Example on board

44

Analysis

• Divide array into M/B parts; combine in O(N/B) cache

misses.

• Recursion:

T (N) = T (N/(M/B)) + O(N/B)T (B) = O(1)

• Solves to O(n
B logM/B n/B) cache misses

• Optimal!

45

Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of

Mergesort

• Another method is most popular in practice: Timsort

46

Timsort

• Developed to be the sorting method for python

• Now also used in Java, Rust

• Keeps cache in mind, but focuses more on taking advantage

of easy patterns in data

47

Blocking revisited: run generation

• Basic idea: sort all M-sized subarrays. That would give us

sorted subarrays of length M to start out with

• This is wasteful, as we empty out cache between each

subarray

• Timsort starts with “run generation”: a greedy version of this

that uses the same cache for as long as possible. Always

outputs sorted runs of length at least M; can be MUCH

longer

48

Timsort after run generation

• First, run generation

• Then, super optimized (2-way) merge sort

• Insertion sort on any very small arrays that are encountered

(size < 64)

49

External Memory Sorting

• M/B way merge sort is most efficient

• Timsort is very popular in practice; uses a simpler blocking

approach to stay cache-friendly.

50

	Any Assignment 1 Questions?
	External Memory Model
	Question about External Memory Model Basics?
	Matrix Multiplication in External Memory
	Sorting in External Memory

