
Applied Algorithms Lec 2: Optimization

Sam McCauley

October 21, 2021

Williams College



Admin

• Office hours 3-5 today in TCL 306

• Do Assignment 0 if you haven’t

• Assignment 1 released Wednesday; we’ll talk about the

assignment and handin instructions on Thursday

1



Sorting in C

• qsort() from stdlib.h

• Takes as arguments array pointer, size of array, size of each

element, and a comparison function

• What’s a downside to this in terms of efficiency?

• Many ways to get better sorts in C:

• Nicely-written homemade sort

• C++ boost library

• Third-party code

• Instructions to get this to work in handouts on the website

(strictly optional)

2



Architecture

• x86 architecture (not AMD, not M1)

• Intel i7-8700 “Coffee Lake” specifically

• This is likely to have an effect on fine-grained performance in

some cases

• Your home computers are fine for correctness and coarse

optimization; use lab computers for fine-grained optimization

• If I ask you to do a performance comparison, you should

generally do it on lab computers. In any case you should write

what you do it on.

3



Where are things stored?

• In CPU register (never
touching memory)

• Temporary variables like

loop indices

• Compiler decides this

• Call stack

• Small amount of

dedicated memory to

keep track of current

function and local

variables

• Pop back to last function

when done

• temporary

4



Other place to store things

• The heap!

• Very large amount of memory (basically all of RAM)

• Create space on heap using malloc

• Need stdlib.h to use malloc

5



How to decide stack vs heap?

• Java rules work out well:

• “objects” and arrays on the heap

• Anything that needs to be around after the function is over

should be on the heap

• Otherwise declare primitive types and let the compiler work it

out

• Keep scope in mind!

6



Makefile

• Each time we change a file, need to recompile that file

• Need to build output file (but don’t need to recompile other

unchanged files)

• Makefile does this automatically

7



In this class

• I’ll give you a makefile

• You don’t need to change it unless you use multiple files or
want to set compiler options

• Probably don’t need to use multiple files in this class

• (Some exceptions for things like wrapper functions.)

8



Let’s look quickly at the default Makefile

• make, make clean, make debug

9



Compiler flags

• -g for debug, -c for compile without build (creates .o file)

• Different optimization flags:

• -O1 or -O2 are default levels

• -O3, -Ofast is more aggressive; doesn’t promise correctness in

some corner cases

• -O0 doesn’t optimize; -Og is no optimization for debugging

• Other flags to specifically take advantage of certain compiler

features (we’ll come back to this)

• -S (along with -fverbose-asm for helpful info) to get

assembly

10



Variable types

• int, long, etc. not necessarily the same on different systems

• On Windows long is probably 32 bits, on Mac and Unix it’s

probably 64 bits

• long long is probably 64 bits

• Instead: include stdint.h, describe types explicitly

• Keep an eye out for unsigned vs signed.

• Quick example: variabletypes.c

• printf does expect primitive types

11



Variable types cont.

• int (etc.) is OK for things like small loops

• If you care at all about size you should use the type explicitly

• Up to you when and where you use unsigned

• Controversial in terms of style

12



List of variable types

• int64 t, int32 t: signed integers of given size

• uint64 t, uint8 t: unsigned integers of given size

• uint fast64 t: fastest int with at least 8 bits

• uint least8 t: some unsigned int with at least 8 bits

• INT64 MAX (etc.): maximum value of an object of type

int64 t

13



Principles of Optimization



Reminder

• “Premature optimization is

the root of all evil!”

• Don’t optimize your code

until you have a working

copy.

• Some gray area with

structural decisions/trivial

ideas—but until something

works that is your main

goal.

14



Theory and Reality

• Computers are complicated! (And processors are proprietary!)

• Efficiency is always going to be highly experimental.

• Sometimes something should work, but doesn’t. Or vice versa.

• Goal for today: better understanding of where costs come

from and how we can measure them

15



Thought question

• What part of a program is most important to speed up?

• Let’s say I have several functions. How can I choose which to

optimize first?

• Answer: the one that takes the most total time

• Time it takes × number of times it’s called

• May not be the slowest function—in fact, it’s often a very fast

but very frequently-used function

• Probably need to take into account potential to speed it up as

well—I want the function that takes up the most time that I

can save.

16



Amdahl’s Law

If a function takes up a p frac-

tion of the entire program’s

runtime, and you speed it up

by a factor s, then the overall

program speeds up by a factor

1

1− p + p/s

• Examples

17



Amdahl’s Law and Asymptotics

• Can estimate the total time of an algorithm asymptotically

• Example: Where to improve Dijkstra’s algorithm?

18



Dijkstra’s Algorithm

function Dijkstra(Graph, source):

create vertex set Q

for each vertex v in Graph:

dist[v] ← INFINITY

prev[v] ← UNDEFINED

add v to Q

dist[source] ← 0

while Q is not empty:

u ← vertex in Q with min dist[u]

remove u from Q

for each neighbor v of u still in Q:

alt ← dist[u] + length(u, v)

if alt < dist[v]:

dist[v] ← alt

prev[v] ← u

return dist[], prev[]
19



Dijkstra’s Algorithm

function Dijkstra(Graph, source):

while Q is not empty:

u ← vertex in Q with min dist[u]

remove u from Q

for each neighbor v of u still in Q:

alt ← dist[u] + length(u, v)

if alt < dist[v]:

dist[v] ← alt

prev[v] ← u

return dist[], prev[]

20



Measuring Performance



What units to measure time?

• Overall: CPU time

• Some idiosyncracies in how we’re measuring it

• CPU vs wall clock time shouldn’t make much difference for us

• Costs of specific operations are generally given using number

of “CPU cycles”

• Not-quite-accurate definition of a cycle: time to perform one

basic operation

21



Easiest way to measure time: just time it!

Easy, probably reflective of what you want. But some things to

bear in mind:

• Make sure your timing is macroscopic.

• No timing is exact.

• CPU clocks usually only have a resolution of 1 million ticks

per second (sometimes less)

• Minimize issues with overhead, external factors

• Rule of thumb: ideally an experiment will take 1 second

• Always repeat several times and check consistency

22



Timing one portion of your code

For Amdahl’s, we want to time the total time a subroutine takes

over all calls. How can we hope to do that if each call is very fast?

1. One option: factor out subroutine using separate testing code

• Need to get info on how often it’s called; simulate correct

types of data.

• Make sure the compiler does not optimize out your whole

experiment!

2. Another option: Run same code with and without subroutine

• Does that change the data the function is called with? Will

the change in data affect running time?

3. Profiling!

We’ll come back to this with some examples momentarily. Bear in

mind: benchmarking itself is an entire area of computer science.

23



Profiling code

• Why not just have your computer tell you what functions are

caused the most, or keep track of how long they run, or

monitor specific high-cost operations?

• Lots of such tools! We’ll look at a couple of them right now,
and use them throughout the class.

• gprof

• cachegrind

• We won’t use perf but some people like it

• What do you think some advantages and disadvantages are of

using profiling software?

24



gprof

• Older command line tool

• Uses sampling to collect data

• Designed to talk with gcc using -pg flag

• Gives information about time as well as the call graph

• Quite limited. But in some circumstances gives good advice.

• Recursion; function-level resolution; cannot optimize;

overhead; sampling problems

25



callgrind and cachegrind

• Features of valgrind

• callgrind - gprof-like profiling

• cachegrind helps determine the cost of moving data: cache

misses, branch mispredictions, etc.

• Essentially runs the program on a virtual machine

• Gives information about costs you could not otherwise get,

but VERY slow.

26



Costs of Computation



Note on time taken

Latency vs throughput:

• Latency: time it takes for a sequence of data-dependent

operations of a given type

• Throughput: time after a previous operation when a new

operation of the same type can begin.

Bear this distinction in mind when designing experiments!

27



Basic operations (latency)

• Integer add, multiply (bit operations, move, push, pop, etc.)

• fast! 1-2 cycles

• Divide, modulo

• Pretty slow; 5-20 cycles

• Float add, multiply?

• Pretty fast on x86; almost as fast as integers

28



More complicated operations

• Square root?

• fast on our machines! 1-2 cycles

• memory allocation in bytes?

• Pretty slow...

• memory allocation in megabytes?

• how does it grow as we increase the number of operations?

• Cache efficiency is the problem here, not the memory call itself

• (For what it’s worth: malloc really is O(1))

29



Modern processors

• Lots going on

• Moving things around takes

more time than processing

30



Moving data around

• Casts can be expensive if they require moving the data into

another part of the processor!

• (Can be free if they don’t)

31



Branch mispredictions, etc.

• Instructions need to be moved into the CPU

• Modern CPUs predict what instructions will be next; move

while completing other operations

• What if the CPU gets it wrong?

• “Branch misprediction:” 10-20 cycles to fetch the new

instructions from memory

• Can have similar issues with calling non-inlined functions

(compiler is very good at avoiding this)

32



Branch predictors

• CPU keeps track of your branches as it runs

• Divides into four categories of how likely it is to be taken

• gcc also predicts your branches during compilation

• Can also give preprocessor directives about branches. Can be

helpful (one of the last things you should do for optimization)

33



Avoiding branch mispredictions

int max(int a, int b) {

int diff = a - b;

int dsgn = diff >> 31;

return a - (diff & dsgn);

}

int swap(int a, int b) {

a = a ^ b;

b = a ^ b;

a = a ^ b;

}

• Avoid branches (ifs, etc.)

• (Crazy tricks often not

worth it nowadays)

• cmov operations help a lot

in modern processors;

compilers are great at

avoiding expensive

branches

• If you do create a branch,

ask yourself how easy it is

to predict!

• Only way to be sure is to

experiment
34



Profilers examples: gprof

• Compile with -pg option; then run normally; then run gprof

on the executable

• Gives information about what calls what and how much time

is in each

• Not perfect, but gives us some information, especially for
simpler programs

• Can see if one function is called a LOT

• Can see if one function is only ever called by one other function

• Gets confusing with recursive calls

• I may ask you to use this, but be aware that it’s useful

sometimes at best

35



Profilers examples: cachegrind

• Compile with debugging info on -g AND optimizations on

• What does this entail immediately?

• Then valgrind --tool=cachegrind [your program]

• Outputs number of cache misses for instructions, then data,

then combined

• Simulates a simple cache (based on your machine) with

separate L1 caches for instructions and data, and unified L2

and (if on machine) L3 caches

• Does L1 misses vs last level (L3) misses

36



Final major cost: cache misses!

• Data is stored in different places on the computer

• Cost to access it frequently dominates running time

37



38



How caches work

• Stores data in the optimal(ish) place

• Moves data around in cache lines of 64 bytes

• Modern caches are very complicated

• Can be advantages of adjacent cache lines

• Basically: close is good; jumping around is bad.

39



Conclusions

• Different places where we can incur costs:

• Operations

• Branches and moving around instructions

• Cache misses

• Determining costs is a matter of experimentation on modern
machines!

• Rarely perfect!

• Theme throughout class: design different experiments to test

different aspects of code performance.

40


	Principles of Optimization
	Measuring Performance
	Costs of Computation

