
Lecture 23: van Emde Boas Trees

Sam McCauley

December 6, 2021

Williams College

Admin

• Assignment 5 back (MM2 and MM3 back soon; Assignment 8
probably not back until after reading period unfortunately)

• Today: an SA-IS example run beginning to end, then van
Emde Boas trees

1

Next Class

• Review!
• I have some topics I want to go over:

• One example of algorithm analysis in the external memory
model

• One probabilistic algorithm example (Random shuffle from
Assignment 5)

• One LP or ILP

• If you have something you want to see, please email me the
topic before Thursday

• Questions during class are also OK, but it’s better if I have
prep

• We’ll also do course evaluations at the end of class (please
bring a laptop or something)

2

Final Exam Info

• Comprehensive (on all parts of course)

• Remote 24 hour take home exam. Can take at any point
starting Dec 11 (Saturday); must finish by 8:30pm Dec 19
(Sunday)

• Start thinking of when you want to take it

• I’ll be handing them out manually (current plan is email).
You’ll need to let me know when you want to take it. If you
don’t I’ll send it to you at 8:30pm Dec 18

• Not much coding (just a little bit). You should have access to
the lab computers. Let me know if that’s a problem. (Probably
not a problem if you have access to the American internet)

3

SA-IS Example

String: CACATACACAGACACAC$

Correct Suffix Array: 17 15 13 11 5 7 1 9 3 16 14 12 6 0 8
2 10 4

4

SA-IS Example

String: CACATACACAGACACAC$

Correct Suffix Array: 17 15 13 11 5 7 1 9 3 16 14 12 6 0 8
2 10 4

4

Predecessor and Successor Queries

Problem for today:

• Store a set S of size n (must be comparable items: for any
i , j ∈ S must have i < j , i > j , or i = j).

• Want to answer predecessor and successor queries. On a query
q

• Predecessor: Find the largest i ∈ S such that i ≤ q

• Successor: Find the smallest i ∈ S such that i ≥ q

• In CS 136 we saw how to answer this using a balanced binary
search tree in O(log n) time

• This is optimal if all you can do is compare items

5

Predecessor and Successor Queries

Problem for today:

• Store a set S of size n (must be comparable items: for any
i , j ∈ S must have i < j , i > j , or i = j).

• Want to answer predecessor and successor queries. On a query
q

• Predecessor: Find the largest i ∈ S such that i ≤ q

• Successor: Find the smallest i ∈ S such that i ≥ q

• In CS 136 we saw how to answer this using a balanced binary
search tree in O(log n) time

• This is optimal if all you can do is compare items

5

Predecessor and Successor Queries

Problem for today:

• Store a set S of size n (must be comparable items: for any
i , j ∈ S must have i < j , i > j , or i = j).

• Want to answer predecessor and successor queries. On a query
q

• Predecessor: Find the largest i ∈ S such that i ≤ q

• Successor: Find the smallest i ∈ S such that i ≥ q

• In CS 136 we saw how to answer this using a balanced binary
search tree in O(log n) time

• This is optimal if all you can do is compare items

5

Predecessor and Successor Queries

Problem for today:

• Store a set S of size n (must be comparable items: for any
i , j ∈ S must have i < j , i > j , or i = j).

• Want to answer predecessor and successor queries. On a query
q

• Predecessor: Find the largest i ∈ S such that i ≤ q

• Successor: Find the smallest i ∈ S such that i ≥ q

• In CS 136 we saw how to answer this using a balanced binary
search tree in O(log n) time

• This is optimal if all you can do is compare items

5

Generalizing the model

• This assumption is often too restrictive! Often we want to
perform predecessor queries on integers or strings

• Know much more about the relative values of integers or
strings

• Today: let’s say that the items of S are taken from a bounded
set {0, . . . ,M − 1}

• For example: if the items of S are 64-bit integers, then we
have M = 264. If items of S are k-character strings, we have
M = 8k .

• In this case, we will show how to get predecessor and successor
in O(log logM) time.

• For a w -bit integer, get O(logw) time
• For a k-character string, get O(log k) time

6

Generalizing the model

• This assumption is often too restrictive! Often we want to
perform predecessor queries on integers or strings

• Know much more about the relative values of integers or
strings

• Today: let’s say that the items of S are taken from a bounded
set {0, . . . ,M − 1}

• For example: if the items of S are 64-bit integers, then we
have M = 264. If items of S are k-character strings, we have
M = 8k .

• In this case, we will show how to get predecessor and successor
in O(log logM) time.

• For a w -bit integer, get O(logw) time
• For a k-character string, get O(log k) time

6

Generalizing the model

• This assumption is often too restrictive! Often we want to
perform predecessor queries on integers or strings

• Know much more about the relative values of integers or
strings

• Today: let’s say that the items of S are taken from a bounded
set {0, . . . ,M − 1}

• For example: if the items of S are 64-bit integers, then we
have M = 264. If items of S are k-character strings, we have
M = 8k .

• In this case, we will show how to get predecessor and successor
in O(log logM) time.

• For a w -bit integer, get O(logw) time
• For a k-character string, get O(log k) time

6

Generalizing the model

• This assumption is often too restrictive! Often we want to
perform predecessor queries on integers or strings

• Know much more about the relative values of integers or
strings

• Today: let’s say that the items of S are taken from a bounded
set {0, . . . ,M − 1}

• For example: if the items of S are 64-bit integers, then we
have M = 264. If items of S are k-character strings, we have
M = 8k .

• In this case, we will show how to get predecessor and successor
in O(log logM) time.

• For a w -bit integer, get O(logw) time
• For a k-character string, get O(log k) time

6

Generalizing the model

• This assumption is often too restrictive! Often we want to
perform predecessor queries on integers or strings

• Know much more about the relative values of integers or
strings

• Today: let’s say that the items of S are taken from a bounded
set {0, . . . ,M − 1}

• For example: if the items of S are 64-bit integers, then we
have M = 264. If items of S are k-character strings, we have
M = 8k .

• In this case, we will show how to get predecessor and successor
in O(log logM) time.

• For a w -bit integer, get O(logw) time
• For a k-character string, get O(log k) time

6

Data structure for today

• Van Emde Boas tree!

• Clever data structure. Very good constants, but still used
sometimes in practice

• We’ll only look at inserts, successor. Can generalize to
predecessor queries and deletes.

• Let’s not worry about space today (we’ll wind up with O(M)

space). Some techniques to achieve O(n) space.

• Also, let’s assume that log2 log2 M is an integer (M is 2 to a
power of 2; like 28 or 264

7

Data structure for today

• Van Emde Boas tree!

• Clever data structure. Very good constants, but still used
sometimes in practice

• We’ll only look at inserts, successor. Can generalize to
predecessor queries and deletes.

• Let’s not worry about space today (we’ll wind up with O(M)

space). Some techniques to achieve O(n) space.

• Also, let’s assume that log2 log2 M is an integer (M is 2 to a
power of 2; like 28 or 264

7

Data structure for today

• Van Emde Boas tree!

• Clever data structure. Very good constants, but still used
sometimes in practice

• We’ll only look at inserts, successor. Can generalize to
predecessor queries and deletes.

• Let’s not worry about space today (we’ll wind up with O(M)

space). Some techniques to achieve O(n) space.

• Also, let’s assume that log2 log2 M is an integer (M is 2 to a
power of 2; like 28 or 264

7

Data structure for today

• Van Emde Boas tree!

• Clever data structure. Very good constants, but still used
sometimes in practice

• We’ll only look at inserts, successor. Can generalize to
predecessor queries and deletes.

• Let’s not worry about space today (we’ll wind up with O(M)

space). Some techniques to achieve O(n) space.

• Also, let’s assume that log2 log2 M is an integer (M is 2 to a
power of 2; like 28 or 264

7

Data structure for today

• Van Emde Boas tree!

• Clever data structure. Very good constants, but still used
sometimes in practice

• We’ll only look at inserts, successor. Can generalize to
predecessor queries and deletes.

• Let’s not worry about space today (we’ll wind up with O(M)

space). Some techniques to achieve O(n) space.

• Also, let’s assume that log2 log2 M is an integer (M is 2 to a
power of 2; like 28 or 264

7

First attempt at Insert, Successor

• Let’s keep a bit array A of length M

• A[i] = 0 if i /∈ S , A[i] = 1 if i ∈ S

• Time for insert?

• O(1)

• Time for successor?

• O(M)

• Insert is really fast. Can we try to speed up successor?

8

First attempt at Insert, Successor

• Let’s keep a bit array A of length M

• A[i] = 0 if i /∈ S , A[i] = 1 if i ∈ S

• Time for insert?

• O(1)

• Time for successor?

• O(M)

• Insert is really fast. Can we try to speed up successor?

8

First attempt at Insert, Successor

• Let’s keep a bit array A of length M

• A[i] = 0 if i /∈ S , A[i] = 1 if i ∈ S

• Time for insert?

• O(1)

• Time for successor?

• O(M)

• Insert is really fast. Can we try to speed up successor?

8

First attempt at Insert, Successor

• Let’s keep a bit array A of length M

• A[i] = 0 if i /∈ S , A[i] = 1 if i ∈ S

• Time for insert?

• O(1)

• Time for successor?

• O(M)

• Insert is really fast. Can we try to speed up successor?

8

First attempt at Insert, Successor

• Let’s keep a bit array A of length M

• A[i] = 0 if i /∈ S , A[i] = 1 if i ∈ S

• Time for insert?

• O(1)

• Time for successor?

• O(M)

• Insert is really fast. Can we try to speed up successor?

8

First attempt at Insert, Successor

• Let’s keep a bit array A of length M

• A[i] = 0 if i /∈ S , A[i] = 1 if i ∈ S

• Time for insert?

• O(1)

• Time for successor?

• O(M)

• Insert is really fast. Can we try to speed up successor?

8

First attempt at Insert, Successor

• Let’s keep a bit array A of length M

• A[i] = 0 if i /∈ S , A[i] = 1 if i ∈ S

• Time for insert?

• O(1)

• Time for successor?

• O(M)

• Insert is really fast. Can we try to speed up successor?

8

Second attempt at Insert, Successor

• Split our array into “clusters” of
√
M elements.

• Let’s do a “two-level” query for the successor:
• First, find which cluster q is in
• If the successor of q is there then we are done (O(

√
M) time)

• Otherwise, find the next nonempty cluster
• Then, query within the correct cluster for the minimum

element (O(
√
M) time as before)

• How can we query for minimum using a successor query?
• How can we find the next nonempty cluster?

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 0 cluster 1 cluster 2 cluster 3

q

9

Second attempt at Insert, Successor

• Split our array into “clusters” of
√
M elements.

• Let’s do a “two-level” query for the successor:

• First, find which cluster q is in
• If the successor of q is there then we are done (O(

√
M) time)

• Otherwise, find the next nonempty cluster
• Then, query within the correct cluster for the minimum

element (O(
√
M) time as before)

• How can we query for minimum using a successor query?
• How can we find the next nonempty cluster?

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 0 cluster 1 cluster 2 cluster 3

q

9

Second attempt at Insert, Successor

• Split our array into “clusters” of
√
M elements.

• Let’s do a “two-level” query for the successor:
• First, find which cluster q is in

• If the successor of q is there then we are done (O(
√
M) time)

• Otherwise, find the next nonempty cluster
• Then, query within the correct cluster for the minimum

element (O(
√
M) time as before)

• How can we query for minimum using a successor query?
• How can we find the next nonempty cluster?

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 0 cluster 1 cluster 2 cluster 3

q

9

Second attempt at Insert, Successor

• Split our array into “clusters” of
√
M elements.

• Let’s do a “two-level” query for the successor:
• First, find which cluster q is in
• If the successor of q is there then we are done (O(

√
M) time)

• Otherwise, find the next nonempty cluster
• Then, query within the correct cluster for the minimum

element (O(
√
M) time as before)

• How can we query for minimum using a successor query?
• How can we find the next nonempty cluster?

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 0 cluster 1 cluster 2 cluster 3

q

9

Second attempt at Insert, Successor

• Split our array into “clusters” of
√
M elements.

• Let’s do a “two-level” query for the successor:
• First, find which cluster q is in
• If the successor of q is there then we are done (O(

√
M) time)

• Otherwise, find the next nonempty cluster

• Then, query within the correct cluster for the minimum
element (O(

√
M) time as before)

• How can we query for minimum using a successor query?
• How can we find the next nonempty cluster?

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 0 cluster 1 cluster 2 cluster 3

q

9

Second attempt at Insert, Successor

• Split our array into “clusters” of
√
M elements.

• Let’s do a “two-level” query for the successor:
• First, find which cluster q is in
• If the successor of q is there then we are done (O(

√
M) time)

• Otherwise, find the next nonempty cluster
• Then, query within the correct cluster for the minimum

element (O(
√
M) time as before)

• How can we query for minimum using a successor query?
• How can we find the next nonempty cluster?

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 0 cluster 1 cluster 2 cluster 3

q

9

Second attempt at Insert, Successor

• Split our array into “clusters” of
√
M elements.

• Let’s do a “two-level” query for the successor:
• First, find which cluster q is in
• If the successor of q is there then we are done (O(

√
M) time)

• Otherwise, find the next nonempty cluster
• Then, query within the correct cluster for the minimum

element (O(
√
M) time as before)

• How can we query for minimum using a successor query?

• How can we find the next nonempty cluster?

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 0 cluster 1 cluster 2 cluster 3

q

9

Second attempt at Insert, Successor

• Split our array into “clusters” of
√
M elements.

• Let’s do a “two-level” query for the successor:
• First, find which cluster q is in
• If the successor of q is there then we are done (O(

√
M) time)

• Otherwise, find the next nonempty cluster
• Then, query within the correct cluster for the minimum

element (O(
√
M) time as before)

• How can we query for minimum using a successor query?
• How can we find the next nonempty cluster?

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 0 cluster 1 cluster 2 cluster 3

q

9

Second attempt at Insert, Successor

• We want to find the next nonempty cluster

• That’s a successor query!

• Let’s create a second, identical data structure to hold whether
or not each cluster is empty

1 1 0 1
0 1 2 3

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 1 cluster 2 cluster 3 cluster 4

q

Summary array:

10

Second attempt at Insert, Successor

• We want to find the next nonempty cluster

• That’s a successor query!

• Let’s create a second, identical data structure to hold whether
or not each cluster is empty

1 1 0 1
0 1 2 3

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 1 cluster 2 cluster 3 cluster 4

q

Summary array:

10

Second attempt at Insert, Successor

• We want to find the next nonempty cluster

• That’s a successor query!

• Let’s create a second, identical data structure to hold whether
or not each cluster is empty

1 1 0 1
0 1 2 3

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 1 cluster 2 cluster 3 cluster 4

q

Summary array:

10

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Successor:

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Check for the successor of q in q’s cluster

• If it’s not found:

• Find the next nonempty cluster by looking in the summary
array (O(

√
M) time)

• Find the successor of q by looking for the smallest element in
that cluster

• O(
√
M) time

11

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Successor:

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Check for the successor of q in q’s cluster

• If it’s not found:

• Find the next nonempty cluster by looking in the summary
array (O(

√
M) time)

• Find the successor of q by looking for the smallest element in
that cluster

• O(
√
M) time

11

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Successor:

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Check for the successor of q in q’s cluster

• If it’s not found:

• Find the next nonempty cluster by looking in the summary
array (O(

√
M) time)

• Find the successor of q by looking for the smallest element in
that cluster

• O(
√
M) time

11

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Successor:

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Check for the successor of q in q’s cluster

• If it’s not found:

• Find the next nonempty cluster by looking in the summary
array (O(

√
M) time)

• Find the successor of q by looking for the smallest element in
that cluster

• O(
√
M) time

11

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Successor:

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Check for the successor of q in q’s cluster

• If it’s not found:

• Find the next nonempty cluster by looking in the summary
array (O(

√
M) time)

• Find the successor of q by looking for the smallest element in
that cluster

• O(
√
M) time

11

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Successor:

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Check for the successor of q in q’s cluster

• If it’s not found:

• Find the next nonempty cluster by looking in the summary
array (O(

√
M) time)

• Find the successor of q by looking for the smallest element in
that cluster

• O(
√
M) time

11

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Successor:

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Check for the successor of q in q’s cluster

• If it’s not found:

• Find the next nonempty cluster by looking in the summary
array (O(

√
M) time)

• Find the successor of q by looking for the smallest element in
that cluster

• O(
√
M) time

11

Second attempt at Insert, Successor

1 1 0 1
0 1 2 3

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cluster 1 cluster 2 cluster 3 cluster 4

Summary array:

12

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Insert:

• Set the q bit in the overall array

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Set the cluster bit in the summary array

13

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Insert:

• Set the q bit in the overall array

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Set the cluster bit in the summary array

13

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Insert:

• Set the q bit in the overall array

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Set the cluster bit in the summary array

13

Second attempt at Insert, Successor

O(1) insert, O(
√
M) successor query:

Insert:

• Set the q bit in the overall array

• Figure out which cluster q is in (can calculate: bq/
√
Mc)

• (These are the top w/2 bits of q)

• Set the cluster bit in the summary array

13

Where to go from here?

• Insert is still really fast, we want to improve successor.

• Where can we improve?

• All our time is spent doing array scans for successor queries
within a cluster...

• But we know how to do better-than-linear successor queries!
Let’s recurse.

14

Where to go from here?

• Insert is still really fast, we want to improve successor.

• Where can we improve?

• All our time is spent doing array scans for successor queries
within a cluster...

• But we know how to do better-than-linear successor queries!
Let’s recurse.

14

Where to go from here?

• Insert is still really fast, we want to improve successor.

• Where can we improve?

• All our time is spent doing array scans for successor queries
within a cluster...

• But we know how to do better-than-linear successor queries!
Let’s recurse.

14

Where to go from here?

• Insert is still really fast, we want to improve successor.

• Where can we improve?

• All our time is spent doing array scans for successor queries
within a cluster...

• But we know how to do better-than-linear successor queries!
Let’s recurse.

14

We stopped here in class!

• Idea of the rest: we need to recurse rather than doing these
expensive searches

• Key obstacle to overcome: need to only do one recursive call
on each; that will get us recurrence T (M) = T (

√
M) + O(1)

which solves to O(log logM).

15

We stopped here in class!

• Idea of the rest: we need to recurse rather than doing these
expensive searches

• Key obstacle to overcome: need to only do one recursive call
on each; that will get us recurrence T (M) = T (

√
M) + O(1)

which solves to O(log logM).

15

Rest of Slides (We didn’t get to in
class)

Recursing: van Emde Boas Tree (almost)

If M = 1, just store the array.

Otherwise:

• Store a summary vEB tree of size
√
|M| to keep track of

which clusters are full

• For each cluster, store a vEB tree of size
√
M

• (Keep an array with a pointer to each of these vEB trees)

• Let’s draw a picture of it on the board

16

Recursing: van Emde Boas Tree (almost)

If M = 1, just store the array.

Otherwise:

• Store a summary vEB tree of size
√
|M| to keep track of

which clusters are full

• For each cluster, store a vEB tree of size
√
M

• (Keep an array with a pointer to each of these vEB trees)

• Let’s draw a picture of it on the board

16

Recursing: van Emde Boas Tree (almost)

If M = 1, just store the array.

Otherwise:

• Store a summary vEB tree of size
√
|M| to keep track of

which clusters are full

• For each cluster, store a vEB tree of size
√
M

• (Keep an array with a pointer to each of these vEB trees)

• Let’s draw a picture of it on the board

16

Recursing: van Emde Boas Tree (almost)

If M = 1, just store the array.

Otherwise:

• Store a summary vEB tree of size
√
|M| to keep track of

which clusters are full

• For each cluster, store a vEB tree of size
√
M

• (Keep an array with a pointer to each of these vEB trees)

• Let’s draw a picture of it on the board

16

(almost) vEB Tree Insert

• To insert, we need to recursively insert into the summary vEB
tree, and we need to insert into the appropriate cluster

• Recurrence:

• T (M) = 2T (
√
M) + O(1)

• Solves to O(logM) insert time (too slow!)

17

(almost) vEB Tree Insert

• To insert, we need to recursively insert into the summary vEB
tree, and we need to insert into the appropriate cluster

• Recurrence:

• T (M) = 2T (
√
M) + O(1)

• Solves to O(logM) insert time (too slow!)

17

(almost) vEB Tree Insert

• To insert, we need to recursively insert into the summary vEB
tree, and we need to insert into the appropriate cluster

• Recurrence:

• T (M) = 2T (
√
M) + O(1)

• Solves to O(logM) insert time (too slow!)

17

(almost) vEB Tree Insert

• To insert, we need to recursively insert into the summary vEB
tree, and we need to insert into the appropriate cluster

• Recurrence:

• T (M) = 2T (
√
M) + O(1)

• Solves to O(logM) insert time (too slow!)

17

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Let’s draw what this might look like on the board.

• Recurrence:

• T (M) = 3T (
√
M) + O(1)

• Solves to O((logM)log2 3) = O(log1.585 M) insert time (way
too slow!)

18

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Let’s draw what this might look like on the board.

• Recurrence:

• T (M) = 3T (
√
M) + O(1)

• Solves to O((logM)log2 3) = O(log1.585 M) insert time (way
too slow!)

18

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Let’s draw what this might look like on the board.

• Recurrence:

• T (M) = 3T (
√
M) + O(1)

• Solves to O((logM)log2 3) = O(log1.585 M) insert time (way
too slow!)

18

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Let’s draw what this might look like on the board.

• Recurrence:

• T (M) = 3T (
√
M) + O(1)

• Solves to O((logM)log2 3) = O(log1.585 M) insert time (way
too slow!)

18

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Let’s draw what this might look like on the board.

• Recurrence:

• T (M) = 3T (
√
M) + O(1)

• Solves to O((logM)log2 3) = O(log1.585 M) insert time (way
too slow!)

18

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Let’s draw what this might look like on the board.

• Recurrence:

• T (M) = 3T (
√
M) + O(1)

• Solves to O((logM)log2 3) = O(log1.585 M) insert time (way
too slow!)

18

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Let’s draw what this might look like on the board.

• Recurrence:

• T (M) = 3T (
√
M) + O(1)

• Solves to O((logM)log2 3) = O(log1.585 M) insert time (way
too slow!)

18

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Let’s draw what this might look like on the board.

• Recurrence:

• T (M) = 3T (
√
M) + O(1)

• Solves to O((logM)log2 3) = O(log1.585 M) insert time (way
too slow!)

18

The Problem

• Too many recursive calls!

• Can we get rid of some of them? Let’s focus on successor

19

The Problem

• Too many recursive calls!

• Can we get rid of some of them? Let’s focus on successor

19

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Finding the minimum element doesn’t require a whole
successor call! Let’s just store the minimum element in each
cluster. Then finding the minimum element is O(1).

20

(almost) vEB Tree Successor

• To find the successor of q, we need to:

• Query the main cluster to see if the successor is there

• If not found, find the next nonempty cluster using a successor
query on the summary vEB tree

• Then query that cluster for the minimum element

• Finding the minimum element doesn’t require a whole
successor call! Let’s just store the minimum element in each
cluster. Then finding the minimum element is O(1).

20

vEB Tree: Adding Minimum Element

• On insert: proceed like before (insert into summary cluster;
insert into the cluster itself). But, every time you insert into a
cluster, check to see if the element we’re inserting is the new
minimum. If so, swap it out.

• Successor: we still query the main cluster. If the successor is
not found, use a successor query in the summary vEB tree to
find the next nonempty cluster. Return the minimum element
in that cluster.

• Recurrence for both: T (M) = 2T (
√
M) + O(1); solves to

T (M) = logM.

21

vEB Tree: Adding Minimum Element

• On insert: proceed like before (insert into summary cluster;
insert into the cluster itself). But, every time you insert into a
cluster, check to see if the element we’re inserting is the new
minimum. If so, swap it out.

• Successor: we still query the main cluster. If the successor is
not found, use a successor query in the summary vEB tree to
find the next nonempty cluster. Return the minimum element
in that cluster.

• Recurrence for both: T (M) = 2T (
√
M) + O(1); solves to

T (M) = logM.

21

vEB Tree: Adding Minimum Element

• On insert: proceed like before (insert into summary cluster;
insert into the cluster itself). But, every time you insert into a
cluster, check to see if the element we’re inserting is the new
minimum. If so, swap it out.

• Successor: we still query the main cluster. If the successor is
not found, use a successor query in the summary vEB tree to
find the next nonempty cluster. Return the minimum element
in that cluster.

• Recurrence for both: T (M) = 2T (
√
M) + O(1); solves to

T (M) = logM.

21

Getting to log logM

• Target recurrence?

• T (M) = T (
√
M) + O(1). This solves to O(log logM).

• Goal: get rid of second recursive call in insert and successor
query

• On query: we still query the main cluster. If the successor is
not found, use a successor query in the summary vEB tree to
find the next nonempty cluster. Return the minimum element
in that cluster.

• How can we make this just one call?

• Hint: Can we store something to help us determine if q has a
successor in its cluster without a recursive query?

22

Getting to log logM

• Target recurrence?

• T (M) = T (
√
M) + O(1). This solves to O(log logM).

• Goal: get rid of second recursive call in insert and successor
query

• On query: we still query the main cluster. If the successor is
not found, use a successor query in the summary vEB tree to
find the next nonempty cluster. Return the minimum element
in that cluster.

• How can we make this just one call?

• Hint: Can we store something to help us determine if q has a
successor in its cluster without a recursive query?

22

Getting to log logM

• Target recurrence?

• T (M) = T (
√
M) + O(1). This solves to O(log logM).

• Goal: get rid of second recursive call in insert and successor
query

• On query: we still query the main cluster. If the successor is
not found, use a successor query in the summary vEB tree to
find the next nonempty cluster. Return the minimum element
in that cluster.

• How can we make this just one call?

• Hint: Can we store something to help us determine if q has a
successor in its cluster without a recursive query?

22

Getting to log logM

• Target recurrence?

• T (M) = T (
√
M) + O(1). This solves to O(log logM).

• Goal: get rid of second recursive call in insert and successor
query

• On query: we still query the main cluster. If the successor is
not found, use a successor query in the summary vEB tree to
find the next nonempty cluster. Return the minimum element
in that cluster.

• How can we make this just one call?

• Hint: Can we store something to help us determine if q has a
successor in its cluster without a recursive query?

22

Getting to log logM

• Target recurrence?

• T (M) = T (
√
M) + O(1). This solves to O(log logM).

• Goal: get rid of second recursive call in insert and successor
query

• On query: we still query the main cluster. If the successor is
not found, use a successor query in the summary vEB tree to
find the next nonempty cluster. Return the minimum element
in that cluster.

• How can we make this just one call?

• Hint: Can we store something to help us determine if q has a
successor in its cluster without a recursive query?

22

Getting to log logM

• Target recurrence?

• T (M) = T (
√
M) + O(1). This solves to O(log logM).

• Goal: get rid of second recursive call in insert and successor
query

• On query: we still query the main cluster. If the successor is
not found, use a successor query in the summary vEB tree to
find the next nonempty cluster. Return the minimum element
in that cluster.

• How can we make this just one call?

• Hint: Can we store something to help us determine if q has a
successor in its cluster without a recursive query?

22

vEB Tree: Store the Max and Min in each cluster

• On query: find q’s cluster.

• If q is less than the max, find successor(q) in that cluster and
return it

• Otherwise, use a successor query on the summary vEB tree to
find the next nonempty cluster

• Return the minimum element in that cluster

• Example on board: store 3, 5, 15 from universe {0, . . . 15};
query for element 8.

23

vEB Tree: Store the Max and Min in each cluster

• On query: find q’s cluster.

• If q is less than the max, find successor(q) in that cluster and
return it

• Otherwise, use a successor query on the summary vEB tree to
find the next nonempty cluster

• Return the minimum element in that cluster

• Example on board: store 3, 5, 15 from universe {0, . . . 15};
query for element 8.

23

vEB Tree: Store the Max and Min in each cluster

• On query: find q’s cluster.

• If q is less than the max, find successor(q) in that cluster and
return it

• Otherwise, use a successor query on the summary vEB tree to
find the next nonempty cluster

• Return the minimum element in that cluster

• Example on board: store 3, 5, 15 from universe {0, . . . 15};
query for element 8.

23

vEB Tree: Store the Max and Min in each cluster

• On query: find q’s cluster.

• If q is less than the max, find successor(q) in that cluster and
return it

• Otherwise, use a successor query on the summary vEB tree to
find the next nonempty cluster

• Return the minimum element in that cluster

• Example on board: store 3, 5, 15 from universe {0, . . . 15};
query for element 8.

23

vEB Tree: Store the Max and Min in each cluster

• On query: find q’s cluster.

• If q is less than the max, find successor(q) in that cluster and
return it

• Otherwise, use a successor query on the summary vEB tree to
find the next nonempty cluster

• Return the minimum element in that cluster

• Example on board: store 3, 5, 15 from universe {0, . . . 15};
query for element 8.

23

Speeding up Insert

• Before: insert q in correct cluster; insert cluster into summary
data structure

• How can we turn this into one recursive call?

• We only need to insert q into summary data structure if its
cluster was empty

• In that case: just store q as min!

• Change to the algorithm: don’t store minimum element
recursively!

• Only need to recurse on summary data structure

24

Speeding up Insert

• Before: insert q in correct cluster; insert cluster into summary
data structure

• How can we turn this into one recursive call?

• We only need to insert q into summary data structure if its
cluster was empty

• In that case: just store q as min!

• Change to the algorithm: don’t store minimum element
recursively!

• Only need to recurse on summary data structure

24

Speeding up Insert

• Before: insert q in correct cluster; insert cluster into summary
data structure

• How can we turn this into one recursive call?

• We only need to insert q into summary data structure if its
cluster was empty

• In that case: just store q as min!

• Change to the algorithm: don’t store minimum element
recursively!

• Only need to recurse on summary data structure

24

Speeding up Insert

• Before: insert q in correct cluster; insert cluster into summary
data structure

• How can we turn this into one recursive call?

• We only need to insert q into summary data structure if its
cluster was empty

• In that case: just store q as min!

• Change to the algorithm: don’t store minimum element
recursively!

• Only need to recurse on summary data structure

24

Speeding up Insert

• Before: insert q in correct cluster; insert cluster into summary
data structure

• How can we turn this into one recursive call?

• We only need to insert q into summary data structure if its
cluster was empty

• In that case: just store q as min!

• Change to the algorithm: don’t store minimum element
recursively!

• Only need to recurse on summary data structure

24

Speeding up Insert

• Before: insert q in correct cluster; insert cluster into summary
data structure

• How can we turn this into one recursive call?

• We only need to insert q into summary data structure if its
cluster was empty

• In that case: just store q as min!

• Change to the algorithm: don’t store minimum element
recursively!

• Only need to recurse on summary data structure

24

Making sure successor still works

• Does successor still work if the minimum element is not stored
recursively?

• No, but it’s easy to fix: just check if q < the minimum
element. If so, the minimum element is the successor.

• Done!

25

Making sure successor still works

• Does successor still work if the minimum element is not stored
recursively?

• No, but it’s easy to fix: just check if q < the minimum
element. If so, the minimum element is the successor.

• Done!

25

Making sure successor still works

• Does successor still work if the minimum element is not stored
recursively?

• No, but it’s easy to fix: just check if q < the minimum
element. If so, the minimum element is the successor.

• Done!

25

van Emde Boas Tree Summary

• If |M| = 1, just store whether or not the one element is in our
set

• Otherwise, have a “summary” vEB tree of size
√
M; and,

divide M into
√
M parts, with one vEB tree for each

• Plus the minimum and maximum elements in our structure, if
they exist

26

van Emde Boas Tree Summary

• If |M| = 1, just store whether or not the one element is in our
set

• Otherwise, have a “summary” vEB tree of size
√
M; and,

divide M into
√
M parts, with one vEB tree for each

• Plus the minimum and maximum elements in our structure, if
they exist

26

van Emde Boas Tree Summary

• If |M| = 1, just store whether or not the one element is in our
set

• Otherwise, have a “summary” vEB tree of size
√
M; and,

divide M into
√
M parts, with one vEB tree for each

• Plus the minimum and maximum elements in our structure, if
they exist

26

van Emde Boas Tree Summary: Insert

To insert an item x :

• Find x ’s cluster c . If c has no minimum, set the minimum of c
to be x , and insert c into the summary data structure.

• Otherwise:
• Check if x is less than the minimum m.
• If so, set x to be the minimum, and insert m into x ’s cluster.
• Do the same for the maximum.
• Otherwise, insert x into its cluster.

27

van Emde Boas Tree Summary: Insert

To insert an item x :

• Find x ’s cluster c . If c has no minimum, set the minimum of c
to be x , and insert c into the summary data structure.

• Otherwise:
• Check if x is less than the minimum m.
• If so, set x to be the minimum, and insert m into x ’s cluster.
• Do the same for the maximum.
• Otherwise, insert x into its cluster.

27

van Emde Boas Tree Summary: Insert

To insert an item x :

• Find x ’s cluster c . If c has no minimum, set the minimum of c
to be x , and insert c into the summary data structure.

• Otherwise:
• Check if x is less than the minimum m.
• If so, set x to be the minimum, and insert m into x ’s cluster.
• Do the same for the maximum.
• Otherwise, insert x into its cluster.

27

van Emde Boas Tree Summary: Successor

To find the successor of an item x :

• If x is less than the current minimum element m, return m.

• Find x ’s cluster c . If x is smaller than the maximum value in
that cluster, query vEB tree c for the successor of x .

• Otherwise, query the summary vEB tree for the successor of c ;
call it c ′. Return the minimum element of c ′.

28

van Emde Boas Tree Summary: Successor

To find the successor of an item x :

• If x is less than the current minimum element m, return m.

• Find x ’s cluster c . If x is smaller than the maximum value in
that cluster, query vEB tree c for the successor of x .

• Otherwise, query the summary vEB tree for the successor of c ;
call it c ′. Return the minimum element of c ′.

28

van Emde Boas Tree Summary: Successor

To find the successor of an item x :

• If x is less than the current minimum element m, return m.

• Find x ’s cluster c . If x is smaller than the maximum value in
that cluster, query vEB tree c for the successor of x .

• Otherwise, query the summary vEB tree for the successor of c ;
call it c ′. Return the minimum element of c ′.

28

van Emde Boas Tree Summary: Successor

To find the successor of an item x :

• If x is less than the current minimum element m, return m.

• Find x ’s cluster c . If x is smaller than the maximum value in
that cluster, query vEB tree c for the successor of x .

• Otherwise, query the summary vEB tree for the successor of c ;
call it c ′. Return the minimum element of c ′.

28

Analysis

• Successor does O(1) work and makes one recursive call of size√
M.

• T (M) = T (
√
M) + O(1) give O(log logM) query time

• Insert does O(1) work and makes one recursive call of size√
M; also O(log logM) time

29

Analysis

• Successor does O(1) work and makes one recursive call of size√
M.

• T (M) = T (
√
M) + O(1) give O(log logM) query time

• Insert does O(1) work and makes one recursive call of size√
M; also O(log logM) time

29

Analysis

• Successor does O(1) work and makes one recursive call of size√
M.

• T (M) = T (
√
M) + O(1) give O(log logM) query time

• Insert does O(1) work and makes one recursive call of size√
M; also O(log logM) time

29

Moving forward

• Predecessor queries?

• Pretty much identical

• What’s the current space usage? Can we set up a recurrence?

• S(M) = (
√
M + 1)S(

√
M) + O(

√
M)

• Solves to O(M). Very bad!

• Deletes?

• Can make deletes work pretty easily with what we have.

30

Moving forward

• Predecessor queries?

• Pretty much identical

• What’s the current space usage? Can we set up a recurrence?

• S(M) = (
√
M + 1)S(

√
M) + O(

√
M)

• Solves to O(M). Very bad!

• Deletes?

• Can make deletes work pretty easily with what we have.

30

Moving forward

• Predecessor queries?

• Pretty much identical

• What’s the current space usage? Can we set up a recurrence?

• S(M) = (
√
M + 1)S(

√
M) + O(

√
M)

• Solves to O(M). Very bad!

• Deletes?

• Can make deletes work pretty easily with what we have.

30

Moving forward

• Predecessor queries?

• Pretty much identical

• What’s the current space usage? Can we set up a recurrence?

• S(M) = (
√
M + 1)S(

√
M) + O(

√
M)

• Solves to O(M). Very bad!

• Deletes?

• Can make deletes work pretty easily with what we have.

30

Moving forward

• Predecessor queries?

• Pretty much identical

• What’s the current space usage? Can we set up a recurrence?

• S(M) = (
√
M + 1)S(

√
M) + O(

√
M)

• Solves to O(M). Very bad!

• Deletes?

• Can make deletes work pretty easily with what we have.

30

Moving forward

• Predecessor queries?

• Pretty much identical

• What’s the current space usage? Can we set up a recurrence?

• S(M) = (
√
M + 1)S(

√
M) + O(

√
M)

• Solves to O(M). Very bad!

• Deletes?

• Can make deletes work pretty easily with what we have.

30

Moving forward

• Predecessor queries?

• Pretty much identical

• What’s the current space usage? Can we set up a recurrence?

• S(M) = (
√
M + 1)S(

√
M) + O(

√
M)

• Solves to O(M). Very bad!

• Deletes?

• Can make deletes work pretty easily with what we have.

30

Smaller space

• We won’t go over this

• Basic idea: just use hashing! Only store nonempty clusters

• Can get O(n) space

• Possible to get O(n) space deterministically using another,
more complicated data structure (y-fast tries)

31

Smaller space

• We won’t go over this

• Basic idea: just use hashing! Only store nonempty clusters

• Can get O(n) space

• Possible to get O(n) space deterministically using another,
more complicated data structure (y-fast tries)

31

Smaller space

• We won’t go over this

• Basic idea: just use hashing! Only store nonempty clusters

• Can get O(n) space

• Possible to get O(n) space deterministically using another,
more complicated data structure (y-fast tries)

31

Smaller space

• We won’t go over this

• Basic idea: just use hashing! Only store nonempty clusters

• Can get O(n) space

• Possible to get O(n) space deterministically using another,
more complicated data structure (y-fast tries)

31

Predecessor/Successor data structures

For a set S from {0, . . . ,M − 1}:

• BBSTs: O(log n)

• van Emde Boas trees: O(log logM)

• Takeaway: unless M is very large or n is very small, vEB trees
are quite a lot faster

• But, they’re probably a bit more complicated

32

Predecessor/Successor data structures

For a set S from {0, . . . ,M − 1}:

• BBSTs: O(log n)

• van Emde Boas trees: O(log logM)

• Takeaway: unless M is very large or n is very small, vEB trees
are quite a lot faster

• But, they’re probably a bit more complicated

32

Predecessor/Successor data structures

For a set S from {0, . . . ,M − 1}:

• BBSTs: O(log n)

• van Emde Boas trees: O(log logM)

• Takeaway: unless M is very large or n is very small, vEB trees
are quite a lot faster

• But, they’re probably a bit more complicated

32

Predecessor/Successor data structures

For a set S from {0, . . . ,M − 1}:

• BBSTs: O(log n)

• van Emde Boas trees: O(log logM)

• Takeaway: unless M is very large or n is very small, vEB trees
are quite a lot faster

• But, they’re probably a bit more complicated

32

That’s all for today!

Remember to:

• Think about when you might want to take the exam

• Let me know (email or slack) if there are any topics you’d like
me to cover on Thursday

33

That’s all for today!

Remember to:

• Think about when you might want to take the exam

• Let me know (email or slack) if there are any topics you’d like
me to cover on Thursday

33

	Rest of Slides (We didn't get to in class)

