
Lecture 19: Burrow-Wheeler Transform

Sam McCauley

November 22, 2021

Williams College

Admin

• All mini-midterms done! Remaining assignments are back to
fun collaboration

• And C! (Did you miss it?)

1

Assignment 7

• No assignment 7

• Plan instead: let’s talk about how this algorithm works today

• On Monday we’ll code it up “together”

• We’ll have one more assignment after Thanksgiving

2

Reflections on course so far

• Part 1: Time vs space

• Part 2: Randomization

• Part 3: LP, ILP, MIP

3

Part 4: Strings and Trees

What is this part of the course?

• Previously in this course
we’ve looked at how to
solve problems

• This section: more about
how to handle data

• Focus on strings—tons of
applications; lots of really
cool algorithms research

• Also learn some new aspects
of trees The “Lexicon lab” in 136

4

Today’s topic: compression

• Take data and make it
smaller

• Important! (Though
sometimes overstated. . .)

• Nice self-contained topic to
start before Thanksgiving

5

Compression: Our goals

• Take a string s, map it to a string m = c(s) (using a
compression function c)

• There exists a decryption function d , such that for all s,
d(c(s)) = s

• Lossless compression: we want to be able to recover the exact
string

• Goal: make the string smaller. Want |m| ≤ |s|.

6

Bad news: lossless compression is not possible

Proof sketch (we show not even possible in expectation):

• Let’s say we want to compress all binary strings of length `.

• Each of the 2` strings of length ` must be mapped to some
other string

• A given compressed string m can only be mapped to by one
string (otherwise we don’t know which of the original strings
to recover

• Only one compressed string of length 0, two of length 1, . . . ,

• In general: only 2k+1 − 1 compressed strings of length ≤ k .

• For all k < `, must have 2` − 2k+1 + 1 strings that are of
length > k when compressed

7

Bad news: lossless compression is not possible

Proof sketch (contd.):

• For all k < `, must have ≥ 2` − 2k+1 + 1 strings that are of
length > k when compressed

• Expected length =
∑2`

i=1 length of ith string · 1
2`

• = 1
2`
∑2`

i=1
∑∞

k=0[1 if string i has length ≥ k]

• ≥ 1
2`
∑`−1

k=0
∑2`

i=1[1 if string i has length > k]

• ≥ 1
2`
∑`−1

k=0 2
` − 2k+1 + 1 ≥ `−

∑`−1
k=0 2

k+1−`

• = `−
∑`−1

i=0
1
2i ≥ `− 2.

So: can only save O(1) bits in expectation.

8

What does this mean?

• Our methods can’t guarantee that strings get smaller

• What we’ll do instead:
• Methods that often help on strings we care about!

• We probably don’t want to compress an arbitrary string like
afoiewjfiowefjweoifjawepgvheufgahegieg

• (Which is good because we can’t!)

• Instead, we want to compress strings that look like English
text, or DNA, or something like that.

• Goal: compression methods that work well on text we care
about

9

First try: Huffman Coding

• Assign a sequence of bits to
each character

• More frequent characters
get longer sequences of bits

• Prefix-free: allows us to
greedily decode

• Simple, linear-time method
to calculate the optimal
Huffman code

• Does this help us compress?
When?

10

Huffman Coding

(From “A Comparison of Human
codes across languages” by L.

Buratto

• Useful when some
characters are much more
common than others

• English text? Yes! Other
languages? Also yes. DNA?
...kind of.

• What compression
opportunities in (say)
language text is this missing
out on?

11

Key observation for compressing much of text

• Characters are NOT independent!

• u after q is extremely frequent in English. But Huffman codes
alone can’t capture this.

• DNA (and some kinds of text) may have long sequences of the
same letter.

• What can we do about this?

• Could look at encoding pairs of characters. (Treat every pair
of consecutive characters as a single character.)

• Or, could use a fancier method. (Run length encoding? Keep
track of common substrings? Some adaptive combination of
both?)

12

Two methods for lossless compression

• Tailor-made methods (like
Lempel-Ziv and variants)

• Interesting methods, used
frequently in practice

• Tons of research into
making these methods
efficient, effective

• Other option: try to make
Huffman coding work

• How well can this do?

13

First attempt: Move-to-front transform

(We’ll be using this for our compression on Monday)

• Goal: preprocess the string so that long runs (and long
close-to-runs) of the same character can be encoded more
efficiently.

• Must be invertible (so that we can decode later)
• Does:

• Improve performance when the same character is close to other
occurrences of the same character

• Perform well when one character is repeated a lot

• Does NOT:
• Take advantage of relationships between different successive

characters
• Example: u always coming after q is no advantage at all

14

Move-to-front transform

Transform a string s into a string MTF (s):

• Keep an list L of all possible characters. Start with L just
keeping the characters in some arbitrary order.

• For these examples: L = {a, b, c , . . . , y , z}
• In general, L encodes all 255 possible char values. Start with

L[i] = i .

• Start with empty s ′. For each i = 1 to |s|:
• If s[i] is the jth character in L, append j to s

• Move j to the front of L.

• Return s ′ as MTF (s) when done

• Let’s do a couple examples on the board.

15

Move-to-front transform: decode

Transform a string s ′ = MTF (s) into the original string s:

• Goal: recover L at each time step used when encoding

• Start with same L

• Start with empty s. For each i = 1 to |s ′|:

• If s ′[i] = j , then write L[j] to s

• Move j to the front of L.

• Let’s decode the board examples.

16

Move-to-front discussion

• Move to front transforms sequences of nearby characters into
common characters

• Plan: to encode a string s, we first calculate MTF (s), and do
Huffman coding on that

• To decode, first Huffman decode the string. This gives us
MTF (s). Use the above method to recover s

• Can greatly improve Huffman coding performance if characters
are close togehter

• In the worst case: does nothing at all. (Could even make
performance a good amount worse—when?)

17

Burrows-Wheeler Transform

Where we are

• Very technical method to take advantage of common
substrings/correlations between sequences characters

• OR, move-to-front and Huffman to take advantage of
consecutive characters

• What we’d like: a simple, reversible preprocessing method that
makes common subsequences into common characters.

• We have MTF: so turning common subsequences into nearby
characters is enough

18

Burrows-Wheeler Transform (BWT)

• Invented around 1995

• Turns common subsequences into sequences of nearby
characters

• (This is a super weird thing to be able to do. We’ll look at a
few examples to try to get some intuition about it.)

• Reversible!

19

BWT Game Plan

To compress a string s:

• Use BWT to obtain a string sb = BWT (s). sb has the
property that common subsequences of s correspond to nearby
characters of sb

• Use MTF to obtain a string sm = MTF (sb). sm has the
property that nearby characters of sb (and therefore common
subsequences of s) correspond to common characters in sm

• Use Huffman coding on sm to obtain a final compressed string
sh. Common characters in sm require few bits to output.

All of the above is reversible, so this is a method for lossless
compression.

• Believe it or not: this method outperforms fancier state of the
art compression methods in some circumstances

• This is exactly what bzip2 does.
20

What does Burrows-Wheeler Transform do?

Let’s talk about performing BWT on a string s of length n. Let’s
assume that s ends with a special character $ (this will be helpful
for us)

• Goal: take the context of each character into account

• How many other characters should we look at? 1? 2?

• Silly point: we’ll do best if we consider the entire n − 1
characters surrounding each character

• What does it even mean to take the n− 1-character context of
a string into account?

21

BWT: Looking at the context of a character

b a n a n a $
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b

• Take all n circular suffixes
of the string (wrap around
from beginning)

• The “context” of each
character is the n − 1
characters following it

22

What does this give us?

a $ b a n a n

• For each character of the string: we look at all characters that
follow it

• What can we glean from the characters after a given
character?

• If a substring appears a lot, it will result in a lot of similar
(how?) sequences of n characters

• Example: in English text, almost every q will be followed by a
u.

• In banana, almost every a is followed by an n; every n is
followed by an a

• Recall: group characters with similar contexts together. So
let’s sort the characters using the n − 1 characters that follow
them 23

First, an observation

b a n a n a $
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b

• The context of a character
(the n − 1 characters
following it) are the
contents of the row that the
character ends

• So: let’s look at the last
column of this table

24

The Burrows-Wheeler Transform

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

• First, sort the suffixes
lexicographically

• Take the last character of
each suffix

• This is the BWT of the
string

• BWT(banana) = annb$aa

25

OK What’s going on here?

• This is efficient!?

• This is reversible!?

What we do have:

• Characters will wind up next to each other if they are followed
by lexicographically similar (n − 1-character) strings

• So: if all qs are followed by a u, then EVERY q will wind up in
the portion of the BWT corresponding to suffixes beginning
with u. Unclear how good this is. . .

26

One board example

• What is the BWT of dogwood?

• Hopefully we got: do$oodwg

• More interesting example: what if we take the BWT of the
first line of chromosome1.txt

27

Next class

• Show that the BWT is:
• Reversible
• Efficient

28

	Part 4: Strings and Trees
	Burrows-Wheeler Transform

