
Lecture 20: Burrow-Wheeler Transform
Continued

Sam McCauley

November 22, 2021

Williams College

Admin

• Office hours as normal today and tomorrow

• Then break!

1

Plan going forward

• Finish up BWT today

• After break: suffix arrays! (Two lectures, one assignment.)

• Then Van Emde boas trees lecture and finally a review class.

2

Recap

Compression: Our goals

• Take a string s, map it to a string m = c(s) (using a
compression function c)

• There exists a decryption function d , such that for all s,
d(c(s)) = s

• Lossless compression: we want to be able to recover the exact
string

• Goal: make the string smaller. Want |m| ≤ |s|.

3

Our strategy

• Use Burrows-Wheeler transform to make characters with
similar “contexts” appear close together

• Use Move-to-Front coding to make close-together characters
into frequent characters

• Use Huffman coding to map characters to bits; common
characters will be the cheapest to encode

String
s

Burrows-Wheeler
Transform

Move to
Front

Huffman
Coding

Encoded
string

4

Move-to-front transform

Transform a string s into a string MTF (s):

• Keep an list L of all possible characters. Start with L just
keeping the characters in some arbitrary order.

• For these examples: L = {a, b, c , . . . , y , z}
• In general, L encodes all 255 possible char values. Start with

L[i] = i .

• Start with empty s ′. For each i = 1 to |s|:

• If s[i] is the jth character in L, append j to s

• Move j to the front of L.

• Return s ′ as MTF (s) when done

5

Move-to-front transform: decode

Transform a string s ′ = MTF (s) into the original string s:

• Goal: recover L at each time step used when encoding

• Start with same L

• Start with empty s. For each i = 1 to |s ′|:

• If s ′[i] = j , then write L[j] to s

• Move j to the front of L.

• Let’s decode the board examples.

6

Burrows-Wheeler Transform

Recall: goals

• Make characters with similar contexts (i.e. u generally coming
after q) into close-together characters

• Needs to be reversible

• Would like it to be fast

7

BWT: Looking at the context of a character

b a n a n a $
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b

• Take all n circular suffixes
of the string (wrap around
from beginning)

• The “context” of each
character is the n − 1
characters following it

8

BWT: Looking at the context of a character

b a n a n a $
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b

• Key idea: since we have all
circular suffixes, the context
of the last character in a
row is the first n − 1
characters in the row

• Let’s sort the contexts (sort
the rows)

9

The Burrows-Wheeler Transform

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

• First, sort the suffixes
lexicographically

• Take the last character of
each suffix

• This is the BWT of the
string

• BWT(banana) = annb$aa

10

Still to show: reversible and efficient

Let’s start with reversible

• On the board: let’s say we have a BWT transformed string;
the result is e$elplepa

• What do we know based on how the BWT works? Can I
recover ANYTHING about the original string? Can I recover
anything about the original table?

• Result:

• appellee$

11

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first
column of the table

• This gives us all pairs of characters. If we sort THOSE, the
second character of the result gives the second column of the
table

• So on until the table is recovered

• Our string: row ending with $

12

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first
column of the table

a
n
n
b
$
a
a

13

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first
column of the table

$ a
a n
a n
a b
b $
n a
n a

14

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first
column of the table

• This gives us all pairs of characters. If we sort THOSE, the
second character of the result gives the second column of the
table

$ b a
a $ n
a n b
a n n
b a $
n a a
n a a

15

Reversing the BWT

• If we sort the BWT-transformed string, we obtain the first
column of the table

• This gives us all pairs of characters. If we sort THOSE, the
second character of the result gives the second column of the
table

• So on until the table is recovered
• Our string: row ending with $

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a 16

Efficiency

How much time and space does encoding take for a string of length
n? First, encoding:

• Filling out the table: O(n2) time and space.

• Sorting the table?

• O(n) time to compare two items

• O(n log n) comparisons

• Total: O(n2 log n) time.

17

Efficiency

How much time and space does this method take now for a string
of length n? Now, decoding:

• Recover one column at a time

• To recover a column: sort (last column) appended to current
columns we have

• O(n) time to compare two items

• O(n log n) comparisons

• O(n2 log n) time per column

• O(n3 log n) time overall

This is terrible. But there’s a ton of redundancy here. Can we do
better?

18

Efficient BWT Encoding

• Using a clever method, can get much faster time BWT
encoding

• Need another data structure: suffix array

19

Suffix Array

Any string of length n has a suffix array A of n indices:

• A[i] contains the index of the ith suffix of s in sorted order.

• Example: suffix array for banana$ is:

• 6 5 3 1 0 4 2

• Very similar to what we want for BWT. (We’ll talk about that
in a second). How fast do you think one can compute this?

• Answer: can do this in O(n) time for constant-size alphabet.
(Faster than sorting.)

• We’ll talk about how to do this after Thanksgiving

20

Suffix Array Applications

• Far wider use than just creating BWT

• In short: a suffix array is compressed, but allows trie-like
operations

21

Suffix Array to BWT

• Let’s say you are given the suffix array for the string.

• How can you get the BWT?

• Let’s do it one character at a time.

• The ith character of the string is the last column character
corresponding to the ith suffix in sorted order

• So: BWT[i] = s[j], where j = SA[i]− 1. (Watch out for
negative indices)

• Linear time method to calculate the BWT!

• Any practical problems with this methdology?

• Very cache-inefficient if our string is large enough for that to
be an issue

22

Where we are

• If you’re given a suffix array (you are), can calculate the BWT
in a simple linear scan. No extra space (beyond the original
string and the suffix array)

• Now: can we reverse the BWT quickly as well?

• Let’s fill out the BWT in reverse order. What characters can
we fill in?

• Key observation: let’s say we just wrote a character in the last
column. We want to find the character before that in the
original string. If we can find that character in the first
column, we know the next character to write (as it’s the
corresponding last-column-character).

23

Quickly inverting the BWT

Lemma 1

Consider a character c in the last column of the BWT table. The
order of all occurrences of c in the last column is the same as the
order of all occurrences of c in the first column of the table.

Proof: Let’s say the ith instance of c is followed by a (circular)
suffix si in the original string s. Then row i of the BWT table
consists of si concatenated with c . Therefore, the order of all
instances of c in the last column of the table is exactly the same as
the lexicographic order of the si .

24

Quickly inverting the BWT

Lemma 2

Consider a character c in the last column of the BWT table. The
order of all occurrences of c in the last column is the same as the
order of all occurrences of c in the first column of the table.

Proof (contd):

Now let’s look at the first column. Since the first row is sorted
lexicographically, all instances of c in the first column are adjacent
rows in the BWT table. Furthermore, the row beginning with the
ith instance of c consists of c concatenated with si . But then, the
order of the instances is the same as the lexicographic order of the
si .

So the orders are the same!

25

Diagram of proof

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

26

Diagram of proof

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

27

Quickly inverting the BWT

Let’s start deducing the original string from back to front. Let’s use
the example do$oodwg.

• What’s the last character? What’s the second to last
character?

• Idea: keep a pointer to the index in the BWT we just wrote.
How can we use that to deduce the next index we’re writing?

• Rephrase: how can we deduce the next character we’re
writing? As: how can we deduce what row it is in in the first
column ?

• Let’s say we just wrote the ith character in the first column of
the BWT table

• Its previous character is the ith character in the last
column—in other words, the ith character in the BWT

28

Quickly Inverting the BWT

• When we write a character, goal is: find out where it was in
the first column. If we get that we’re done

• Idea:

• We just wrote the jth character in BWT; let’s say it’s
character c

• Let’s say there are ` occurrences of c earlier in the BWT

• Then we’re looking for the `th c in the first column

• Example: invert e$elplepa using this method.

29

Data structures for inversion

How can we quickly answer: “I’m at index j of the BWT; I see
character c . How many instances of c are there at indices j and
earlier in the BWT?”

• Precompute with a linear scan!

• Keep track of how many of each character seen so far. Write
the value for each character of the BWT. Call this array rank .

30

Data structures for inversion (contd.)

How can we quickly answer: “In the first column of the BWT table,
in what row does the ith occurrence of character c occur?”

• The cs are all clustered together in the first row. Enough to
tell where the grouping begins.

• For each character c , keep track of how many characters
before c (in lexicographic order) occur in the entire string s

• Linear time preprocessing: first, get counts of each character
in the string. Then, sum successive entries to get the count of
all entries before the character. Call this array C

31

Algorithm for Inversion

First, write $ in the last slot. Find the index of $ in the BWT; call
this index. Then, do the following for n − 1 iterations:

• Find the row r in the BWT whose first column contains the
character c we just wrote:

• Calculate how many instances of this character occur earlier in
the BWT; this is rank[index]

• Find the location where we begin writing character c in the
first column: this is C [c]

• Therefore, we are looking for r = rank[index] + C [c].

• Prepend BWT[r] to s.

• Update index = r

32

Our final compression approach

• First, BWT the string using the above (causes characters that
appear in similar contexts to be grouped together)

• Then use MTF on the result (causes characters that are
grouped together to result in a large number of low-value
characters)

• Then use Huffman coding on the result of that (characters
that appear often can be written with a very small number of
bits).

33

Let’s code this up!

• First let’s look at the code

• Then, write a method to perform BWT encoding and
decoding

• How well does it help with compression?
• Test on chromosome1.txt from MiniMidterm 2
• Then test on proust.txt from Assignment 4

• What happens if we don’t BWT?

• Why is this? Print table.

34

Practical considerations

• This is still pretty slow: why?

• Cache-inefficient! Each encode/decode step requires random
array access. On large enough strings this is an L3 miss for
EACH characterwe encode/decode

• How can we avoid this?

• In practice: break into decent-sized blocks that fit into L3
cache! BWT each individually

35

	Recap
	Burrows-Wheeler Transform

