
Applied Algorithms Lec 3: Meet in the Middle

Sam McCauley

October 21, 2021

Williams College



Admin

• Assignment 1 out!

• Github access granted. Testing starts tonight.

• Let me know as soon as possible if there are any issues

• Start early! (Especially on the questions.)

• Next Tuesday’s office hours moved to Wednesday 2-4

• Let me know if you can’t make it.

• Don’t turn off the machines in TCL 312 (Ctl alt delete logs

out)

1



Books are available in lab

• Here they are!

2



Submitting Assignments



Basics of submission

• Each of you have a git repo

• Your code is automatically run twice a day on TCL312

machines

• Feedback from automatic runs given back to you in

feedback/ directory

• Also some thought questions in handout/ directory; please

answer in the latex

• Grading is anonymous (I use a local script) (This also means

you shouldn’t put your name in your code or latex)

3



Reminders

• OK to collaborate on the main code assignment; remember to

cite if you do!!

• Other questions (labelled “Problem” in the handout) should

be done on your own with only high-level collaboration

• Assignments are meant to challenge everyone across a fairly
broad set of areas!

• May be particularly difficult when not in your wheelhouse

• Talk to me; remember that you’re not expected to get 100%

on every assignment

4



Handing in assignments document

5



Accessing lab computers

• Ssh into one of the listed lab computers, or work in person

• Use software you’re comfortable with. But I’m happy to help if
you’re learning something. (vim and/or emacs are something
you should all probably know the basics of at some point.)

• You should almost certainly use software with syntax

highlighting and some automatic indentation. Nowadays it’s

best if you use software with an LSP (or something similar)

that tells you about errors immediately.

• Modern tools are personal in terms of specifics, but almost

give very significant improvements in output

• Working in person on lab machines mean you can use a GUI

application

6



Accessing lab computers from off campus

• Need to use a VPN. (OIT recommends Cisco. Consider

openconnect as an alternative as Cisco is becoming insistent

on putting garbage on your computer)

• Cannot ssh into the lab computers directly!

• First ssh into lohani. From lohani, ssh into lab computers.

• This double-ssh is a bit of a pain, and may cause issues with

things like syntax highlighting.

• Working on your computer; pushing and running on lab

computers; is always an option.

7



Meet in the Middle



Plan for today

• This part of the course: how time and space interact

• Today: using space to make things run faster

• Specifically, store results of frequently-computed values to

save time

8



Two towers reminder

• Input: n blocks of given

area. Taking the square

root of the area gives us the

height of each block (let’s

call the set of heights S)

• Goal: make two towers with

height as close as possible

9



Two towers observations from 136

• Equivalent problem: make the smaller tower as large as

possible. This means our goal is: find the subset of blocks

with largest total height that’s at most 1
2

∑
s∈S s.

• 136 method: try all subsets. For each, calculate its height;

store best seen at each point.

• Running time? Space?

10



Some implementation details

• Can store a subset using an int of at most n bits (all instances

have n ≤ 64)

• Then, can iterate through the subsets by starting at 0 and

incrementing to 2n − 1.

• For each subset, calculate the height by going through the

bits and adding when you see a 1. Keep the heights as an

array of floats.

11



Meet in the middle

• Divide S into two sets:

S1 and S2.

• There must be SOME

subset of S1 in the

correct final smaller

tower.

For any set S ′, let h(S ′) be the

height of all elements in S ′

for each subset A1 of S1:

s1 ← h(A1)

for each subset A2 of S2 :

if h(A2) + s1 ≤ h(S)/2 :

updateMax(h(A2) + s1)

• Running time?

12



Meet in the Middle

for each subset A1 of S1:

s1 ← h(A1)

for each subset A2 of S2 :

if h(A2) + s1 ≤ h(S)/2 :

updateMax(h(A2) + s1)

• What is this inner

poriton doing?

• Finds the set A2 with

height closest to h(S)/2

• How can we preprocess

S2 to answer these

queries quickly?

• Answer: sort all subsets

of S2. Then can answer

this query using binary

search!

13



Meet in the Middle

Fill array P with all

subsets of S2
Sort P by height

for each subset A1 of S1:

s1 ← h(A1)

binsearch(P, h(S)/2− s1)

updateMax(h(A2) + s1)

• Analysis?

• P has length O(2n/2).

Sorting it takes O(n2n/2)

• Each binary search takes

O(n) time; perform

O(2n/2) of them

• Total: O(n2n/2) space,

O(n2n/2) time

14



Meet in the Middle

• Before we go forward, let’s go over the high level strategy

15



Meet in the Middle

Let’s say we have a set of blocks. Normally we use will try all

subsets of these blocks and find the largest that’s at most half the

total size.

16



Meet in the Middle

Let’s say we have a set of blocks. Normally we use will try all

subsets of these blocks and find the largest that’s at most half the

total size.

17



Meet in the Middle

Partition the blocks into two equal-sized sets.Partition the blocks into two equal-sized sets. Question: what

subset of the yellow blocks is used in the correct solution?

18



Meet in the Middle

0.0 00000

7.2 00001

5.1 00010

12.3 00011

9.8 00100

17.0 00101
. . .

First, let’s do some brute force preprocessing on the blue blocks.

Go through all subsets of the blue blocks, and store their heights in

a table.
19



Meet in the Middle

0.0 00000

5.1 00010

7.2 00001

9.8 00100
. . .

First, let’s do some brute force preprocessing on the blue blocks.

Go through all subsets of the blue blocks, and store their heights in

a table. Then, sort the table by height.
20



Meet in the Middle

0.0 00000

5.1 00010

7.2 00001

9.8 00100
. . .

First, let’s do some brute force preprocessing on the blue blocks.

Go through all subsets of the blue blocks, and store their heights in

a table. Then, sort the table by height.
21



Meet in the Middle

Now, go through every possible set of yellow blocks. If the yellow

blocks have height h(A1), we want blue blocks with height as close

to h(S)/2− h(A1) as possible.
22



Meet in the Middle

0.0 00000

5.1 00010

7.2 00001

9.8 00100

. . .

Now, go through every possible set of yellow blocks. How quickly

can we find the best set of blue blocks? Why don’t we need to

check any other subsets of blue blocks?
23



What we get

• O(n2n) space, O(n2n) time. (Everyone remember how?)

• “Meet in the middle”—rather than considering all subsets, we

break into two halves. We search in the yellow and blue halves

one at a time, then combine them to get one solution.

• Very wide uses: optimization problems, cryptography, etc.

24



What does this mean?

• What is O(n2n) vs O(n2n/2) time? Do they differ by more

than a constant?

• O(n2n/2) space is a lot. Is this worth it?

• Wait, can we do better than this?

25



Some questions about meet in the middle

• How can we store the solutions from the blue subproblems?
What does this data structure need to support?

• Needs to support predecessor queries!

• What if we wanted to search for two towers that were exactly

equal? Would our strategy change? Could we get improved

running time?

• What property must a problem have for MitM to work?

• Can all brute force search problems with N solutions be solved

in something like O(
√
N) time?

• No: need the two halves to be independent. (We build the

table on the blue half once. That table needs to work for every

query.)

• For example, 3SAT doesn’t work here. On assignment you’ll

see another problem where there are issues.

26



Optimization thought questions

• The data we’re sorting has a special structure. Can we use

that structure to improve the sort?

• Figuring out the size of a tower is expensive. Can we make

this cost less than O(n)? Do these changes have other costs?

• Binary search has many branch mispredictions and is

cache-inefficient. Is there a way to solve the problem without

binary search, improving cache efficiency? Or to avoid some

of these costs with the binary search?

27



Any lingering questions about Assignment 1 or MITM?

28



Optimization Continued



More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• memory allocation in bytes?

• Pretty slow...

• memory allocation in megabytes?

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself

• (For what it’s worth: malloc really is O(1))

29



Modern processors

• Lots going on

• Moving things around takes

more time than processing

30



Moving data around

• Casts can be expensive if they require moving the data into

another part of the processor!

• (Can be free if they don’t)

31



Branch mispredictions, etc.

• Instructions need to be moved into the CPU

• Modern CPUs predict what instructions will be next; move

while completing other operations

• What if the CPU gets it wrong?

• “Branch misprediction:” 10-20 cycles to fetch the new

instructions from memory

• Can have similar issues with calling non-inlined functions

(compiler is very good at avoiding this)

32



Branch predictors

• CPU keeps track of your branches as it runs

• Divides into four categories of how likely it is to be taken

• gcc also predicts your branches during compilation

• Can also give preprocessor directives about branches. Can be

helpful (one of the last things you should do for optimization)

33



Avoiding branch mispredictions

int max(int a, int b) {

int diff = a - b;

int dsgn = diff >> 31;

return a - (diff & dsgn);

}

int swap(int a, int b) {

a = a ^ b;

b = a ^ b;

a = a ^ b;

}

• Avoid branches (ifs, etc.)

• (Crazy tricks often not

worth it nowadays)

• cmov operations help a lot

in modern processors;

compilers are great at

avoiding expensive

branches

• If you do create a branch,

ask yourself how easy it is

to predict!

• Only way to be sure is to

experiment
34



Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof

on the executable

• Gives information about what calls what and how much time

is in each

• Not perfect, but gives us some information, especially for
simpler programs

• Can see if one function is called a LOT

• Can see if one function is only ever called by one other function

• Gets confusing with recursive calls

• I may ask you to use this, but be aware that it’s useful

sometimes at best

35



Profilers examples: cachegrind

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind [your program]

• Use --branch-sim=yes for branch prediction statistics.

• Outputs number of cache misses for instructions, then data,

then combined

• Simulates a simple cache (based on your machine) with

separate L1 caches for instructions and data, and unified L2

and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

36



Final major cost: cache misses!

• Data is stored in different places on the computer

• Cost to access it frequently dominates running time

37



38



How caches work

• Stores data in the optimal(ish) place

• Moves data around in cache lines of 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; jumping around is bad.

39



Optimization Conclusions

• Different places where we can incur costs:

• Operations

• Branches and moving around instructions

• Cache misses

• Determining costs is a matter of experimentation on modern
machines!

• Rarely perfect!

• Theme throughout class: design different experiments to test

different aspects of code performance.

40



If we have time: MitM example


	Submitting Assignments
	Meet in the Middle
	Optimization Continued
	If we have time: MitM example

