Applied Algorithms Lec 24: Review

Sam McCauley
December 9, 2021

Williams College

e MM2 and MM3 back tonight. (MM2 is basically done.)

e Assignment “8" due tonight at 10 (will run test script at 7, 9,

10)

e Evaluations at the end of today

e Office hours today in my office from 2:30—4 (I may be a tad
late)

e Please go to colloquium tomorrow! (It's in-person!)

e | know you're all very busy. But we (and the speaker) will
really appreciate it!

e Cool topic: internet measurements. Combination of
networking/security /privacy. Very relevant research, and from
a technical point of view.

Looking Back at the Class

About the Class

Goal: bridge the gap between theory and practice

How can theoretical models better predict practice?

Useful algorithms you may not have seen

Using algorithmic principles to become better coders!

Pantry Algorithms

e Algorithms that you should
always have handy because
they are incredibly useful

e Bloom filters, linear

programming, suffix arrays

e What drives the course

e Algorithmic understanding
of these ideas!

Throughout the course: efficient coding

e gcc and compiler decisions/flags

gprof and cachegrind

Making code more efficient

Intrinsics

SIMD operations

Part 1: Time and space

Meet in the middle

Hirshberg's algorithm

External memory model

Blocking, external memory sorting

Part 2: Randomization

e Basic probabilistic algorithm analysis

Practical hashing

Bloom Filters, cuckoo filters

Count-Min Sketch, HyperLoglLog counting

Locality-sensitive hashing

Part 3: Linear Programming

o LP

ILP/MIP

Solving algorithmic problems using LP, ILP, MIP

Simplex solver (for LP)

Branch and bound solver (for ILP/MIP)

Using GLPK to solve LPs, ILPs, MIPs

Part 4: Strings and Trees

o Burrows-Wheeler Transform
e Suffix array usage

e SA-IS algorithm

Review

Optimizing Code

Cost of different operations

Branch mispredictions

Loop unrolling

Making your intentions clear to the compiler (i.e. storing
length of a string in a separate variable when you know the
string doesn't change)

SIMD Instructions

Operations on 256 bits at a time

Can greatly speed up certain types of code

Disadvantages:

e Operations are a bit slower each (but they operate on more
data)

e Have to load and store data (expensive)

Let's look at one example

10

SIMD Instructions

int simdFindFirst@(intx A, int size){
__m256i vector@ = _mm256_setl_epi32(0);
for(int i = 0; i < size/8; i++) {
__m2561i a = _mm256_loadu_si256((__m2561ix) (A+8%1i));

__m256i res = _mm256_cmpeq_epi32(a, vector0);

erResult = _mm256_movemask_epi8(res);

if(integerResult != 0) {

for(int j = 8xi; j < 8*i + 8; j++) {
if(A[j] == @) return j;

}

}

return -1;

Locality-Sensitive Hashing for Searching for Close Points

e Reminder: a locality-sensitive hash is likely to hash close items
together, but unlikely to hash far items together

e We saw: want expected size of a bucket to be O(1)

e Strategy: hash all items into buckets. Do all-compare all
within each bucket

e If the close pair is not found, choose a new hash function and
repeat

12

LSH with Repetitions

(101, 37, 65) | (103,37,64) (91,84,3) (100,18,79)
0 1 2 3 4
(101,37,65)
. (91,84,3) (100,18,79)
0 1 2 3 4
(91,84,3)
(101, 37, 65) (103,37,64) G
0 1 2 3 4

13

LSH Analysis

e Reminder: to make sure buckets are small, we concatenate
multiple (k) minHashes hashes together

e These k minHashes will determine what bucket each item

goes in

e Let's say that each pair of items (other than the close pair)
has similarity 1/3; this means they collide (under one hash,
not all k) with probability 1/3

e Let's look at some item x;. How big is its bucket?

14

LSH Analysis

e Let's look at some item x;. How big is its bucket?

e Let's use linearity of expectation! For any j # i, x; and Xx;
wind up in the same bucket only if all k hashes have the same
value

e Pr(h(x;) = h(x;)) = 1/3k.

e Let B; be a random variable denoting the number of items
that hash to the same bucket as x;. Then
Xi = Xi1 + Xio + ...+ Xip, where Xj; = 1 if i and j hash to
the same bucket

e By linearity of expectation, E[Xj] =3 _.; E[Xj]
e Xj is a 0-1 random variable, so E[Xj] = Pr(X; = 1) = 1/3*

e Therefore, E[X;] = (n — 1)(1/3)k.

ii5)

Analysis from Lecture 12

e We want buckets of size O(1)
e So we solve n(1/3)% = O(1), which implies k = logz n

e Many people found that smaller k led to better running time.
Why is that?

e Each time we go to a bucket, need to hash the item; need to
access the bucket (probably a cache miss); some other smaller
overheads

e So the O(1) is actually pretty big; leading to a smaller k
e Cache misses are a big part of this: for practice, let's look at

how to optimize with cache misses in mind.

16

What about cache misses?

e Let's analyze this algorithm in external memory

e How many cache misses does it take for a bucket of size X7

e Are there assumptions about our cache parameters that will
affect this analysis?

e First, let's say that X < M. How many cache misses does it
take?

e Can bring the entire bucket into cache and do all-compare all.
O(1 4 X/B) cache misses.

e Where is the 1 from?? Is there a case where we don't have
that extra 17

17

What about cache misses?

e Let's analyze this algorithm in external memory
e How many cache misses does it take for a bucket of size X7

Are there assumptions about our cache parameters that will

affect this analysis?

Now, let's say that X > M. How many cache misses does it
take?

(Don’t worry about the case where X ~ M. Just deal with
the cases where it's significantly larger or smaller.)

e For each item in X, we do a linear scan through the bucket

e X - O(%) cache misses = O(X?/B)

18

Intuition: How big do we want buckets to be?

e |t always takes at least one cache miss per bucket if n > M

e So let's shoot for O(1) cache misses per bucket: expected size
of a bucket is O(B)

e We set k:

° n(1/3)k = O(B), so k = logs %

19

Finishing the Analysis

e We have k = logz 5
e What is the expected number of repetitions?

e Probability that close pair is in the same bucket? (Let's say
the close pair has similarity 3/4)

o (3/4)k.

e So the expected number of repetitions until the close pair
winds up in the same bucket is

1/(3/4)% = (4/3)% = (4/3) %5
e Let's simplify this on the board

e Hopefully we got: (n/B)'°&:4/3 ~ (n/B)-%

20

Questions about probability or external memory?

21

Independent Set (ILP practice)

e Given a graph G with nodes
V and edges E

e Find the largest collection
of vertices such that no two

vertices in the collection are

adjacent

22

Setting up the ILP

Variables?

e Let x; = 1 if vertex / is in the independent set; x; = 0
otherwise. (Binary variables.)

Objective?

Maximize > x;

23

Setting up the ILP

e Constraint?

o Need to make sure that no two vertices share an edge
e For every e € E (where e = (v;, v;)), have a constraint:
o xi+x; < 1.

24

ILP Wrapup

e Any questions about [LPs?

May be an LP on the exam. Could we write an LP for this
problem?

No obvious way to do so; need x; to be binary variables for
x; + xj < 1 to force choosing one vertex

(As you may know, this problem is NP hard, so it's likely
impossible to write an LP for this problem.)

25

Review: Requested Topics

Bookshelf/Hirschberg’s

| was requested to go over how to use a Hirshberg's-like

approach for other problems

| started making some slides to go over the bookshelf problem

They would definitely take at least 20 minutes to go over
properly

It's not on the final. So | don't want to take that time.

26

Hirschberg's takeaway

(It is a cool algorithm that | do want you to know about in

general)

e Also: Hirschberg's took more operations than normal edit
distance, and required less space. But it ran faster. Why?

e Answer: cache-efficiency!
e Our Hirchberg's operations fit in cache, which sped things up

e Naive dynamic programming approach didn't fit in cache.
Cache misses slowed us down.

27

Assgn 4 Prob 2

e Stream of 1,001,000 elements
e 1,000,000 elements only appear once (ai, - - -, 31000000)
e One element, g, appears 1000 times

e Goal for the next questions: determine number of columns,
number of rows, number of bits for a Count-min sketch

e First: how does a count min sketch work? (Let's do it on the
board)

e What are the guarantees?

28

Assign 4 Prob 2 par (a)

e Recall: 1,000,000 different a; appear once; 1000 instances of
q

e Let's say | query some a; for an answer o;, and some g for an
answer og. How do | set my parameters so that 90% of the
time, og > 0;?

e We know that oy > 1000 by the CMS guarantees. So if we
can make sure that 90% of the time, o; < 1000 we are done

e CMS guarantees give: with probability 1 — 4,
o; <1+ 1001000e

e So we set § = .1, and £ = 999/1001000

e Number of rows = [In1/0]| = 10. Number of columns =
[e/e] = 2724. (Can tighten this a bit, but this is fine)

e Number of bits per element: [log, 1001000] = 20

29

Assign 4 Prob 2 part (b)

e Recall: 1,000,000 different a; appear once; 1000 instances of
q

e Let's say | query all a; for an answer o;, and some g for an
answer og. How do | set my parameters so that 90% of the
time, og > maxo;?

e Hint was to use the union bound

30

Assign 4 Prob 2 part (a)

Recall: 1,000,000 different a; appear once; 1000 instances of

q
CMS guarantees give: with probability 1 — 6,
0; <1+ 1001000¢

We still set e = 999/1001000. But now we want this to
happen more often

We want the probability that o; > og, OR 02 > 04, OR
... OR 01000000 > g is at most .1

By union bound: the probability that any of these happen is
the sum of the probability that each happens

So want 10000006 < .1; 6 = 1,/10000000.
Number of rows = [In1/§] = 17.

31

Assign 4 Prob 4 part (b)

e Have a stream of items with a majority item m that appears
more than half the time

e How many rows do we need so that the count-min sketch is
correct with constant probability?

e In other words: if we make any query g, we should be able to
determine if ¢ = m or g # m with constant probability.

e Let's go back to the count min sketch and see what this
means

32

Looking at the CMS

Our CMS is going to have one cell containing m

This cell will have size at least n/2, where n is the length of

the stream

All other cells have size < n/2

e So on a query g: if h(q) has size > n/2 we return g = m;
otherwise we return g # m.

33

e Let's say we have c entries in a row.

e If the correct answer is g = m, how does our CMS perform?
e Always gives the correct answer.

e If the correct answer is g # m, how does our CMS perform?
e Answers correctly if h(q) # h(m)

e So: answers correctly with probability 1/c

e ¢ = O(1) is sufficient to obtain constant probability. (In fact

¢ = 2 is enough.)

34

Any Questions about Assignment 47 Or CMS?

85

Any Other Questions?

Course Evaluations!

Course Evaluations

e Please do fill them out :)

e They're on Glow; course titled " Course Evaluations”

e Two kinds: main course evaluation that many people see (me,
senior faculty in the department, admin); also “blue sheets”
that only | see

e Hopefully clearly labelled

36

Course Evaluations Spiel

JIOPTIONAL SCRIPT FOR PROMOTING THE STUDENT COURSE SURVEY

Every term, Williams asks students to participate in end-of-semester course evaluations. Your feedback
will help improve this course for other students taking it in the future, and help shape the
[department/program name] curriculum.

You may skip questions that you don’t wish to answer, and there is no penalty for choosing not to
participate. All of your answers are confidential and | will only receive a report on your responses after |
have submitted all grades for this course. While evaluations are open, | will receive information on how
many students have filled out the evaluations, but | won't be told which of you have and haven’t
completed them. | won’t know which responses are associated with which student unless you identify
yourself in the comments.

To access the online evaluations, log into Glow (glow.williams.edu) using your regular Williams
username and password (the same ones you use for your Williams email account). On your Glow
dashboard you'll see a course called “Course Evaluations.” Click on this and then follow the instructions
on the screen. If you have trouble finding the evaluation, you can ask a classmate or reach out to
Institutional Research at ir@williams.edu. The evaluations are open to you from now through the end of
reading period. If you haven't filled it out by the beginning of reading period, you will start receiving
email reminders.

37

	Looking Back at the Class
	Review
	Optimization
	SIMD Instructions
	LSH with External Memory
	Integer Linear Programming

	Review: Requested Topics
	Bookshelf Problem
	Assignment 4 Problem 2

	Any Other Questions?
	Course Evaluations!

