
Lecture 22: Induced Sorting Suffix Array
(SA-IS) Part 2 (Updated after class)

Sam McCauley

December 3, 2021

Williams College

Admin

• Assignment 8 ready; I added a bunch more scaffolding than
previous assignments

• Anything I give in sais.c is optional.

• SA-IS lecture notes on the website
• I tried very hard to get rid of typos, but please let me know

about any you find!

• May have to go a bit quicker today to make sure we get
through everything

• I’ll come back to each topic to help prove why it works and
give examples. (May do some of this on Monday, but I want to
at least get through the algorithm today.)

1

Where we were

• L-type and S-type suffixes; L-type is LARGER than next suffix

• LMS suffixes are S-type suffixes preceded by L-type suffix

• Goal for the moment: if we have a sorted list of LMS suffixes,
we can sort L-type suffixes

• Recall that suffixes are in the final suffix array in order of their
first character.

2

18 7 10 13 2 16

18

7

10

13

2

16

$

A

C

17

654

9

12

1

15

S L S S L L L S S L S S L S S L S L S
C G A C T C C A A C A A C A A G C T $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

sortedP :

String S :

We know each L-type suffix is
larger than the suffix that comes

after it. We can represent all of these
dependencies graphically. The rightmost

column of nodes consists of the
LMS suffixes.

3

Idea: use the first character and type

• Look at the first character c of the suffix, and the type of the
suffix, to determine where it will go

• From last time, three cases:
• If there are no L-type suffixes starting with c in the right

column, add this one before any S-type suffixes starting with
character c

• If there is an L-type suffix starting with c in the right column,
it was added earlier in this process (since our column started
with all S-type suffixes in the right column). This means we
should place our new L-type suffix lower in the right column
(later in lexicographic order)

• In all cases: place our new suffix before all S-type suffixes
starting with C , and after all L-type suffixes starting with C

4

Final ordering

18 7 10 13 2 6 9 12 5 16 1 15 17 4

The LMS suffixes and L-type suffixes in sorted order after we
repeatedly perform the operation we discussed: remove the
guaranteed minimum node from the top of the right column. If it
has any L-type predecessors (to the left), place them in the right
column using their character and type.

5

Induced Sorting

Problems with This Approach

• The above gives us an O(n) time method to get the correct
order of the L-type suffixes given the ordering of the LMS
suffixes.

• Two problems remain.
• First, we need to also order the S-type suffixes.
• Second, the above method doesn’t really work as-is. How do

we insert the suffix? Can we avoid this annoying tree structure?

6

Warmup

• Let’s improve this algorithm just a little bit: we’ll remove the
right column of pointers

• How can we keep track of the right column with just an array?

• Arrays are bad for inserts because we may need to shift items
down. How can we avoid all shifts?

7

18 7 10 13 2 16

18

7

10

13

2

16

$

A

C

17

654

9

12

1

15

S L S S L L L S S L S S L S S L S L S
C G A C T C C A A C A A C A A G C T $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

sortedP :

String S :

We know each L-type suffix is
larger than the suffix that comes

after it. We can represent all of these
dependencies graphically. The rightmost

column of nodes consists of the
LMS suffixes.

8

Warmup Solution

• Let’s allocate an array of size n, and keep track of where each
bucket (corresponding to a letter) begins

• Each time we insert a new suffix to the right column, add it to
the leftmost remaining spot of the corresponding bucket

• And increment the counter

• (We’re not done—still need to keep track of the pointers
coming from the left. . . . or do we?)

9

Induced Sorting: Magic of the SA-IS algorithm

• Notice that the right-pointing edges in Figure 8 come
immediately from string S and the type of each suffix.

• Let’s run exactly the same algorithm—but now we won’t keep
track of anything but the final suffix array.

• Instead, we’ll take advantage of the fact that they’re placed
greedily to put them in the correct place in the suffix array as
they come.

10

Induced Sorting Algorithm: Place LMS Suffixes

Create a suffix array SA, initializing all array elements to −1.
Calculate where the “bucket” for each letter begins and ends.

Then, place the sorted LMS suffixes, in sorted order (from our
given array sortedP), as far to the right as possible in their bucket.
For each index i of SA (from left to right):

• If SA[i] = −1, ignore this slot

• Otherwise, place the predecessor suffix if it exists and is of
type L

11

Induced Sorting Algorithm: Place L-type suffixes

Iterate through SA from left to right. If the preceding suffix is
L-type, place it as far to the left as possible in its bucket

For each suffix array index i from 0 to n − 1:

1. if i is not empty (i.e. SA[i] > 0) and index SA[i]− 1 is of type
L:

• Place suffix SA[i]− 1 in the next (leftmost) empty slot in its
bucket (i.e. in bucket S [SA[i]− 1].)

12

Finishing the Remaining Suffixes

• We need to write S-type suffixes

• What do we know about each S-type suffix?

• It comes before its successor in sorted order

• We know the sorted order of the L-type suffixes

• Doesn’t that lead to the exact same kind of diagram as
before? (But with L-type suffixes in the right column, and
each S-type suffix being smaller than the next)

13

18 7 10 13 2 6 9 12 5 16 1 15 4 17

6

9

12

5

1

15

4

17

C

G

T

1110

87

32

0

16

1413

S L S S L L L S S L S S L S S L S L S
C G A C T C C A A C A A C A A G C T $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sorted L and
LMS suffixes:

String S :

14

Let’s do the same thing with this diagram

• Take off the node at the bottom of the rightmost column; this
is the largest suffix remaining (these are both reversed from
what we did before)

• Can place that suffix at the end of the current suffix array

• May have a left pointer (predecessor). What do we do with
that?

• This suffix is larger than any L-type suffix starting with the
same character

• This suffix is smaller than any previously-placed S-type suffix
starting with the same character

15

Induced Sorting Algorithm: Place S-type suffixes

Iterate through SA from right to left. If the preceding suffix is
S-type, place it as far to the right as possible in its bucket

For each suffix array index i from n − 1 to 0:

1. if i is not empty (i.e. SA[i] > 0) and index SA[i]− 1 is of type
S :

• Place suffix SA[i]− 1 in the next (rightmost) empty slot in its
bucket (i.e. in bucket S [SA[i]− 1].)

16

Placing S-type suffixes after L-type suffixes

Two problems to consider with this:

• Some of the S-type suffixes are already in SA. We can remove
them before we start.

• But, it turns out we don’t need to. Instead: just recalculate
the ends of each bucket

• Then we will overwrite the LMS suffixes that were already
placed

• Is it a problem if our loop reaches an LMS suffix (with index i)
before it’s overwritten?

• No! The preceding suffix must be L-type; so we just ignore it
anyway.

17

Putting it together

• One we place the S-type suffixes, we are done! (Let’s see an
example)

• So we placed the LMS suffixes. Then, we placed the L-type
suffixes. Then, we placed the S-type suffixes. Each took a
linear scan.

• Let’s look at our final Induced Sort: an O(n) algorithm to
obtain the suffix array given the sorted LMS suffixes.

18

InducedSort:
Create a count of each character in array C
store the ends of each bucket in E using C
store the beginning of each bucket in B using C
for i from sizeOfP − 1 to 0:

firstChar ← S[sortedP[i]]
SA[E[firstChar]] = sortedP[i]
E[firstChar]−−

for i from 0 to n−1:
if SA[i] > 0 and t[SA[i]−1] = L:
prevIndex ← SA[i] − 1
firstChar ← S[prevIndex]
SA[B[firstChar]] ← prevIndex
B[firstChar]++

store the ends of each bucket in E using C
for i from n−1 to 0:
if SA[i] > 0 and t[SA[i]−1] = S:
prevIndex ← SA[i] − 1
firstChar ← S[prevIndex]
SA[E[firstChar]] = sortedP[i]
E[firstChar]−−

19

Recursively Sorting the LMS
Suffixes

Our goal

• Our only task now is to sort the LMS suffixes. If we can do
that, we are done.

• We can obtain, in O(n) time, the indices of the LMS suffixes
(not in sorted order): we label the types of the suffixes of S ,
and then find the LMS suffixes using a linear scan.

• Let’s say we store them in an array P. So, rephrasing, our goal
is to sort the suffixes stored in P to obtain sortedP.

20

Using Recursion?

• I’ve said before that we’re going to solve this problem
recursively

• A recursive problem would be: “find the suffix array of a
($-terminated) string S ′ ”

• Instead, we want to find the ordering of a subset of the
suffixes (the LMS suffixes)

21

A C T C C A A C A A C A A G C T $

A A C A A C A A G C T $

A A C A A G C T $

A A G C T $

C T $

$

22

Our Suffixes

• These aren’t the suffixes of a string S ′

• But they are suffixes of each other

• Problem: a sequence of characters between each suffix rather
than a single character

• Can we replace these sequences with single characters while
retaining the string ordering?

23

A C T C C A A C A A C A A G C T $

A A C A A C A A G C T $

A A C A A G C T $

A A G C T $

C T $

$

Goal: group these sequences of characters into single characters,
while retaining the ordering between these strings.

24

LMS Blocks

Definition 1
We define a LMS block to be a substring of S from i to j (i.e.
S [i], S [i + 1], . . . ,S [j]) where i and j are both LMS suffixes. The
final character of S , by itself, is also considered to be an LMS block.

Note that the blocks, as defined, overlap.

S L S S L L L S S L S S L S S L S L S
C G A C T C C A A C A A C A A G C T $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

LMS blocks of this string: ACTCCA, AACA, AACA, AAGC, CT$, $.

25

Plan for sorting LMS Suffixes

• We need to assign characters to the LMS blocks

• But need to make sure that we retain the sorted order (smaller
blocks get smaller characters)

• So we need to sort the LMS blocks
• Just the blocks—not the whole LMS suffixes!
• We’ll have some “ties” that we’ll need to resolve with the

recursive call

26

Real Magic of the SA-IS algorithm

• We want to obtain the order of the LMS blocks

• Plan: run Induced Sort on S and P without assuming the LMS
suffixes in P are sorted

• We saw that running Induced Sort on S and sortedP will give
the correct suffix array SA

• Claim: running Induced Sort on S and P (where P contains
LMS suffixes in the order they appear in S) will lead to an SA

such that the LMS blocks in SA are in sorted order.

27

Taking a step back: what are these two Induced Sort calls?

• To take a step back, each recursive call of the SA-IS algorithm
is going to use two induced sorts.

• First, an induced sort to get the LMS blocks in sorted order

• Then a recursive call on a string S ′ built using the sorted LMS
blocks (haven’t discussed this yet)

• The recursive call will make sure that the LMS suffixes (not
just the LMS blocks) are entirely sorted.

• Once the recursive call completes, the LMS suffixes will be in
sorted order, and a new induced sort will give the correct suffix
array.

28

Let’s work through an example and discuss

What happens when we run an induced sort using an unsorted set
of LMS suffixes P?

Let’s start an example on the board. To begin, we place P in its
correct bucket.

• Now, suffixes will not be sorted correctly within a bucket

• ...But they’re not entirely unsorted. What CAN we say about
them?

• They are correctly sorted by their first character. (Only.)

• Can we use this to learn something about the L-type suffixes?

29

L-type dependencies with unsorted P

1817

1097654 13 12 2 1

1615

S L S S L L L S S L S S L S S L S L S
C G A C T C C A A C A A C A A G C T $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S :

We have dependencies between the first characters of the LMS
suffixes, and the L-type suffix dependencies are exactly as before.
But we no longer have a clean “rightmost column”; just a grouping
by character.

30

L-type suffix guarantee (unsorted P)

• Each L-type suffix i is in the correct place based on suffix
i + 1.

• If i + 1 is an LMS suffix, all we know is that the first two
characters of L are sorted

• . . . with an induction, the L-type suffixes are sorted up to the
next LMS suffix.

31

Example of placing L-type suffixes (unsorted P)

18 -1 -1 -1 2 7 10 13 6 9 12 5 -1 -1 16 1 15 17 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S L S S L L L S S L S S L S S L S L S
C G A C T C C A A C A A C A A G C T $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S :

SA:

Claim: each L-type suffix is sorted up to the next LMS suffix.

Example: Suffix 6 is CAAC...; suffix 12 is CAAG.... Suffix 6 winds
up earlier than suffix 12, even though it’s later in sorted order. But
the second character of each of these suffixes is from an LMS
suffix—so we only are sorting CA from suffix 6 with CA from suffix
12.

32

Finishing Induced Sort with Unsorted P

• Now place the S-type suffixes as before

• (Remember to reset the array ends E !)

• Since L-type suffixes are sorted up to the next LMS suffix...

• S-type suffixes are sorted up to the next LMS suffix

• LMS suffixes are S-type. So the LMS blocks are sorted!

• Scan through SA and add each block to sortedLMS

• Should get: 18, 7, 10, 13, 2, 16

33

Creating the Recursive String

Where we are

• We can sort the LMS blocks using Induced Sort

• We are here: Using the sorted LMS blocks, can obtain a
string S ′ such that the suffix array of S ′ gives the sorted order
of the LMS suffixes (sortedP)

• Using sortedP , an Induced Sort gives us the suffix array of S

34

A C T C C A A C A A C A A G C T $

A A C A A C A A G C T $

A A C A A G C T $

A A G C T $

C T $

$

Goal: group these sequences of characters into single characters,
while retaining the ordering between these strings.

35

Assigning Characters to LMS blocks

• We know the order to assign them (sorted order!)

• First LMS block gets character 0

• Then: if two LMS blocks are the same, want them to have the
same character

• Otherwise, want them to have a different character

• Only need to compare consecutive LMS blocks but...

• How can we compare them all in O(n) time?

36

Observation

• LMS blocks have total size O(n)

• So we just compare them character by character

• Note: need to compare the character AND the type of
the LMS blocks. If either mismatches they are different.

• Create array blockAssignments, where
blockAssignments[i] contains the new character for the
LMS block stored in sortedLMS[i]

37

Comparing two LMS blocks i and j

Start with c = 0. For each c , test (incrementing c after each
iteration):

• If S [i + c] 6= S [j + c], the blocks are unequal

• If t[i] 6= t[j], the blocks are unequal

• If we have reached (and tested!) another LMS suffix we are
done and the blocks are equal

38

Creating block assignments

blockAssignments[0] = 0

For i = 1 to size of blockAssignments −1:

• If LMS blocks sortedLMS[i] and sortedLMS[i-1] are equal,
blockAssignments[i] = blockAssignments[i-1]

• Otherwise, blockAssignments[i] =
blockAssignments[i-1] + 1

39

Where we are

• sortedLMS: 18, 7, 10, 13, 2, 16

• blockAssignments: 0, 1, 1, 2, 3, 4

• Let’s look at what happens (visually) when we replace these
LMS blocks with these new characters

40

A C T C C A A C A A C A A G C T $

3 1 1 2 4 0

A A C A A C A A G C T $

1 1 2 4 0

A A C A A G C T $

1 2 4 0

A A G C T $

2 4 0

C T $

4 0

$

0

Strings to sort: 311240, 11240, 1240, 240, 40, 0

41

Recursive call?

• We now want to sort the suffixes of 311240

• That’s a recursive call!

• Create S ′ = 311240 and find its suffix array

• Size of S ′?
• |S ′| is the number of LMS suffixes; this is at most n/2 (why)?

• Is the smallest character in S ′ the last character?
• Yes! The smallest LMS block is always the last character itself;

so that will always be the last block and will always be
assigned 0

42

Making the Recursive Call

Surprisingly, here is the base case of the SA-IS algorithm.

• Let’s say that there are no identical LMS blocks. What can we
say about the suffix array of S ′?

• The characters in S ′ are {0, 1, . . . , |S ′| − 1}

• So each character names its index in sorted order

• we can write each character of S ′ to the correct spot in SA′

using a linear scan: SA′[S ′[i]] = i

• Don’t need a recursive call!

• (Why are we guaranteed that this eventually happens?)

43

Game Plan for sorting LMS Suffixes

• Sort the LMS blocks using an Induced Sort

• Scan the LMS blocks in sorted order, comparing consecutive
LMS blocks. Use this to create an assignment of new
characters to blocks.

• Use this assignment to create a new string S ′

• If the last assigned character was |S ′| − 1, then SA′ = S ′.
Otherwise, calculate SA′ recursively.

• Use SA′ to sort the LMS suffixes

44

Constructing S ′

• S ′[i] corresponds to the ith LMS block (i.e. index P[i])

• We have: for all i , the LMS block at sortedLMS[i] should
obtain character blockAssignments[i]

• One way to do this (maybe not best)?:

• Create an array pAssignments of size O(n)

• For each i , set pAssignments[sortedLMS[i]] =
blockAssignments[i]

• Then, for each i , set S ′[i] = pAssignments[p[i]]

45

Final step!

Need to use SA′ to obtain sortedP (the LMS suffixes in sorted
order)

• The LMS indices (in order in S) are exactly the suffixes of S ′

• So: SA′ gives us the ordering!

For each index i of P :

• sortedP = P[SA′[i]].

Now that we have sortedP, a final InducedSort will give us the
correct suffix array.

46

Let’s go over what’s happened

• Let’s look at all of the
pseudocode in the lecture
notes, and talk a little bit
about what each piece does

• Then, if we have time, let’s
do an example from
beginning to end. Perhaps
baannaannaa.

• Then talk a bit about the
assignment

47

	Induced Sorting
	Recursively Sorting the LMS Suffixes
	Creating the Recursive String

