
Applied Algorithms Lec 24: Review

Sam McCauley

December 9, 2021

Williams College



Admin

• MM2 and MM3 back tonight. (MM2 is basically done.)

• Assignment “8” due tonight at 10 (will run test script at 7, 9,

10)

• Evaluations at the end of today

• Office hours today in my office from 2:30–4 (I may be a tad

late)

• Please go to colloquium tomorrow! (It’s in-person!)

• I know you’re all very busy. But we (and the speaker) will

really appreciate it!

• Cool topic: internet measurements. Combination of

networking/security/privacy. Very relevant research, and from

a technical point of view.

1



Looking Back at the Class



About the Class

• Goal: bridge the gap between theory and practice

• How can theoretical models better predict practice?

• Useful algorithms you may not have seen

• Using algorithmic principles to become better coders!

2



Pantry Algorithms

• Algorithms that you should

always have handy because

they are incredibly useful

• Bloom filters, linear

programming, suffix arrays

• What drives the course

• Algorithmic understanding

of these ideas!

3



Course topics

Throughout the course: efficient coding

• gcc and compiler decisions/flags

• gprof and cachegrind

• Making code more efficient

• Intrinsics

• SIMD operations

4



Course topics

Part 1: Time and space

• Meet in the middle

• Hirshberg’s algorithm

• External memory model

• Blocking, external memory sorting

5



Course topics

Part 2: Randomization

• Basic probabilistic algorithm analysis

• Practical hashing

• Bloom Filters, cuckoo filters

• Count-Min Sketch, HyperLogLog counting

• Locality-sensitive hashing

6



Course topics

Part 3: Linear Programming

• LP

• ILP/MIP

• Solving algorithmic problems using LP, ILP, MIP

• Simplex solver (for LP)

• Branch and bound solver (for ILP/MIP)

• Using GLPK to solve LPs, ILPs, MIPs

7



Course topics

Part 4: Strings and Trees

• Burrows-Wheeler Transform

• Suffix array usage

• SA-IS algorithm

8



Review



Optimizing Code

• Cost of different operations

• Branch mispredictions

• Loop unrolling

• Making your intentions clear to the compiler (i.e. storing

length of a string in a separate variable when you know the

string doesn’t change)

9



SIMD Instructions

• Operations on 256 bits at a time

• Can greatly speed up certain types of code

• Disadvantages:

• Operations are a bit slower each (but they operate on more

data)

• Have to load and store data (expensive)

• Let’s look at one example

10



SIMD Instructions

11



Locality-Sensitive Hashing for Searching for Close Points

• Reminder: a locality-sensitive hash is likely to hash close items

together, but unlikely to hash far items together

• We saw: want expected size of a bucket to be O(1)

• Strategy: hash all items into buckets. Do all-compare all

within each bucket

• If the close pair is not found, choose a new hash function and

repeat

12



LSH with Repetitions

(101, 37, 65) (103,37,64) (91,84,3) (100,18,79)

0 1 2 3 4

(101,37,65)

(103,37,64)
(91,84,3) (100,18,79)

0 1 2 3 4

(101, 37, 65) (103,37,64)
(91,84,3)

(100,18,79)

0 1 2 3 4

13



LSH Analysis

• Reminder: to make sure buckets are small, we concatenate

multiple (k) minHashes hashes together

• These k minHashes will determine what bucket each item

goes in

• Let’s say that each pair of items (other than the close pair)

has similarity 1/3; this means they collide (under one hash,

not all k) with probability 1/3

• Let’s look at some item xi . How big is its bucket?

14



LSH Analysis

• Let’s look at some item xi . How big is its bucket?

• Let’s use linearity of expectation! For any j 6= i , xi and xj

wind up in the same bucket only if all k hashes have the same

value

• Pr(h(xi ) = h(xj)) = 1/3k .

• Let Bi be a random variable denoting the number of items

that hash to the same bucket as xi . Then

Xi = Xi1 + Xi2 + . . .+ Xin, where Xij = 1 if i and j hash to

the same bucket

• By linearity of expectation, E [Xi ] =
∑

j 6=i E [Xij ]

• Xij is a 0-1 random variable, so E[Xij ] = Pr(Xij = 1) = 1/3k

• Therefore, E [Xi ] = (n − 1)(1/3)k .

15



Analysis from Lecture 12

• We want buckets of size O(1)

• So we solve n(1/3)k = O(1), which implies k = log3 n

• Many people found that smaller k led to better running time.

Why is that?

• Each time we go to a bucket, need to hash the item; need to

access the bucket (probably a cache miss); some other smaller

overheads

• So the O(1) is actually pretty big; leading to a smaller k

• Cache misses are a big part of this: for practice, let’s look at

how to optimize with cache misses in mind.

16



What about cache misses?

• Let’s analyze this algorithm in external memory

• How many cache misses does it take for a bucket of size X?

• Are there assumptions about our cache parameters that will

affect this analysis?

• First, let’s say that X ≤ M. How many cache misses does it
take?

• Can bring the entire bucket into cache and do all-compare all.

O(1 + X/B) cache misses.

• Where is the 1 from?? Is there a case where we don’t have

that extra 1?

17



What about cache misses?

• Let’s analyze this algorithm in external memory

• How many cache misses does it take for a bucket of size X?

• Are there assumptions about our cache parameters that will

affect this analysis?

• Now, let’s say that X � M. How many cache misses does it

take?

• (Don’t worry about the case where X ≈ M. Just deal with
the cases where it’s significantly larger or smaller.)

• For each item in X , we do a linear scan through the bucket

• X · O(X
B ) cache misses = O(X 2/B)

18



Intuition: How big do we want buckets to be?

• It always takes at least one cache miss per bucket if n� M

• So let’s shoot for O(1) cache misses per bucket: expected size

of a bucket is O(B)

• We set k:

• n(1/3)k = O(B), so k = log3
n
B

19



Finishing the Analysis

• We have k = log3
n
B

• What is the expected number of repetitions?

• Probability that close pair is in the same bucket? (Let’s say

the close pair has similarity 3/4)

• (3/4)k .

• So the expected number of repetitions until the close pair

winds up in the same bucket is

1/(3/4)k = (4/3)k = (4/3)log3
n
B

• Let’s simplify this on the board

• Hopefully we got: (n/B)log3 4/3 ≈ (n/B).26

20



Questions about probability or external memory?

21



Independent Set (ILP practice)

• Given a graph G with nodes

V and edges E

• Find the largest collection

of vertices such that no two

vertices in the collection are

adjacent

22



Setting up the ILP

• Variables?

• Let xi = 1 if vertex i is in the independent set; xi = 0

otherwise. (Binary variables.)

• Objective?

• Maximize
∑

xi

23



Setting up the ILP

• Constraint?

• Need to make sure that no two vertices share an edge

• For every e ∈ E (where e = (vi , vj)), have a constraint:

• xi + xj ≤ 1.

24



ILP Wrapup

• Any questions about ILPs?

• May be an LP on the exam. Could we write an LP for this

problem?

• No obvious way to do so; need xi to be binary variables for

xi + xj ≤ 1 to force choosing one vertex

• (As you may know, this problem is NP hard, so it’s likely

impossible to write an LP for this problem.)

25



Review: Requested Topics



Bookshelf/Hirschberg’s

• I was requested to go over how to use a Hirshberg’s-like

approach for other problems

• I started making some slides to go over the bookshelf problem

• They would definitely take at least 20 minutes to go over

properly

• It’s not on the final. So I don’t want to take that time.

26



Hirschberg’s takeaway

• (It is a cool algorithm that I do want you to know about in

general)

• Also: Hirschberg’s took more operations than normal edit

distance, and required less space. But it ran faster. Why?

• Answer: cache-efficiency!

• Our Hirchberg’s operations fit in cache, which sped things up

• Naive dynamic programming approach didn’t fit in cache.

Cache misses slowed us down.

27



Assgn 4 Prob 2

• Stream of 1,001,000 elements

• 1,000,000 elements only appear once (a1, . . . , a1000000)

• One element, q, appears 1000 times

• Goal for the next questions: determine number of columns,

number of rows, number of bits for a Count-min sketch

• First: how does a count min sketch work? (Let’s do it on the

board)

• What are the guarantees?

28



Assign 4 Prob 2 par (a)

• Recall: 1,000,000 different ai appear once; 1000 instances of

q

• Let’s say I query some ai for an answer oi , and some q for an

answer oq. How do I set my parameters so that 90% of the

time, oq ≥ oi?

• We know that oq ≥ 1000 by the CMS guarantees. So if we

can make sure that 90% of the time, oi ≤ 1000 we are done

• CMS guarantees give: with probability 1− δ,

oi ≤ 1 + 1001000ε

• So we set δ = .1, and ε = 999/1001000

• Number of rows = dln 1/δe = 10. Number of columns =

de/εe = 2724. (Can tighten this a bit, but this is fine)

• Number of bits per element: dlog2 1001000e = 20

29



Assign 4 Prob 2 part (b)

• Recall: 1,000,000 different ai appear once; 1000 instances of

q

• Let’s say I query all ai for an answer oi , and some q for an

answer oq. How do I set my parameters so that 90% of the

time, oq ≥ max oi?

• Hint was to use the union bound

30



Assign 4 Prob 2 part (a)

• Recall: 1,000,000 different ai appear once; 1000 instances of

q

• CMS guarantees give: with probability 1− δ,

oi ≤ 1 + 1001000ε

• We still set ε = 999/1001000. But now we want this to

happen more often

• We want the probability that o1 > oq, OR o2 > oq, OR

. . . OR o1000000 > q is at most .1

• By union bound: the probability that any of these happen is

the sum of the probability that each happens

• So want 1000000δ < .1; δ = 1/10000000.

• Number of rows = dln 1/δe = 17.

31



Assign 4 Prob 4 part (b)

• Have a stream of items with a majority item m that appears

more than half the time

• How many rows do we need so that the count-min sketch is

correct with constant probability?

• In other words: if we make any query q, we should be able to

determine if q = m or q 6= m with constant probability.

• Let’s go back to the count min sketch and see what this

means

32



Looking at the CMS

• Our CMS is going to have one cell containing m

• This cell will have size at least n/2, where n is the length of

the stream

• All other cells have size < n/2

• So on a query q: if h(q) has size > n/2 we return q = m;

otherwise we return q 6= m.

33



Analysis

• Let’s say we have c entries in a row.

• If the correct answer is q = m, how does our CMS perform?

• Always gives the correct answer.

• If the correct answer is q 6= m, how does our CMS perform?

• Answers correctly if h(q) 6= h(m)

• So: answers correctly with probability 1/c

• c = O(1) is sufficient to obtain constant probability. (In fact

c = 2 is enough.)

34



Any Questions about Assignment 4? Or CMS?

35



Any Other Questions?



Course Evaluations!



Course Evaluations

• Please do fill them out :)

• They’re on Glow; course titled ”Course Evaluations”

• Two kinds: main course evaluation that many people see (me,

senior faculty in the department, admin); also “blue sheets”

that only I see

• Hopefully clearly labelled

36



Course Evaluations Spiel

37


	Looking Back at the Class
	Review
	Optimization
	SIMD Instructions
	LSH with External Memory
	Integer Linear Programming

	Review: Requested Topics
	Bookshelf Problem
	Assignment 4 Problem 2

	Any Other Questions?
	Course Evaluations!

