Lecture 19: Burrow-Wheeler Transform

Sam McCauley
November 22, 2021

Williams College

Admin

- All mini-midterms done! Remaining assignments are back to fun collaboration
- And C! (Did you miss it?)

Assignment 7

- No assignment 7
- Plan instead: let's talk about how this algorithm works today
- On Monday we'll code it up "together"
- We'll have one more assignment after Thanksgiving

Reflections on course so far

- Part 1: Time vs space
- Part 2: Randomization
- Part 3: LP, ILP, MIP

Part 4: Strings and Trees

What is this part of the course?

- Previously in this course we've looked at how to solve problems
- This section: more about how to handle data

- Focus on strings-tons of applications; lots of really cool algorithms research
- Also learn some new aspects of trees

The "Lexicon lab" in 136

Today's topic: compression

WHERE EVERYONE WANTS TO BE AN ICON

- Take data and make it smaller
- Important! (Though sometimes overstated...)
- Nice self-contained topic to start before Thanksgiving

Compression: Our goals

- Take a string s, map it to a string $m=c(s)$ (using a compression function c)
- There exists a decryption function d, such that for all s, $d(c(s))=s$
- Lossless compression: we want to be able to recover the exact string
- Goal: make the string smaller. Want $|m| \leq|s|$.

Bad news: lossless compression is not possible

Proof sketch (we show not even possible in expectation):

- Let's say we want to compress all binary strings of length ℓ.
- Each of the 2^{ℓ} strings of length ℓ must be mapped to some other string
- A given compressed string m can only be mapped to by one string (otherwise we don't know which of the original strings to recover
- Only one compressed string of length 0 , two of length $1, \ldots$,
- In general: only $2^{k+1}-1$ compressed strings of length $\leq k$.
- For all $k<\ell$, must have $2^{\ell}-2^{k+1}+1$ strings that are of length $>k$ when compressed

Bad news: lossless compression is not possible

Proof sketch (contd.):

- For all $k<\ell$, must have $\geq 2^{\ell}-2^{k+1}+1$ strings that are of length $>k$ when compressed
- Expected length $=\sum_{i=1}^{2^{\ell}}$ length of ith string $\cdot \frac{1}{2^{\ell}}$
- $=\frac{1}{2^{\ell}} \sum_{i=1}^{2^{\ell}} \sum_{k=0}^{\infty}[1$ if string i has length $\geq k]$
- $\geq \frac{1}{2^{\ell}} \sum_{k=0}^{\ell-1} \sum_{i=1}^{2^{\ell}}[1$ if string i has length $>k]$
- $\geq \frac{1}{2^{\ell}} \sum_{k=0}^{\ell-1} 2^{\ell}-2^{k+1}+1 \geq \ell-\sum_{k=0}^{\ell-1} 2^{k+1-\ell}$
- $=\ell-\sum_{i=0}^{\ell-1} \frac{1}{2^{i}} \geq \ell-2$.

So: can only save $O(1)$ bits in expectation.

What does this mean?

- Our methods can't guarantee that strings get smaller
- What we'll do instead:
- Methods that often help on strings we care about!
- We probably don't want to compress an arbitrary string like afoiewjfiowefjweoifjawepgvheufgahegieg
- (Which is good because we can't!)
- Instead, we want to compress strings that look like English text, or DNA, or something like that.
- Goal: compression methods that work well on text we care about

First try: Huffman Coding

- Assign a sequence of bits to each character
- More frequent characters get longer sequences of bits
- Prefix-free: allows us to greedily decode
- Simple, linear-time method to calculate the optimal Huffman code
- Does this help us compress? When?

Huffman Coding

- Useful when some characters are much more common than others
- English text? Yes! Other languages? Also yes. DNA? ...kind of.
- What compression opportunities in (say) language text is this missing out on?

Key observation for compressing much of text

- Characters are NOT independent!
- u after q is extremely frequent in English. But Huffman codes alone can't capture this.
- DNA (and some kinds of text) may have long sequences of the same letter.
- What can we do about this?
- Could look at encoding pairs of characters. (Treat every pair of consecutive characters as a single character.)
- Or, could use a fancier method. (Run length encoding? Keep track of common substrings? Some adaptive combination of both?)

Two methods for lossless compression

- Tailor-made methods (like Lempel-Ziv and variants)
- Interesting methods, used frequently in practice
- Tons of research into making these methods efficient, effective
- Other option: try to make Huffman coding work
- How well can this do?

First attempt: Move-to-front transform

(We'll be using this for our compression on Monday)

- Goal: preprocess the string so that long runs (and long close-to-runs) of the same character can be encoded more efficiently.
- Must be invertible (so that we can decode later)
- Does:
- Improve performance when the same character is close to other occurrences of the same character
- Perform well when one character is repeated a lot
- Does NOT:
- Take advantage of relationships between different successive characters
- Example: u always coming after q is no advantage at all

Move-to-front transform

Transform a string s into a string $\operatorname{MTF}(s)$:

- Keep an list L of all possible characters. Start with L just keeping the characters in some arbitrary order.
- For these examples: $L=\{a, b, c, \ldots, y, z\}$
- In general, L encodes all 255 possible char values. Start with $L[i]=i$.
- Start with empty s^{\prime}. For each $i=1$ to $|s|$:
- If $s[i]$ is the j th character in L, append j to s
- Move j to the front of L.
- Return s^{\prime} as $\operatorname{MTF}(s)$ when done
- Let's do a couple examples on the board.

Move-to-front transform: decode

Transform a string $s^{\prime}=M T F(s)$ into the original string s :

- Goal: recover L at each time step used when encoding
- Start with same L
- Start with empty s. For each $i=1$ to $\left|s^{\prime}\right|$:
- If $s^{\prime}[i]=j$, then write $L[j]$ to s
- Move j to the front of L.
- Let's decode the board examples.

Move-to-front discussion

- Move to front transforms sequences of nearby characters into common characters
- Plan: to encode a string s, we first calculate $\operatorname{MTF}(s)$, and do Huffman coding on that
- To decode, first Huffman decode the string. This gives us $\operatorname{MTF}(s)$. Use the above method to recover s
- Can greatly improve Huffman coding performance if characters are close togehter
- In the worst case: does nothing at all. (Could even make performance a good amount worse-when?)

Burrows-Wheeler Transform

Where we are

- Very technical method to take advantage of common substrings/correlations between sequences characters
- OR, move-to-front and Huffman to take advantage of consecutive characters
- What we'd like: a simple, reversible preprocessing method that makes common subsequences into common characters.
- We have MTF: so turning common subsequences into nearby characters is enough

Burrows-Wheeler Transform (BWT)

- Invented around 1995
- Turns common subsequences into sequences of nearby characters
- (This is a super weird thing to be able to do. We'll look at a few examples to try to get some intuition about it.)
- Reversible!

BWT Game Plan

To compress a string s :

- Use BWT to obtain a string $s_{b}=B W T(s)$. s_{b} has the property that common subsequences of s correspond to nearby characters of s_{b}
- Use MTF to obtain a string $s_{m}=\operatorname{MTF}\left(s_{b}\right) . s_{m}$ has the property that nearby characters of s_{b} (and therefore common subsequences of s) correspond to common characters in s_{m}
- Use Huffman coding on s_{m} to obtain a final compressed string s_{h}. Common characters in s_{m} require few bits to output.

All of the above is reversible, so this is a method for lossless compression.

- Believe it or not: this method outperforms fancier state of the art compression methods in some circumstances
- This is exactly what bzip2 does.

What does Burrows-Wheeler Transform do?

Let's talk about performing BWT on a string s of length n. Let's assume that s ends with a special character $\$$ (this will be helpful for us)

- Goal: take the context of each character into account
- How many other characters should we look at? 1? 2?
- Silly point: we'll do best if we consider the entire $n-1$ characters surrounding each character
- What does it even mean to take the n - 1 -character context of a string into account?

BWT: Looking at the context of a character

b	a	n	a	n	a	$\$$
$\$$	b	a	n	a	n	a
a	$\$$	b	a	n	a	n
n	a	$\$$	b	a	n	a
a	n	a	$\$$	b	a	n
n	a	n	a	$\$$	b	a
a	n	a	n	a	$\$$	b

- Take all n circular suffixes of the string (wrap around from beginning)
- The "context" of each character is the $n-1$ characters following it

What does this give us?

$$
a \quad \$ \quad b \quad a \quad n \quad a \quad n
$$

- For each character of the string: we look at all characters that follow it
- What can we glean from the characters after a given character?
- If a substring appears a lot, it will result in a lot of similar (how?) sequences of n characters
- Example: in English text, almost every q will be followed by a u.
- In banana, almost every a is followed by an n; every n is followed by an a
- Recall: group characters with similar contexts together. So let's sort the characters using the $n-1$ characters that follow them

First, an observation

b	a	n	a	n	a	$\$$
$\$$	b	a	n	a	n	a
a	$\$$	b	a	n	a	n
n	a	$\$$	b	a	n	a
a	n	a	$\$$	b	a	n
n	a	n	a	$\$$	b	a
a	n	a	n	a	$\$$	b

- The context of a character (the $n-1$ characters following it) are the contents of the row that the character ends
- So: let's look at the last column of this table

The Burrows-Wheeler Transform

$\$$	b	a	n	a	n	a
a	$\$$	b	a	n	a	n
a	n	a	$\$$	b	a	n
a	n	a	n	a	$\$$	b
b	a	n	a	n	a	$\$$
n	a	$\$$	b	a	n	a
n	a	n	a	$\$$	b	a

- First, sort the suffixes lexicographically
- Take the last character of each suffix
- This is the BWT of the string
- BWT(banana) $=$ annb\$aa

OK What's going on here?

- This is efficient!?
- This is reversible!?

What we do have:

- Characters will wind up next to each other if they are followed by lexicographically similar (n - 1-character) strings
- So: if all qs are followed by a u, then EVERY q will wind up in the portion of the BWT corresponding to suffixes beginning with u. Unclear how good this is...

One board example

- What is the BWT of dogwood?
- Hopefully we got: do\$oodwg
- More interesting example: what if we take the BWT of the first line of chromosome1.txt

Next class

- Show that the BWT is:
- Reversible
- Efficient

