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Admin

• Office hours 2:30–4 and 5–6:30 today

• No office hours tomorrow; Wed 2–4 in TCL 312 instead

• Slack vs email (everything important will be on email)

• Some reading today! Optional/potentially useful for reference.
We don’t cover the topic in exactly the same way

• For ex: we’ll have K = 1; no distribution sort; no B-trees
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Admin: Talks coming up

• Tomorrow 7PM: Landing a tech internship (featuring your

fellow Williams students)

• Thursday 5PM: “How’d you get there?” talk about jobs in

sustainable tech (need preregister)

• Friday 2:30: Colloquium is by Andrew McGregor, who works in
randomized streaming algorithms (topic in Part 2 of course)

• More details later. But almost certainly one of the most

relevant talks to this course this year
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Admin: Assignment 1

• Assignment 1 due Wednesday 10pm

• Emailed out small Assignment 1 updates

• Extra test run at 7pm Wed

• Add -lm to make debug

• Tips for fast sorting added to website

3



Any Assignment 1 Questions?



Avoiding branch mispredictions

• Avoid branches (ifs, etc.)

• If you do create a branch, ask yourself how easy it is to

predict!

• Compiler can remove a lot of branch mispredictions

• Only way to be sure is to experiment
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Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof

on the executable

• Gives information about what calls what and how much time

is in each

• Not perfect, but gives us some information, especially for
simpler programs

• Can see if one function is called a LOT

• Can see if one function is only ever called by one other function

• (Can be issues with optimizations, especially -O3)

• I may ask you to use this, but be aware of its limitations
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Profilers examples: cachegrind

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind [your program]

• Use --branch-sim=yes for branch prediction statistics.

• Very oversimplified unfortunately

• Outputs number of cache misses for instructions, then data,

then combined

• Simulates a simple cache (based on your machine) with

separate L1 caches for instructions and data, and unified L2

and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses
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Final major cost: cache misses!

• Data is stored in different places on the computer

• Cost to access it frequently dominates running time
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How caches work

• Stores data in the optimal(ish) place

• Moves data around in cache lines of ≈ 64 bytes

• Example: cachemisses.c

• Modern caches are very complicated

•

•
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How caches work

• Stores data in the optimal(ish) place

• Moves data around in cache lines of 64 bytes

• Modern caches are very complicated

• Basically: close is good; recent is good; jumping around is

bad.

• Your compiler has limited capability to improve cache

efficiency!
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Optimization Conclusions

• Different places where we can incur costs:

• Operations

• Branches and moving around instructions

• Cache misses

• Determining costs is a matter of experimentation on modern
machines!

• Rarely perfect!

• Theme throughout class: design different experiments to test

different aspects of code performance.
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Plan for next few lectures

• Today: cache misses. (Best place to gain performance

algorithmically)

• Thursday: Assignment 2 algorithm, discussion about
optimizing loops and functions

• Inlining, loop unrolling, more about compiler options

• Monday: more external memory, Assignment 1 code review,

any other loose ends

13



External Memory Model



Measuring cache misses

• Takeaway from today’s examples: cache performance is often

more important than number of operations

• But algorithmic analysis measures number of operations

• Can we algorithmically examine the cache performance of a

program?

• Yes: external memory model
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What do we want out of this model?

• Simple, but able to capture major performance considerations

• Parameters for the model? How can we make it universal

across computers that may have very different cache

parameters?

• Do we want asymptotics? Worst case?
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External memory model basics

• Cache of size M

• Cache line of size B

• Computation is free: only count number of “cache misses.”

Can perform arbitrary computation on items in cache.

• We will say something like “O(n/B) cache misses” rather

than “O(n) operations” to emphasize the model.
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External Memory Model Basics

Transferring B consecutive items to/from the disk costs 1. Can

only store M things in cache.
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Memory Evictions

• Can only hold M items in cache!

• So when we bring B in, need to write B items back to disk.

(We can bring them in later if we need them again)

• Assume that the computer does this optimally.

• Reasonable; it’s really good at it. Very cool algorithms behind

this!
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Vocabulary

• “Cache” of size M; “disk” of unlimited size

• With the cost of one “cache miss” can bring in B consecutive
items

• (Sometimes called “memory access” or “I/Os” but I will try

not to use those terms.)

• These B items are called a “block” or a “cache line”.
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Simple example: cachemisses.c

• What is the cost of our algorithm in the external memory

model if the items are stored in order?

• Answer: O(n/B)

• What is the cost of our algorithm in the external memory

model if the items have stride B + 1?

• Answer: O(n)

• The external memory model predicts the real-world slowdown

of this process.
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Finding the minimum element in an array

• How many cache misses in the external memory model?

• Answer: O(n/B)
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Binary search?

• What is the recurrence for binary search in terms of number

of operations?

• What is the recurrence for binary search in terms of the

number of cache misses?

• Each recursive call takes 1 cache miss.

• Base case: can perform all operations on B items with only 1

cache miss

• Total: O(log2(n/B)) cache misses.
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Why does this make sense?

• Simple model that captures one level of the memory hierarchy

• Idea: usually one level has by far the largest cost.

• Small programs may be dominated by L1 cache misses

• Larger programs it may be by L3 cache misses

• External memory model zooms in on one crucial level of the

memory hierarchy (with particular B, M); gives asymptotics

for how well we do on that level.
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Question about External Memory

Model Basics?



Joke to break up the material
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Joke to break up the material
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Matrix Multiplication in External

Memory



Matrix Multiplication Reminder

• Given two n × n matrices A, B

• Want to compute their product C :

• cij =
∑n

k=1 aikbkj

Example:

[
1 2

8 −1

]
×

[
2 3

−2 7

]
=

[
−2 17

18 17

]
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Compute Product Directly

for i = 1 to n:

for j = 1 to n:

for k = 1 to n:

C[i][j] += A[i][k] +

B[k][j]

• Recall: cij =
∑n

k=1 aikbkj

• How many I/Os does this

take?

• Assume matrices are stored
in row-major order.

• First: assume M < n2

• What if M > n2?

• Answer: O(n3) I/Os.

Every inner loop

operation requires an

I/O for B.
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Any ideas for how to improve this?

• One idea: transpose B.

• Another idea: swap the loops!

for i = 1 to n:

for k = 1 to n:

for j = 1 to n:

C[i][j] += A[i][k] + B[k][j]

• This gives us O(n3/B) I/Os. Is this actually worth doing?
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Yep!
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We haven’t used the cache yet

• No Ms in any running times

• Why? All algorithms so far have read the data once and then

thrown it away.

• Goal: bring items into cache so that we can perform many

computations on them before writing them back.

• Note: can’t do this with linear scan. O(n/B) is optimal.
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Blocking

• Standard technique for improving cache performance of

algorithms.

• Idea: break problems into subproblems of size O(M)

• Can solve any such problem in O(M/B) I/Os

• Efficiently combine them for a cache-efficient solution
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Blocked Matrix Multiplication

• Split A, B, and C into blocks of size M/3

•
√

M/3×
√
M/3-sized blocks

• Really want blocks with size T = b
√
M/3c. Assume that T

divides n for now.

• Multiply blocks one at a time
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Decomposing matrices into blocks

Classic result: if we treat the blocks as single elements of the

matrices, and multiply (and add) them as normal, we obtain the

same result as we would have in normal matrix multiplication.

• This idea is used in recursive matrix multiplication

• And Strassen’s algorithm for matrix multiplication
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Decomposing matrices into blocks

Example: Recall how to multiply 2x2 matrices:[
A11 A12

A21 A22

]
·

[
B11 B12

B21 B22

]
=

[
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

17 15 20 4

15 3 20 8

1 10 15 2

3 19 3 14

 ·


4 12 9 1

4 6 11 2

13 18 8 20

3 11 18 9

 =



[
17 15

15 3

]
·
[
4 12

4 6

]
+

[
20 4

20 8

]
·
[
13 8

3 11

] [
17 15

15 3

]
·
[
9 1

11 2

]
+

[
20 4

20 8

]
·
[
8 20

18 9

]
[
1 10

3 19

]
·
[
4 12

4 6

]
+

[
15 2

3 14

]
·
[
13 8

3 11

] [
1 10

3 19

]
·
[
9 1

11 2

]
+

[
15 2

3 14

]
·
[
8 20

18 9

]

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Blocked Matrix Multiplication

• Decompose matrix into blocks of length T (recall that

T 2 ≤ M/3)

• Do a normal n/T × n/T matrix multiplication
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Blocked Matrix Multiplication Pseudocode

MatrixMultiply(A, B, C, n, T):

for i = 1 to n/T:

for j = 1 to n/T:

for k = 1 to n/T:

A’ = TxT matrix with upper left corner A[Ti][Tk]

B’ = TxT matrix with upper left corner B[Tk][Tj]

C’ = TxT matrix with upper left corner C[Ti][Tj]

BlockMultiply(A’, B’, C’, T)

BlockMultiply(A, B, C, n):

for i = 1 to n:

for j = 1 to n:

for k = 1 to n:

C[i][j] += A[i][k] + B[k][j]

Let’s analyze the cost of this algorithm in the EM model 36



Analysis

• Creating A′, B ′, C ′ and passing them to BlockMultiply all

can be done in O(T 2/B + T ) cache misses. If B = O(M2)

then we can simplify this to O(M/B). (Called the “tall cache

assumption.”)

• BlockMultiply only accesses elements of A′, B ′, C ′. Since

all three matrices are in cache, it requires zero additional

cache misses

• Therefore, our total running time is the number of loop

iterations times the cost of a loop. This is

O((n/T )3 ·(T 2/B)) = O((n/
√
M)3 ·(M/B)) = O(n3/B

√
M).
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Implementation questions!

• What do we do if n is not divisible by T?

• Easy answer: pad it out! Doesn’t change asymptotics.

• Can carefully make it work without padding as well

• How do we figure out M? We don’t have a two-level cache
and we’re ignoring that space is used for other programs,
other variables, etc.

• Experiment! Try different values of M and see what’s fastest

on a particular machine.

• Is blocking actually worthwhile?

• Yes; it is used all the time to speed up programs with poor

cache performance.

• (Not a panacea; some programs (like linear scan, binary

search) can’t be blocked.)
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Sorting in External Memory



What about algorithms we know?

• How long does Mergesort take in external memory?

• Merge is O(n/B); base case is when n = B, so total is

n/B log2 n/B.

• How about quicksort?

• Essentially same; partition is O(n/B); total is n/B log2 n/B.

• Heapsort is n log2 n/B unless we’re careful...

• Can we do better?
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Using the cache

• Blocking? A little unclear. (We’ll come back to this.)

• Does anyone know the sorting lower bound? Where does

n log n come from?

• Answer: each time you compare two numbers, can only have

two outcomes.

• Each time we bring a cache line into cache, how many more

things can we compare it to?
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Merge sort reminder

• Divide array into two equal parts

• Recursively sort both parts

• Merge them in O(n) time (and O(n/B) cache misses)

1 2 3 5

4 16 64 256

1 2 4 . . .
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M/B-way merge sort

• Divide array into M/B equal parts

• Recursively sort all M/B parts

• Merge all M/B arrays in O(n) time (and O(n/B) cache

misses)
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Diagram of M/B-way merge sort

1 2 3 5

4 16 64 256

-7 -6 -5 37

2 9 18 27

-100 0 100 200

3 4 5 9

1 2 4 . . .
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More Detail on merges

• Keep B slots for each array in cache. (M/B arrays so this

fits!)

• When all B slots are empty for the array, take B more items

from the array in cache.

• Example on board
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Analysis

• Divide array into M/B parts; combine in O(N/B) cache

misses.

• Recursion:

T (N) = T (N/(M/B)) + O(N/B)T (B) = O(1)

• Solves to O( n
B logM/B n/B) cache misses

• Optimal!
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Useful?

• Can be useful if your data is VERY large

• Distribution sort: similar idea, but with Quicksort instead of

Mergesort

• Another method is most popular in practice: Timsort
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Timsort

• Developed to be the sorting method for python

• Now also used in Java, Rust

• Keeps cache in mind, but focuses more on taking advantage

of easy patterns in data
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Blocking revisited: run generation

• Basic idea: sort all M-sized subarrays. That would give us

sorted subarrays of length M to start out with

• This is wasteful, as we empty out cache between each

subarray

• Timsort starts with “run generation”: a greedy version of this

that uses the same cache for as long as possible. Always

outputs sorted runs of length at least M; can be MUCH

longer
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Timsort after run generation

• First, run generation

• Then, super optimized (2-way) merge sort

• Insertion sort on any very small arrays that are encountered

(size < 64)
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External Memory Sorting

• M/B way merge sort is most efficient

• Timsort is very popular in practice; uses a simpler blocking

approach to stay cache-friendly.

50


	Any Assignment 1 Questions?
	External Memory Model
	Question about External Memory Model Basics?
	Matrix Multiplication in External Memory
	Sorting in External Memory

